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NOTA EXPLICATIVA

Este volume corresponde aos fasciculos primeiro e se-
gundo da parte A dum tratado intitulado «Elementos da Teoria
da Medida com relevo para a Teoria da Probabilidades. Ag par-
tes deste tratado ja concluidas foram redigidas quando o autor
era bolseiro primeiro da Comissio Coordenadora da Investiga-
¢do para a OTAN e depois do Instituto para a Alta Cultura, e
foram publicadas a expensas do Curso de Matematicas Superio-
res Professor Mira Fernandes, Estudos de Matematica, Esta-
tistica ¢ FEconometria, que pds um certo niimero de exemplares
das folhas soltas impressas a disposicao do autor, com a facul-
dade de este lhes dar o destino achado por conveniente.

Actualmente, tendo-se deslocado o autor, em comissio de
-servico, da Faculdade de Ciéncias da Universidade de Lisboa
para a Universidade de Luanda e a sua Delegacio de Nova Lis-
boa, acedeu o Ex.™ Senhor Professor Ivo Ferreira Soares, Ma-
gnifico Reitor da Universidade de Luanda muito gentilmente
a encarregar os proprios servigos universitirios a apresentar
as folhas pertencentes ac autor em varios volumes, a comecar
pelo volume presente, Como havia necessidade de escolher o
local da publicacio, o Ex.™ Senhor Professor Manuel Gomes
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Guerreiro, Dig.®° Delegado em Nova Lisboa do Magnifico Reitor
da Universidade de Luanda, resolveu prontamente o problema
atribuindo a tarefa & competente seccio especializada da Tipo-
grafia do Jornal Planalto de Nova Lisboa, da parte da qual o
autor encontrou a melhor compreensio.

O autor ndo faz mais senfo cumprir com um dever ele-
mentar exprimindo aqui a sua gratiddo profunda a todas as pes-
soas e entidades que contribuiram para a saida deste volume.

Claro que foi preciso acrescentar a presente nota expli-
cativa, um indice geral e um indice remissivo, a fim de elucidar
o leitor e facilitar-lhe as consultas. Quanto & bibliografia utili-
zada, pareceu-nos preferivel coloci-la, conjuntamente, no fim
do ultimo fasciculo desta parte A do nosso tratado, ainda por
publicar.

O autor termina esta nota ousando exprimir a esperanca
de que o estudioso possa colher deste trabalho conhecimentos

satisfatérios em relacic a um assunto bastante atil, muito in-
teregssante e, por vezes, um tanto esquecido.

Nova Lisboa, 4 de Agosto de 1969

%@6(20 gmno ‘Z'ZOJOZO /§t¢am¢m1
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ELEMENTOS DA TEORIA DA MEDIDA
COM RELEVO PARA A TEORIA
DA PROBABILIDADE

PARTE A

§ 1) Predmbule

Na primeira parte ou parte A deste tratado, designada
abreviadamente por A para efeitos de referéncia e intitulada
«Elementos da leoria da medida com relevo para a teoria da
probabilidade», sdo examinados assuntos diversos, uns impres-
cindiveis para a compreensio das duas partes especializadas
que constituem o resto do trabalho e outros dispensaveis
para tal fim, mas oportunos ne quadro dum curso geral sobre
medida e sobre probabilidade. O leitor ndo deixard de notar
que as solu¢des para as multiplas questbes postas emanam
dum numero comparativamente escasso de ideias fundamen-
tais exploradas ora num sentido ora noutro. E alids nesta
estruturacio simples que se esteiam o grande mérito e~ por-
que nio afirma-lo—a boa eficiéncia da teoria moderna da
medida e da probabilidade.

Umas trés décadas atras o ramo da Ciéncia reservado as
probabilidades—o «Calculo das Probabilidades» como entdo
se dizia—empregava processos empiricos por vezes bastante
engenhosos que resolviam satisfatoriamente certos problemas
sugeridos pela pratica, que se mostravam hesitantes, sendo
incoerentes, perante outros problemas mais delicados (muitas
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vezes decorrentes dos primeiros) e que falhavam nitidamente
quando a conjuntura impunha a amplia¢do do quadro ini-
cialmente tracado. Evidentemente, ja tinha sido ultrapassado
o estado primitivo no qual o curioso da matéria se limitava
a procurar surpreender, por via matematica, as manifestacées
do ente um tanto misterioso cuja existéncia aceitava sem
discussio e a que achava bem chamar «probabilidades».
Mesmo assim havia necessidade premente duma doutrina
rigorosa delineada no estilo das teorias matemdticas mais
evoluidas que, tomando para base principios abstractos sim-
ples, fosse capaz de alcancar, por métodos auténomos, conclu-
sbes suficientemente gerais para merecerem interesse espe-
culativo e suficientemente maleaveis para se prestarem a
aplicagbes proveitosas.

Desde que Kolmogorov publicou em 1933 o opusculo
«Grundbegriffe der Wahrscheinlichkeitsrechnung», aparece-
ram viarias formas de suprir a deficiéncia apontada no texto
precedente entre as quais citamos, como merecedoras de
registo, as expostas em obras como «Mass und Integral und
Ihre Algebraisierung» de C. CaratHEODORY, «Strukturtheorie
der Wahrscheinlichkeitsfelder und-rdume» de D. A. Karros,
as publicacbes de A. Réxyi e outras.

A via seguida neste trabalho consiste em mergulhar a
teoria da probabilidade na teoria mais geral da medida em
relagdo a qual aquela representa um caso particular interes-
sante em si e importante para efeitos de aplicagdo. Parece-nos
que assim facilitamos as coisas ao principiante que deseja
partir de no¢des acessiveis a sua intuicdo para chegar a um
ponto razoavelmente avancado sem dispéndio de esforco exa-
gerado. Doutro lado, se ¢ verdade que ha acréscimo de gene-
ralidade decorrente do caminho aqui escolhido, tal acréscimo
ndo resulta de maneira nenhuma em superfluidade, isso
devido aos trés motivos principais seguintes: Abrem-se as
perspectivas exactas sobre conceitos que doutro modo fica-
riam obscurecidos por falta de enquadramento adequado; cer-
tos temas de probabilidades puras s6 podem ser deslindados
com o auxilio de medidas que néo sdo probabilidades; muitos
dos resultados obtidos convém simultaneamente a teoria da
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probabilidade e a outras teorias matematicas na aparéncia
bem diferentes.

O leitor ndo precisa de conhecimentos prévios extensos
para poder acompanhar este tratado. Com efeito, basta-lhe
saber o trivial que é costume ensinar em cursos de Matema-
ticas Gerais e de Calculo Diferencial e Integral (talvez acres-
cido dum poucochinho da teoria do integral de Riemann-
-Stieltjes). Alids, dar-se-do referéncias apropriadas nos casos
em que possa haver duvida quanto a preparacdo do leitor.
Em todo o resto, o trabalho presente é independente de con-
sultas a outras obras, o que nio significa de modo nenhum
que ele dispensa tais obras. Pois, embora desenvolvamos
certos assuntos até a um grau superior ao usual, ndo ofere-
cemos nenhuma enciclopédia pelo que comprimimos alguns
estudos importantes e omitimos outros como o do teorema
de Radon-Nikodym e o das cadeias de Markov, para citar
apenas dois exemplos da situa¢fo referida em ultimo lugar.

Posto isso, cumpre-nos prestar um esclarecimento. Por
motivos varios, que ndo vale a pena enumerar aqui, tor-
nou-se necessario redigir esta parte A do tratado ja depois
de impressas as outras duas, a parte B intitulada «Constan-
tes assintoticas ¢ a lei fraca dos grandes mimeros» e a parte C
intitulada «Limites de somas de varidveis casuais independen-
fes», partes estas que continuam um trabalho mais antigo
(datado de 1958) a que se chamou «/ntrodu¢do ao estudo dos
limites de somas de varidveis casuais independentes» e que
consiste numa versio bastante encurtada da parte A moderna,
incidindo a condensacio mais pronunciada sobre o primeiro
capitulo e ai sobre o segundo paragrafo. Assim, como as refe-
réncias retrospectivas das partes B e C devessem concordar
simultaneamente com a «/ntroducdo etc» e com a parte A
moderna, esta foi dotada de duas numeragbes quer para os
seus teoremas quer para as suas formulas, duma numeracéo
corrente aplicada aos casos em que ndo hé receio de compli-
cacdo com a «/nirodugdo efc.» e doutra numera¢ido com ele-
mentos precedidos do simbolo N aplicada aos casos em que
poderia surgir uma complicagdo do tipo referido. Por exem-
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plo, as formulas do primeiro capitulo aparecem numeradas
sucessivamente de N 1) a N 14'), de 1) a 1), de N 15) a N 15"
e de 2) até ao fim, enquanto os teoremos do mesmo capitulo
vém marcados consecutivamente de NI a NXII, de I al, de
NXIII a NXXXVII' e de 1I até ao fim. Alias, o indice desta
obra resolvera prontamente qualquer dificuldade relativa a
consultas da matéria atrasada nas raras ocasiées em que
deixa de ser ordenada a numerag¢io global resultante da
sobreposi¢do das duas numeragdes empregadas.

Terminamos este preAmbulo dando uma ideia sumdria
do contetdo da parte A.

O seu primeiro capitulo é de longe o mais extenso e
intitula-se «Nog¢bes vdrias relativas a espacos de medida e de
probabilidade». O primeiro dos cinco parégrafos do capitulo
ou seja o segundo pardgrafo da parte A denomina-se «Os
conceitos de medida e de probabilidade» e amplia o pardgrafo
correspondente do trabalho «/utroducdo efc.» em proporg¢io
tdo elevada que se tornou aconselhdvel repartir a matéria
por seis alineas assinaladas pelas seis primeiras letras do
alfabeto latino mintusculo.

Na alinea a) do paragrafo referido estudam-se as opera-
¢Oes mais correntes sobre conjuntos contidos quer no mesmo
espaco quer em espacos diferentes, a saber a subtraccio, a
complementagdo, a unido, a adi¢do e a intersecgio no pri-
meiro caso e a restricdo, a multiplicacio, a projec¢do, a mar-
gina¢do e o corte no outro caso. A proposito desse estudo
recorre-se muitas vezes as chamadas (fun¢des) indicatrizes.

A alinea 4) comega por tratar de classes de conjuntos, em
especial de corpos e de corpo—o, para continuar com o exame
das operag¢6es principais sobre corpos—o definidos no mesmo
espa¢o ou em espagos diferentes entre as quais se contam a
completagio, a intersecgdo, a geracio, a decomposi¢io, a res-
tricdo, o corte, a projec¢éio, a marginacio e a multiplicacéo.
Também se considera o caso particular tio importante dos
corpos de BoreL a uma ou a mais dimensdes.
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Deu-se as duas alineas até agora consideradas um desen-
volvimento um pouco maior do que o usual porque se teve
em vista a preparacdo eficiente da alinea c¢), esta basica para
o capitulo inteiro, a qual comporta muitas coisas bem conhe-
cidas ao lado dalgumas eventualmente novas. No principio
desta alinea apresentam-se primeiro os conceitos de fung¢io
aferidora, de conteudo, de contetido—o, de quase-medida, de
medida e de espaco de medida e estudam-se a seguir as pro-
priedades mais ou menos imediatas relacionadas com esses
conceitos. Na continuagfo passam-se em revista as operagoes
correntes sobre espagos de medida, a saber a completagdo, a
restricio, a marginacio, a construg¢io por extensio (maximal)
e, por fim, a multiplica¢do (maximal).

Dum modo geral a alinea d) tem por objectivo aplicar as
conclusbes tiradas na alinea ¢) ao caso particular dos espagos
de Borer com um numero finito N1 de dimensdes, muito
embora se tornem oportunas frequentemente consideragoes
suplementares que ndo deixam de ter o seu interesse proprio.
Comecamos por estudar as relagbes entre medidas e determi-
nadas func¢des de intervalo (um pouco mais gerais do que as
habitualmente empregadas). Depois ocupamo-nos das fun¢des
medidoras e quase-medidoras associadas a /N ntimeros dados
(infinitos ou finitos) as quais permitem tratar medidas de
Lebesgue-Stieltjes arbitrarias por processos decalcados dos
que tratam qualquer probabilidade a custa da fungdo de dis-
tribuicio correspondente. Em seguida procedemos a uma ana-
lise muito mais minuciosa do que a costumeira néo s6 dos
pontos de continuidade e de descontinuidade duma funcio
medidora, como também das convergéncias fraca e completa
de certas sucessdes de funcdes quase-medidoras. Por fim,
examinamos as chamadas densidades de medida e os momen-
tos das medidas elementares e das medidas com densidade.
A este propésito aparece-nos, pela primeira vez, a nogdo de
corte feito numa medida.

A alinea e) traz o essencial sobre espacos de probabili-
dade acompanhado da terminologia prépria reservada a esses
espacos de medida especiais. Procedemos sempre por parti-
cularizacio de resultados alcangados nas duas alineas ante-
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riores salvo no estudo do conceito de independéncia (o qual
¢é privativo dos espacos de probabilidade). No meio disso tudo
damos relevo a tradicional hipétese dos casos igualmente
provaveis e nio nos esquecemos da combinatéria que fre-
quentemente acompanha essa hipétese. Também nio deixa-
mos de lado os teoremas cldssicos os quais passam a adquirir
significados mais precisos decorrentes do seu novo enquadra-
mento e entre os quais destacamos o teorema das probabili-
dades totais, o das probabilidades compostas e o de Bayes-
-Laplace. Quando apresentamos a nocio de independéncia,
distinguimos entre acontecimentos tirados do mesmo espaco
e acontecimentos tirados de espacgos diferentes.

Na alinea f) passamos em revista as mais importantes
das func¢des probabilidade, também chamadas leis de pro-
babilidade, definidas em espagos de Borel com um ntimero
finito de dimensdes. Sdo, entre outras, a lei elementar uni-
forme a qualquer numero de dimensées, a hipergeométrica, a
dos acontecimentos repetidos, a multinomial, a de Bernoulli-
-Poisson, a binomial ou de Bernoulli, a geométrica, a de
Pascal, a de Poisson, a de Neyman, a continua uniforme a
qualquer nimero de dimensdes, a de Laplace, a de Cauchy,
a normal ou de Gauss unidimensional, a gama, a qui-quadrado,
a beta, a normal ou de Gauss multidimensional, a de Student
e a de Fisher-Snedecor.

O terceiro paragrafo contém o trivial sobre funcdes
mensuraveis sem esquecer o caso particular das varidveis
casuais. O estudo ¢ de transi¢do e destina-se a acrescentar
ao precedente o refor¢o necessario para a exposi¢cio sub-
sequente.

No quarto pardgrafo desenvolvemos uma teoria dos inte-
grais de fun¢Ses mensuraveis com respeito a medidas arbitra-
rias a qual sai incompleta em si, mas amplamente suficiente
para os fins em vista. Os principais assuntos tratados sdo a
generalizacio das propriedades elementares dos integrais
classicos, os teoremas de Fatou, Lebesgue e Fubini com os
seus acompanhamentos e a dedugdo das desigualdades mais
correntes relativas a integrais.
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No quinto paragrafo comegamos por relacionar uma
medida arbitriaria com a nova medida que uma fun¢do men-
suravel (em relagdo a primeira medida) induz no espago de
Borel correspondente aos seus valores. A este proposito
encontramos facilidades para analisarmos como certas trans-
formagdes duma fung¢do mensuravel se refletem no compor-
tamento das funcdes medidoras por ela induzidas. Quanto aos
integrais de fun¢bes mensuraveis, estes convertem-se muitas
vezes em integrais de Lebesgue-Stieltjes e até de Riemann-
-Stieltjes, aproximando-nos assim da teoria do integral cléas-
sica. Finalmente, dada uma fung¢io mensurdvel continua, os
teoremas de Helly-Bray referem condi¢ées suficientes inte-
ressantes para que a convergéncia fraca ou completa de certa
sucessio de fun¢des quase-medidoras implique a convergén-
cia ordindria da sucessio de integrais correspondente.

O sexto paragrafo, ultimo do primeiro capitulo, é dedi-
cado a um tema privativo das medidas finitas significativas,
portanto praticamente das probabilidades. Trata-se das pri-
meiras propriedades das fungdes caracteristicas, da descrig¢do
interna destas func¢des e das suas relagbes com as fung¢des
medidoras especiais que sdo de distribui¢do. Em certa altura
a continuacgio da exposicdo fica relegada para o capitulo se-
guinte, isso devido a4 necessidade de respeitar a paragrafagdo
do trabalho «Introducdo etc.».

O segundo capitulo, com apenas dois paragrafos, aper-
feicoa o estudo dalgumas questdes encetadas no primeiro
capitulo e prepara o caminho para a analise dos assuntos
especializados que ocupam o resto deste trabalho.

No sétimo paragrafo introduzimos primeiro o conceito de
qualquer numero de variaveis casuais independentes e exa-
minamos a seguir o comportamento dos momentos e das fun-
cbes caracteristicas de tais varidveis supostas em numero
finito.

No oitavo pardgrafo completamos a matéria do sexto
considerando novas propriedades das fungGes caracteristicas,
em especial as relativas a sua integrabilidade e a sua deri-
vabilidade e as relativas a convergéncia de sucessdes de tais
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funcées. Depois o pardgrafo termina com uma selec¢do de
exemplos de fun¢des caracteristicas importantes.

O terceiro capitulo, o tltimo da parte A, comporta trés
paragrafos. Ele ¢ dedicado ao conceito de lei infinitamente
divisivel, abreviadamente lei i.d., no qual se esteia a teoria
dos limites de somas de variaveis casuais independentes a
desenvolver na parte final do tratado.

No nono paragrafo da-se a definicdo e estudam-se as
primeiras propriedades das leis i.d.. Juntam-se exemplos
notaveis de tais leis e assinala-se o papel fundamental que a
lei de Poisson desempenha em relacio a classe de todas as
leis i. d. possiveis.

No décimo paragrafo procedemos, por via heuristica, a
generalizacbes consecutivas das leis i.d. de estrutura mais
simples (isto é, das sobreposi¢cdes duma lei de Poisson com
outra de Gauss independente da primeira) até chegarmos a
duas expressdes equivalentes do logaritmo da fun¢éo caracte-
ristica duma lei i.d. que depois se revelard como universal.
O caminho a percorrer far-nos-a alcangar sucessivamente
a representa¢io de De Finetti, valida para certas leis i.d., a
representacdo de Kolmogorov, valida para outras leis i.d.,
e a representacio de Lévy e a de Lévy e Khintchine, estas
duas validas para qualquer lei i.d..

No paréagrafo final da parte A juntamos as duas repre-
sentagbes gerais do paragrafo precedente mais uma, a de
Lévy modificada, e fundamentamos devidamente o conjunto
dessas trés representac¢des. Acrescentamos a representacio
de Kolmogorov, tipica das leis i.d. com variincia, e termi-
namos dando exemplos de representacgdes de leis i. d. impor-
tantes.
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CAPITULO 1

NOCOES VARIAS RELATIVAS A ESPACOS DE MEDIDA
E DE PROBABILIDADE

§ 2) Os conceilos de medida e de probabilidade

a) Estudo de cerlas operagdes sobre conjuntos

1. Generalidades sobre conjuntos extraidos do mesmo espaco.
Quando se procede a elaboragdo duma teoria matematica,
quer haja inten¢do de aplicd-la ulteriormente a problemas
da pratica quer n#o haja tal inten¢do, € forg¢oso partir de
no¢des primarias oportunas que se consideram como 6bvias
na situagéo relativa incidente e que, por isso, nio se su;[el-
tam a nenhuma tentativa de dissecagio.

No caso presente é o nosso propésito construir uma teo-
ria da medida e, em particular, da probabilidade que esteja
conforme com os requisitos expostos na introdu¢go. Para este
efeito serve-nos de esteio a nogio primaria de conjunfo ndo-
-vazio, quer dizer, de conjunto com elementos. Quando aqui
se fixa tal conjunto, € com o desejo de organizéd-lo para os
fins em vista; assinala-se, usualmente, o efeito futuro dessa
organizagio chamando espaco ao conjunto fixado.

Seja O um espacgo. Aos elementos de Q atribuimos tam-
bém a denominagdo de ponfos, mesmo que néo sejam pontos
na acepc¢do usual da palavra. Quando » € o ponto genérico
de Q, pode recorrer-se a escrita muito sugestiva {(w).

#*
& ®

Dado o espaco Q (), podemos extrair dele conjuntos de
pontos », o préprio Q ou, caso & tenha mais dum ponto,
outros conjuntos. Por motivos varios, torna-se aconselhavel
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acrescentar a convengio seguinte: Existe em Q um e um s6
conjunto desprovido de pontos w, conjunto esse que recebe
o nome de conjunto vazio e que se representa pelo simbolo O.
Sendo assim, um conjunto de pontos o diz-se ndo-vasio se
for distinto de O.

Seja 4 um conjunto de pontos extraido de . O conjunto 4
diz-se elementar quando o numero dos seus pontos for igual
a um e diz-se ndo-elementar nos demais casos. Escreve-se
we 4 para indicar que o ponto o perfence a A ou, como tam-
bém se diz, estd situado em A e escreve-se » ¢ 4 para negar
a afirmagfo correspondente a expressio we 4. Portanto, dado
qualquer o, tem-se sempre weQ e w¢O.

Indicamos pelo simbolo |w, o, »",...| 0 conjunto formado
pelos pontos o, o, v",..., todos de Q. Nesta conformidade, a
relacio we{w} traduz muito simplesmente que o ponto w per-
tence ao conjunto elementar constituido pelo tnico ponto w.
—Mais, usamos o simbolo {w sujeito a certa relagio} para
referir o conjunto dos pontos de Q que satisfazem a relacido
escrita. Por exemplo, se o espago Q for o dos ntmeros racio-
nais, o simbolo }0<<w«£2| indica o conjunto dos ntimeros ra-
cionais positivos que nio excedem 2,

E

Consideremos dois conjuntos 4 e B extraidos do espago
Q(w). Quando todo o ponto w de A4 for também um ponto de
B, escreve-se Ac B e le-se A estd contido em B ou A é sub-
conjunto de B; também se escreve BD.A4 e se 1& B contém A4
ou B ¢ sobreconjunto de 4. Os simbolos C e O dizem-se sim-
bolos de inclusdo e as relacbes ACB e BD A4 dizem-se rela-
¢bes de inclusdo.

Seja qual for 4, faz-se a conven¢do 420 ou, equivalen-
temente, OC 4. Logo sai 4CQ ou QD 4, também seja qual
for 4. Um subconjunto (sobreconjunto) de 4 diz-se imprioprio
se coincidir com 4 ou com O (com Q) e diz-se prdprio nos
demalis casos.

Juntemos aos dois conjuntos 4 e B outro (, também
extraido do espago Q. Entido, tornam-se 6bvias as proprie-
dades seguintes das relacées de inclusio:
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N1) a) A< A e A>DA (propriedade reflexiva);
b) Nao s6 AcB e BcC implica AcC (, como tam-
bém A>DB e BOC implica ADC (propriedade

transitiva).

Escreve-se 4=28 e diz-se que 4 e B sio iguais quando
(e s6 quando), seja qual for o ponto », ou ocorrem as duas
relacdes we A e »e B ou ndo ocorre nenhuma delas. Escreve-se
A=B e diz-se que A4 e B sido diferentes para negar a afir-
macdo correspondente a relagio 4A=15.

Ponhamos AcB e ADB para indicar que A € simulta-
neamente subconjunto e sobreconjunto de 5. Entdo, a defi-
nicio de igualdade entre conjuntos conduz imediatamente
4 proposigdo seguinte:

N I) «Dois conjuntos A e B, extraidos do mesmo espago,
saem iguais quando e s6 quando se verifica a relagio 4cB
e ADB.»

Reconhece-se facilmente, ou por via directa ou combi-
nando a proposi¢io N1 com a férmula N 1), que a relagdo de
igualdade entre conjuntos goza das propriedades seguintes:

N2) a) A=A (propriedade reflexiva);
b) A=B implica B=A (propriedade simétrica);
¢) A=B e B=Cimplicam 4=C (propriedade tran-
sitiva).

Observacdo. E perfeitamente possivel que, dados 4 e B,
nio se verifique nenhuma das relagdes de inclusio AcCB e
A>DB. Exemplo: Q é o espago dos numeros naturais, 4 ¢ o
conjunto dos numeros naturais pares e B é ou o conjunto
dos numeros nhaturais impares ou o dos numeros naturais
menores que 20.

\ %

Seja Ay, As,. .., Ay,... uma coleccdo finita ou numeravel
de conjuntos extraidos do mesmo espaco. Caso se tenha
AcAdc...cd,c -, escreve-se 4,1 e diz-se que a coleccido
¢ ascendente ou mdo-descrescente; caso se tenha 4A;DA:D---
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---D4,D---, escreve-se 4, e diz-se que a coleccio é des-
cendente ou ndo-crescente. Em qualquer dos dois casos men-
cionados a colecgdo fica com a designacio de mondfona ou
de monotonica.

2. As operacBes de subtracgio e de complementacio.
O nosso préximo objectivo € estudar alguns casos notdveis
em que, partindo de vdarios conjuntos extraidos de certo
espago, se efectuam operagdes sobre eles que dio por resul-
tado um conjunto determinado contido no mesmo espago.

Comecemos por definir a operacio de sudtraccdo dos dois
conjuntos 4 e B, ambos de pontos » dum espago Q: E a ope-
ragdo que conduz ao conjunto de todos os pontos o tais que
se verifica simultaneamente we 4 e w¢ B, conjunto esse que
vamos representar por 4—75 e a que vamos chamar diferenca
entre (o diminuendo) A e (o diminuidor) B.

Logo se reconhece que a operac¢io de subtrac¢fio aqui
definida goza das propriedades seguintes:

N8)a) A—BcA; b) AcB implica 4—B=0 donde,
em particular, 4 —Q=0—-85=0; ¢) Anio con-
tém nenhum ponto de B implica 4-—B=4
donde, em particular, 4—O=4 (propricdade
wmodular).

Se C for outro conjunto de pontos w, podemos formar a
diferenca (4—B)—C entre (o diminuendo) A— B e (o dimi-
nuidor) €. Vale entdo a propriedade

N4) (4—B)—C=(4—C)—B,

pois nfo s6 we(A—B)—C implica primeiro se 4—B e 0¢
depois we 4, w¢ B e wé¢ (), em seguida we A—C e w¢ B e, por
fim, w 6 (4—C)—B, como também pode mostrar-se semelhan-
temente que we(A4A—C)—B implica we (4d—B)—C, de modo
que a proposi¢cdo NI prova a igualdade escrita.

E obvio que a dupla diferenca (4 —B)—C pode servir de
diminuendo para uma nova subtraccio e assim sucessiva-
mente,
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Um caso particular importante da subtraccdo de dois
conjuntos extraidos de £ é o caso em que o diminuendo é Q
e o diminuidor ¢ um conjunto qualquer 4. Chamamos a dife-
renca Q—.A complemento de 4 e representamo-la, em geral,
por .A-. A operacio que transforma 4 em 4- da-se o nome
de complementacio de A.

Para qualquer ponto w de Q a relagiio w ¢ 4 é equivalente
a relagio we A4~ facto este que permite evitar o uso do sim-
bolo ¢. Mais, a operagio da complementagdo goza da pro-
priedade seguinte:

N 5) (A~ )y =4 (propriedade involutiva).

3. As operacdes de unido e de adicio. Passamos a defi-
nir a operacio de wnido dos conjuntos Ay, As,. .., Au,..., for-
mando uma colec¢do finita ou numeravel e todos extraidos
do espaco Q(w): E a operagio que conduz ao conjunto de
todos os pontos » que gozam da propriedade de pertencerem a
algum dos conjuntos dados. Representamos o resultado desta
opera¢do por A;UA:U---UA,U--- ou, abreviadamente, por
U A, e chamamos-lhe unido dos conjuntos 4y, 4sy...,4.,. . .,

n

os quais passam a ser conjunlos unidos ou parcelas, consti-
tuindo-se 4, em primeira parcela, 4; em segunda parcela, etc.
Vale a proposicio seguinte:

N II) «A unido dum numero finito ou duma infinidade
numeravel de conjuntos extraidos do mesmo espa¢o nio se
altera, quer se permutem as suas parcelas de qualquer modo
quer se associem tantas vezes quantas se deseje parcelas
(em numero finito ou infinito) que formem bloco na unido
correspondente.»

Demonstracdo de N I11: A parte de N II que diz respeito
a comutatividade das parcelas € uma consequéncia imediata
da defini¢do da operagdo de unido.

Para provar a parte de N II que diz respeito a associati-
vidade das parcelas, basta deduzir a igualdade entre conjuntos
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NG) "'UAaU”'UA@U"'UAYU"'="'U14,7,U-"
"'U("'UABU“')U'-'UAYU-'-,

com indices «, § e y arbitrdarios e com um primeiro membro
de parcelas dispostas por ordem arbitraria. Ora bem, se o
ponto w pertencer ao primeiro membro de N 6), entdo » estd
situado numa das suas parcelas, suponhamos em A4,; portanto,
w estd situado na parcela 4, ou na parcela --~UA@U--- do
segundo membro, conforme A, for exterior ou interior ao
bloco constituido a volta de 4g; de qualquer modo » per-
tence ao segundo membro de N 6). Semelhantemente se prova
que um ponto » situado no segundo membro de N 6) pertence
também ao primeiro membro. Por causa da proposi¢do N I,
fica entdo completada a nossa demonstragio.

Para unides com duas ou trés parcelas, suponhamos
A, B e C, a definicdo da operacdo de unido e a proposicido
N II ddo as propriedades seguintes:

N1 a) A, BcAUB; b) ADB implica 4JB=.4 donde,
em particular, QU 8= e AU O=4 (propriedade
modular); ¢) AYB=BU A (propriedade comuta-
tiva); d) AUBUC=AUBUC=4UBUL)

(propriedade associativa).

Completamos a defini¢do de unifo dum nimero finito de
conjuntos de pontos o considerando todo o conjunto 4 ex-
traido de Q como a unifo de parcela tnica 4 e considerando
ainda o conjunto O como uma unido vazia, isto €, como uma
unifo de zero parcelas.

£ * *

Dois conjuntos sem pontos w comuns dizem-se disjuntos.
Quando os conjuntos A4, A4.,...,4,,... considerados no
principio desta sec¢ido forem disjuntos dois a dois, entido a
operacio de unifo efectuada sobre eles, 0 seu conjunto uniso
e os conjuntos unidos denominam-se também (operacio de)
adi¢do, (conjunto) soma e conjuntos somados, respectivamente.
Pode usar-se a notagdo 4+ As+---+.4,+--- ou, abreviada-
mente, 2 A4, para assinalar que se trata do caso particular

"
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da unifio das parcelas 4, 4s,...,4s,... que corresponde a
soma dessas parcelas.

Uma consequéncia imediata da proposi¢do N II é o coro-
lario seguinte:

N II') «A soma dum numero finito ou duma infinidade
numeravel de conjuntos extraidos do mesmo espago nido se
altera, quer se permutem as suas parcelas de qualquer modo
quer se associem tantas vezes quantas se deseje parcelas
(em numero finito ou infinito) que formem bloco na soma
correspondente.»

Supondo agora que os conjuntos 4, B e C da férmula N 7)
sdo disjuntos dois a dois e atendendo ao facto que o conjunto O
é o unico conjunto contido em e disjunto de A, obtemos as
propriedades seguintes da operagio de adigdo aqui delinida:

N7 @) A,BCA+B; &) A+O=A (propriedade modu-
lar); ¢) A+B=B+ A (propriedade comutativa);
d) A+ B+C=(A+B)+C=A4+ B+ C) (proprie-
dade associativa),

Finalmente, imitando o procedimento adoptadc no caso
geral da operacdo de unifio, consideramos todo o conjunto A4
extraido de @ como a soma de parcela unica 4 e considera-
mos ainda o conjunto O como uma soma vaszia, isto €, como
uma soma de zero parcelas.

Dada uma familia wdo necessiriamente numerdvel T de
indices ¢, pode acontecer que a cada f¢7, isto é,a cada ¢ de 7T
corresponda um conjunto 4, extraido do espago Q(v). Nesta

conformidade, representamos por |J A: e, no caso de con-
teT

juntos A, disjuntos dois a dois, também por 2 A, o conjunto
tel

de todos os pontos » que gozam da propriedade de perten-
cerem a algum dos A; considerados e chamamos a esse con-
junto umido e, no caso particular citado, também soma das
parcelas 4;. A demonstragio de N II continua a ser valida
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para esta generaliza¢io da defini¢io anterior de unido e, no
caso particular citado, de adicdo de conjuntos de pontos .

Alguns autores desenvolvem a teoria presente recor-
rendo, por vezes, & operagdo de subtraccdo simétrica de dois
conjuntos 4 e B de pontos «, entendendo por tal a operacgio
que conduz ao conjunto de todos os pontos w que gozam da
propriedade de pertencerem a algum dos conjuntos 4 e B
sem pertencerem simultineamente aos dois. O conjunto
resultante da operacdo definida denomina-se diferenca simé-
trica de A e B.

E 6bvio que a subtrac¢io simétrica de 4 e B goza da
propriedade comutativa; é mesmo esta a razdo da designagio
atribuida a este tipo de subtracgdo. Deixamos ao cuidado do
leitor verificar que a diferenca simétrica de 4 e B se iden-
tifica com o conjunto (4—B)+(B—.A4) ou seja com a soma
das diferencas entre 4 ¢ B e entre B e 4.

4. A operagio de interseccdo. Passamos a definir a ope-
ragio de infersec¢do dos conjuntos A, As,..., 4,,..., for-
mando uma coleccdo finita ou numerdvel e todos extraidos
do espago Q(w): E a operagio que conduz ao conjunto de
todos os pontos » que gozam da propriedade de pertencerem
simultaneamente a cada um dos conjuntos dados. Represen-
tamos o resultado desta operagdo por AiNA:N---NA.0---
ou, abreviadamente, por N 4, e chamamos-lhe interseccdo dos

n

conjuntos A, As,..., 4,,..., 0s quais passam a ser conjun-
tos secantes, constituindo-se 4, em primeiro conjunto secante,
A; em segundo conjunto secante, etc.

Uma consequéncia imediata da defini¢do dada é a pro-
posicdo seguinte:

N III) «Dois conjuntos 4 e B, extraidos do mesmo es-

pago, saem disjuntos quando e s6 quando se verifica a rela-
¢io ANB=0.»
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Vamos enunciar agora uma proposicio semelhante a
N II, a saber:

N IV) «A intersec¢do dum numero finito ou duma infi-
nidade numerdvel de conjuntos extraidos do mesmo espacgo
ndo se altera, quer se permutem 0s seus conjuntos secantes
de qualquer modo quer se associem tantas vezes quantas se
deseje conjuntos secantes (em numero finito ou infinito) que
formem bloco na intersec¢io correspondente.»

Demonstracdo de N IV : A parte de N IV que diz respeito
a comutatividade dos conjuntos secantes é uma consequén-
cia imediata da defini¢do da operaciio de intersecgéo,

Para provar a parte de N IV que diz respeito a associa-
tividade dos conjuntos secantes, basta deduzir a igualdade

N 8) en AN - ﬂAgﬂ ﬂAYQ == e nAan...
...n(...nABﬂ...)ﬂ...nATn...,

com indices o, 8 e y arbitrarios e com um primeiro membro
em que os conjuntos secantes estdo dispostos por ordem
arbitraria. Ora bem, se o ponto  pertencer ao segundo mem-
bro de N 8), entdo w estd situado simultineamente em cada
um dos conjuntos secantes .-, A, -y VAN -y Ayyooeg
doutro lado,we-.- N Aﬁﬂ ..~ implica que » esta situado simul-
taneamente em cada um dos conjuntos secantes A4, do bloco
constituido a volta de Ag; logo » pertence simultdneamente
a cada um dos conjuntos ..., 4,,..., dg,..., 4,,... €, portanto,
estd situado no primeiro membro de N 8). Semelhantemente
se prova que um ponto o situado no primeiro membro de N 8)
pertence também ao segundo membro. Por causa da propo-
si¢do N I, fica entdo completada a nossa demonstragio.

Para intersec¢des com dois ou trés conjuntos secantes,
suponhamos 4, B e C, a defini¢do da operagdo de intersec-
¢do e a proposi¢io N IV dido as propriedades seguintes:

N9) a) A,B0ANDB; &) AcB implica ANB=.4 donde,

em particular, ONB=0 e ANQ=A (propriedade
modular); ¢) ANB=BNA (propriedade comuta-
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tiva); d) ANBNC=(ANB)NC=4n(BNC)

(propriedade associativa),

Completamos a definigio de interseccio dum numero
finito de conjuntos de pontos ® considerando todo o con-
junto 4 extraido de Q como a intersec¢do cujo tnico con-
junto secante é o proprio A4 e considerando ainda o conjunto
como uma inferseccdo vasia, isto €, como uma intersecgio de

zero conjuntos secantes.

*
& *

Suponhamos que é dada a familia ndo necessariamente
numerdvel T de indices ¢ e que a cada ¢#e T corresponde um
conjunto A; extraido do espaco (). Neste caso represen-
tamos por‘ﬂTA, o conjunto de todos os pontos » que gozam

€

da propriedade de pertencerem simultineamente a cada um
dos A; considerados e chamamos a esse conjunto inferseccdo
dos conjuntos (secantes) A;. A demonstra¢io de N IV conti-
nua a ser vilida para esta generalizacio da definigfio ante-
rior de intersec¢do de conjuntos de pontos w.

B, Operacées combinadas sobre conjunios extraidos do
mesmo espaco. Quando se estd em presenga duma colecgdo
finita ou duma infinidade numerdvel de conjuntos extraidos
do espa¢o Q(w»), pode haver interesse em fazer incidir sobre
eles alguma combinacdo finita ou numeravel das operacdes
atras definidas. Em tal caso o uso de paréntesis, colchetes,
chavetas, etc. constitui o meio apropriado para indicar a
ordem pela qual devem efectuar-se as diversas operagoes.
Exemplifiquemos: Se 4, B, C e D forem quatro conjuntos de
pontos w e se 4 e B forem disjuntos, entio [DN(B—C) U
U|C—[D-N(A+B)}}| significa a unido que tem por primeira
parcela a interseccdo de D com o complemento da diferenca
entre 5 e C e que tem por segunda parcela a diferenca entre C
e a intersec¢do do complemento de D com a soma de 4 e B.

De vez em quando, duas marchas de operacgdes diferen-
tes, executadas sobre os mesmos conjuntos, conduzem a
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resultados finais coincidentes, dando assim lugar a uma igual-
dade entre dois conjuntos que se apresentam sob formas bem
diversas. Tal igualdade pode sempre demonstrar-se utili-
zando a proposicdo N I, isto é, provando que cada um dos
dois conjuntos igualados estd contido no outro. As férmulas
seguintes exibem algumas igualdades importantes do tipo
aqui referido; em todas elas as letras maidsculas com ou
sem indices designam conjuntos de pontos w.

Para comegar, consideremos os conjuntos A4y, Asy... Auyeeny
formando uma colecgéo finita ou numeravel, e vejamos duas
igualdades que lhes dizem respeito, as quais sio conhecidas
pelo nome de relacies de MorGaN e permitem, com recurso
aos complementos dos conjuntos envolvidos, transformar
intersecgbes em unibes e vice-versa.

N 10) a) (Ud.)y=NAs; 6) (N4 =U45.

A relagdo N 10 @) verifica-se como segue: Se we(U4.)
entdo w¢ A, para cada » e, portanto, we N A45; se we N4z,
entdo w ¢ 4, para qualquer » e, portanto, w e (U 4.)~. A rela-

c¢io N 10 4) pode obter-se a partir de N 10 @), substituindo
primeiro 4, por A5, atendendo depois a N 5) e tirando em
seguida o complemento a cada um dos membros.

Se tivermos os conjuntos que figuram em N 10) e se atri-
buirmos ao indice p o mesmo campo de variagio que ao
indice #, entdo vale a igualdade que vamos escrever e que
permite transformar a intersecgio numa combinagdo de unides
e de subtraccdes.

N 11) 0dy=(U 4~ | YY)~ Al

A relagio N 11) é verdadeira porque: Se we N 4,, sai o
?
par de relagbes we U4, e w¢(U 4,)—A, para qualquer p, o
qual implica we (U 4.)—{U(U4.)—4,]}; se » pertencer ao
»” ? #
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segundo membro de N 11), sai o par de relagdes mencionado
e, portanto, we A4, para cada p.

A igualdade dupla seguinte mostra que, dados dois con-
juntos de pontos o, & possivel substituir a sua subtracgio
por complementagbes acompanhadas ou por uma intersecgio
ou por uma unifo.

N12) A-B=ANB-=(A4-UB)-

A primeira parte de N 12) deve-se ao facto que o par de
relagbes we 4 e w ¢ B é equivalente ao par de relacdes we 4
e »e B-; a segunda parte de N 12) resulta da primeira por
aplicacido de N 10 @) aos dois conjuntos A~ e B.

Passamos para duas igualdades que traduzem, a primeira
uma propriedade que em geral permite simplificar o diminui-
dor duma subtraccio e a outra a chamada propriedade distri-
butiva da intersecgdo com respeito & subtraceio.

N 13) @) A-B=A-(AnB); b) (A-B)nC=(4AnC)-(BnC).

Deixamos ao cuidado do leitor a verificagdo de N 13)
pela via até agora usada. Alias, as duas igualdades serio
deduzidas por um processo novo na sec¢do seguinte.

Se considerarmos os conjuntos 4,,,,, onde o indice natu-
ral » corre de 1 até um numero VX1 (incluido) e onde, dado #,
o indice natural p, corre ou de 1 até um namero P,\1
(incluido) ou de 1 até -+, entdo podemos estabelecer a
igualdade

N 14)1<ﬂ (;JAn,pn)= U (Ai,nNAe, 000 NAN, ),

n=N Prspareenr PN

a qual refere a propriedade distributiva da interseccdo com res-
petto @ unido e toma a forma duma relagio bem conhecida
se interpretarmos os simbolos 4, , como grandezas numeéri-
cas e se substituirmos os simbolos da intersec¢do e da unigo
pelos simbolos da multiplicacio e da adi¢do, respectivamente.
Logo se vé que todo o ponto » situado no primeiro membro
de N 14) pertence simultaneamente a certos conjuntos A4,,,,
Az, 4,y ..y An,py €, consequentemente, pertence a unido que
figura no segundo membro de N 14). O leitor completa facil-
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mente a deducio da férmula N 14) mostrando que todo o
ponto « situado no segundo membro dela pertence também
a0 primeiro membro.

Suponhamos agora que cada » tirado de 1£L# </ torna
disjuntos dois a dois os conjuntos A, ,, correspondentes.
Entdo, fixadas de qualquer modo duas parcelas do segundo
membro de N 14), elas ndo podem deixar de ser disjuntas,
isso porque um dos conjuntos secantes da primeira sai dis-
junto do conjunto secante homélogo da outra. Logo a igual-
dade N 14) passa a assumir o aspecto particular

Ni14) N (@Edup)= 2 '(Al,p.ﬂAz,psﬂ oo NAN, )

1=n=N p, Pisbesees?

Na continuac¢ido do nosso estudo vai deparar-se-nos mais
duma vez a necessidade de, partindo duma colecgéo finita ou
numerivel de conjuntos de pontos w, converter a sua unido
na soma doutros conjuntos de pontos u, relacionados com os
primeiros e formando também uma colec¢do {inita ou nume-
ravel, ainda que a construcio dos novos conjuntos faga inci-
dir sobre os conjuntos dados um numero finito ou uma infini-
dade numeravel de operacgdes de interseccio e de subtraccéo.

Nesta ordem de ideias apresentamos a férmula

1) A1uA:UAdsUeU A=A+ (A0 Ao)+(Arn Asn As)+--
...+(A'l'n...nA;_1nAn)+...,

a qual se justifica como segue: O uso do sinal + no segundo
membro € correcto porque, escolhido qualquer par de numeros
naturais p e ¢>p, a parcela numero p sai subconjunto de 4,
e a parcela nimero ¢ sai subconjunto de 43, evidentemente
disjunto de 4,; se o ponto » pertencer ao segundo membro,
esta situado numa e numa sé das suas parcelas, suponhamos
na #-ésima, o que implica que we 4, e, portanto, que » per-
tence ao primeiro membro; se o ponto o estiver situado no
primeiro membro, existe um indice # tal que we 4, e we 4;
para os indices p<# que houver, facto este que implica que »
pertence a z-ésima parcela do segundo membro.
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Observacdo. HA variantes da férmula 1) que se obtém,
permutando as parcelas do primeiro membro e fazendo as
alteragdes correspondentes no segundo membro (ver N II).

Recordando agora que 4,1t significa que a colec¢do dos
conjuntos A4, é ascendente, podemos estabelecer um caso
particular da férmula 1), a saber

1y Se A, t,entdo 41U AU AU - UdulU-- =A1+(As—
—A1)+(A3'—A2)+"'+(An"‘-‘4n-1)+"'-

Chega-se a 1) tendo em conta que A,t implica 4, e
que nestas condi¢des a parcela genérica do segundo membro
de 1) d4, por causa de N1V, de N 9 4) e de N 12), a relacdo

AIﬂ ﬂA;—1ﬂAn=Anﬂ(A1_ﬂ nAr—;—I):Anﬂ A;—1=
=A,—Aus.

Vamos agora estabelecer outra férmula concebida na
mesma ordem de ideias que nos levou a 1). Com este fim, par-
timos do facto 6bvio que todo o conjunto 4 verifica a relagdo
Q=4+ A4". Logo, por causa de N 9), temos a igualdade

N 15) Qz(AH—Al_)n(Az-i—A;)ﬂ ﬂ(AN‘f”AJ_V);

cujo segundo membro pode ser desenvolvido, de acordo com
N 14), numa soma de 2% intersec¢des (cada uma das quais fica
com /N conjuntos secantes). Ora bem, a unido 4, AU --- U Ay
¢é, por causa de N 10 a), igual ao complemento da intersec¢io
AiNA:N--- N Ax e este complemento &, por sua vegz, igual ao
desenvolvimento do segundo membro de N 15) privado da
interseccio referida. Logo sai a formula
N15Y U 4d.= 2 43,
1=<»=<N 1= p=coN-1
onde os A, sdo os conjuntos diferentes (ou vazios) que podem

obter-se, substitvindoem N B, cada simbolo B, ou por 4,
1=n=<N

ou por A, e suprimindo N A4, das intersec¢des assim
formadas. PEnEN

A féormula N 15') diz respeito a unides com um numero
finito /V de parcelas. Para tais unides, a hipétese /V>>1 implica
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que o segundo membro de 1) tem um nGmero menor de par-
celas do que o segundo membro de N 15') e implica mais
que as parcelas da soma de 1), a excepcido da tltima, apre-
sentam conjuntos secantes em numero inferior a /V ou seja
inferior ao numero de conjuntos secantes de qualquer par-
cela da soma de N 15). Todavia, a f6rmula N 15") propor-
ciona certas vantagens sobre 1), porque a constitui¢cdo do
segundo membro de N 15') é insensivel a2 ordem pela qual
se dispSem os conjuntos unidos 4, e também porque, esco-
lhido qualquer indice # entre 1 e /V (extremos incluidos), as
parcelas do segundo membro de N 15") em que figura o con-
junto secante 4, ddo uma soma igual a

(Ai+A40N - N(Awa+ ) N AuN(Aupr+ )N -
- N(Ax+An)= A,

enquanto a tnica parcela do segundo membro de 1) em que
figura o conjunto secante A, sai em geral distinta de 4, e
s6 coincide com A4, se z=1 ou se #>1 e Ay,..., A, forem
disjuntos de A,.

Observacdo. Se os conjuntos Ay, A4z,...y4,,... consti-
tuirem uma infinidade numerdvel e se, escolhido qualquer
n entre 1 (incluido) e +oo, fizermos corresponder a 4, o al-
garismo 1 e a 4, o algarismo 0, entdo os 4, diferentes (ou va-
zios) que podem obter-se, substituindo em [ /5, cada sim-

1=nlw

bolo B, ou por 4, ou por 4, e suprimindo N 4, das inter-

1=nl»

seccoes assim formadas, esses 4} ficam em correspondéncia
biunivoca com os ntimeros x do intervalo 0<x <1 represen-
tados no sistema de numeracdo dual (e contados duas vezes
ou uma conforme terminarem ou deixarem de terminar com
uma sucessdo de algarismos iguais). Como o conjunto dos
numeros x referidos tem a poténcia do continuo, concluimos
que nio estd no ambito das consideragdes presentes tentar
estender a formula N 15') a unides com uma infinidade nume-
ravel de parcelas.
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6. Indicatrizes. Suponhamos que é dado o espago Q(w).
Chama-se func¢do indicatriz ou, abreviadamente, indicatriz a
toda a func¢ido (numérica) I de argumento » que goza da pro-
priedade seguinte: Escolhido gwalguer ponto we(, corres-
ponde um valor definido de /(w), valor este que ¢é igual ou a
0oua 1.

O conceito de (fungfo) indicatriz implica imediatamente
a proposi¢do seguinte:

N V) «Se [/ for uma (func¢fo) indicatriz definida num
certo espago, entio qualquer nimero «>0 faz coincidir a
fungdo /* com /.»

Fixada uma indicatriz / de argumento o, ela determina
o conjunto A4 dos pontos » em que / toma o valor 1, conjunto
esse que designamos por 4;(w) ou, abreviadamente, por 4;.
Inversamente, fixado um conjunto 4 de pontos o, ele deter-
mina a indicatriz / de argumento » cujo valor é 1 ou 0 con-
forme we A ou we A, indicatriz essa que designamos por
1 4(») ou, abreviadamente, por /4.

E de notar que as correspondéncias estabelecidas sfo tais
que a indicatriz /4 determina o conjunto 4 donde se partiu
e que o conjunto A; determina a indicatriz 7 donde se partiu.
Por outras palavras, instituiu-se uma correspondéncia biuni-
voca, elemento por elemento, entre os conjuntos 4 que podem
extrair-se de { e as indicatrizes / que podem definir-se em Q.

Facamos agora a convencdo de escrita seguinte: Quando
se omite o argumento duma rela¢io entre indicatrizes depen-
dentes de o, tal significa que a relagdo é valida para qual-
quer o ¢ . Nesta conformidade sai o par de relagBes

2) a) AcB quando e s6 quando [4£/g;
b) A=B quando e s6 quando /4=/g.

Verificacio de 2).—2 a). Se e s6 se we A implica » ¢ B,
entdo I 4(w)=1implica /p(w)=1.—2 b). Resulta directamente da

¢) Mencionamos, de passagem, que nio nos convém seguir a pratica
dos autores que empregam o termo de fungiio caracteristica com o signifi-
cado de (fungdo) indicatriz, isso porque mais adiante vai aparecer-nos
0 mesmo termo com um significado totalmente diverso.
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correspondéncia biunivoca entre conjuntos e indicatrizes e re-
sulta também por intermédio de a), ja que N I afirma a equiva-
lencia entre a relagdo A=2B e o par de relagdes ACB e BCA.

Segue uma formula com sete (ou oito) alineas de que as
duas primeiras caracterizam as indicatrizes dos conjuntos O
e Q e de que as cinco (ou seis) ultimas descrevem como as
indicatrizes definidas no espago Q acompanham as operagGes
sobre os conjuntos que lhes correspondem.

3) a) [o=0; b) [ﬂ=1; c) Ly=1—14; d) IQA,,=HIA,,;(')
¢) Lip=14.0~1p); [) Iy, =204;" &) lya~=

=1A.+(1—']A1) ' [As+(1_lA() . (1—~[‘4=) ' IAs—i— R
+(1—L4) -A—~1apy)-La, -0 g') se A,t, entdo
Tya,=Ta+(1—1a) Lo+ —1a) Lo+ - +(1—La)

Ag
Verificacdo de 3).—8 a). Ndo ha ponto we 0.—3 ). Ndo ha
ponto weQ . —3 ¢). Se [, (v)=1, sai we 4 e, portanto,

1—14(w)=1-0; se {4-(»)=0, sai we 4 e, portanto, 1—/4(»)=0.
—38 d). Se In4,(w)=1, sai we .4, para qualquer # e, portanto,

/4, (0)=1; se [n4,(0)=0, sai we A, para algum = e, portanto,
fllAn(co)=0.—3 e)f Resulta de N 12),de 8 d) e de 8 ¢).—3 f). Se
;EA,,(m)zo, sai we A, para qualquer » e, portanto, flAn(w)=0;
se IfA"(w)zl’ sail we 4, para todos os valores de » & excepgdo
dum e, portanto, 2 /4, (w)=1.—8 g). Resulta de 1), 3 /), 3 d) e
3¢c)—3g) Requta de 1), 3 f) e 3 ¢)

() A expressfio do segundo membro de 3 d) significa o produto ao
longo do indice natural » das indicatrizes dos conjuntos 4,. Talvez valha a
pena notar que este produto se identifica com inf /4, ou seja com o infimo

n

ao longo do indice # das indicatrizes mencionadas.
(2 Em 3 f), o primeiro somatério € de conjuntos e o outro & de
funcdes.
(=) Talvez valha a pena notar que o segundo membro de 3 g) se
identifica com sup J4, ou seja com o supremo ao longo do indice # das
n

indicatrizes dos conjuntos 4a.
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Vejamos alguns exemplos em que se aplicam indica-
trizes.

Exemplo 1. A proposicio N III e as relagdes 2 ), 8 d) e
3 @) provam a proposi¢io seguinte:

Dois conjuntos A e B sdo disjuntos quando ¢ s6 gquando
se verifica a relagdo L4 - Ip=0.

Exemplo 2. De 3 ¢) e de 8 &) resulta que as indicatrizes
do primeiro e do segundo membro de N 13 @) sio, respecti-
vamente, /4-(1—/g) e I4-(1—14-Ig). Deste facto,de NV e
de 2 &) inferimos a igualdade N 18 a).

Exemplo 3. As indicatrizes do primeiro e do segundo
membro de N 18 4), respectivamente, /4. (1—/p)-Ice 14 - Ic-
-(1—1gp-Ic) saem iguais, isso por causa de N V. Portanto, a
igualdade N 13 4) é correcta.

Exemplo 4. A indicatriz da diferenga simétrica (4—2B)+
+(B—A) (ver fim da secgdo 3) é, por causa de 3 f), de 3 ¢)
ede NV,igual a I, -(1—1p)+1p- (1 —1)=(la—IsP=|14—15|.

7. Operac¢des que relacionam conjuntos extraidos de espagos
diferentes: Caso da operagdo de restrigio. Ndo é raro haver
necessidade de trabalhar simultineamente com conjuntos
extraidos de espacos diferentes e haver necessidade também
de relacionar tais conjuntos dum modo apropriado a ocasido,
quer dizer, por meio de operagdes convenientes. Nesta sec¢do
vamos apresentar um caso particular importante da situacéo
referida.

Tomemos o espaco Q(w) e seja Q' um conjunto fixo e
nido-vazio extraido de Q. Quando se tratam questdes que
incidem unicamente sobre pontos weQ', entdo o espago Q
pode afigurar-se excessivamente amplo como ambiente de
estudo e pode ser preferivel instituir Q' em novo espago ou,
como também se diz, considerar Q' como subespago de Q.
Emprega-se o simbolo Q|Q' para assinalar que Q' € subespago
de Q; no caso particular Q'=Q sai evidentemente Q|Q=0.

Se A4 for um conjunto qualquer de pontos w, a parte
de A situada em Q' pode considerar-se como conjunto ex-
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traido quer do espago Q quer do subespaco Q|Q'. Na primeira
eventualidade sai o conjunto-interseccio ANQ' e na outra
eventualidade sai um conjunto que se representa por A
e a que se chama conjunto 4 dado Q' ou conjunto A4 na hipo-
tese (de se verificar) Q' ou conjunto A4 sob a condi¢do (de se
verificar) Q' ou ainda restricdo do conjunto A4 a Q' E 6bvio
que A|Q=A4 e que pode fazer-se 4=Q.

Escolhida qualquer funcfio indicatriz definida em £, a
passagem de & para Q|Q priva o seu dominio dos pontos
weQ' e conserva os seus valores nos pontos we Q. Logo a
indicatriz do conjunto 4|Q' identifica-se com a indicatriz
de A para os pontos wef e ndo existe para os pontos weQ' -
Doutro lado, a relagdo 8 d) mostra que a indicatriz do con-
junto 4NQ se identifica com a indicatriz de 4 para os pon-
tos we Q' e se anula para os pontos we ', Vé-se assim que
as indicatrizes podem facilitar a distingdo formal entre os
conceitos de intersec¢do do conjunto 4 com &' e de restrigdo
do conjunto 4 a Q.

Chamamos restricdo de A a Q' a2 operagdo que transforma
o conjunto 4 em 4|Q. Seguem algumas propriedades desta
operagio que vém expressas por meio de férmulas, nas quais
as letras maitsculas significam sempre conjuntos de pontos «.
Para comegar, estabelecemos o terno de rela¢des

§) a) A|Q=B|Q quando e s6 quando ANQY'=BNY;
b) se BoQ, entdo (ANDB)|Q=4|Q";
¢) se Q'DQ" entdo (A4]|Q)|Q"'=A4|Q".

Verificacio de 4).—4 a). Resulta da propria defini¢do da
operacio de restrigio a Q.—4 &). Primeiro N 9 d), N9¢) e
N 9 &) dio (ANB)NQY=A4ANQ e depois 4 a) prova a relagio
escrita.—4 ¢). Mostra-se, por exemplo, com o auxilio de indi-
catrizes.

Seguem trés relagdes, das quais a primeira refere a pro-
priedade distributiva da operacdo de restrigdo com respeito a
operacdo de unido, a segunda refere a propriedade distributiva
da operacio de restri¢do com vespeito @ sublracgdo e a terceira
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refere a permutabilidade das operacoes de vestricdo e de comple-
mentacdo.

5) a) U(AJQ)=(UA)L;® &) (4Q)—(B|Q)=(4—B)Q;

¢) (A|QY =470
Verificacdo de 5).—5 a). Qualquer das relacdes we {J(A,|Q)
e we(UA,)|Q é equivalente ao par de relagdes weQ' e we A,

para um certo #.—5 4). Qualquer das rela¢des w e (4|Q)—(B|Q)
e ne(A—B)|Q é equivalente ao terno de relagdes weQ', we A
e w¢ B.—5 ¢). Obtém-se de 5 ) substituindo 4 por Q e B por A4.

Exemplo 5. O leitor prove a propriedade distributiva da
operacdo de westricdo com respeito @ operacdo de intersecgdo,
expressa pela relagdo N (4,|Q)=(N 4.)|Q.

Exemplo 6. Se os conjuntos 4, forem disjuntos dois a
dois, a relagdo 5 a) toma a forma particular 2(4,|Q)=(2 4,)|Y.

O caso Q=|1,2,8}, O'={1,2{, 41={1,8| e A;=|2,3| mostra
que as restrigdes 4,|Q' podem sair disjuntas duas a duas,
mesmo que haja dois conjuntos 4, com pontos comuns.

8. A operagdo de multiplicagdo. Tomemos uma colecgio
finita ou numerdvel de espagos (o), Qo (02),. . .y Ly (00),. .
€ representemos POr (@i, Wz, . .,%,,...)= todo 0 agrupamento
ordenado de pontos tais que o primeiro pertence a Qy, o
segundo pertence a {3, etc, o #—ésimo pertence a Q,, etc.
Escolhido qualquer desses agrupamentos o, consideramo-lo
como ponto do espaco { formado pelos agrupamentos possi-
veis e consideramos ainda os pontos agrupados como coorde-
nadas do ponto o, sendo w, a primeira coordenada, v, a segunda
coordenada, etc., w, a n—ésima coordenada, etc.

(0 Aqui o indice natural # tanto pode correr de 1 até um namero N
incluido, como pode correr de 1 até +co.
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Dados os conjuntos 4,cQy, 4, Qs,...,4,cQ,,..., faca-se
corresponder no espago { o conjunto 4 dos pontos o tais que
w €A, 06Ads,...,0,6.A4,,.... Nesta conformidade: Usa-se a
igualdade simbélica

A=A1><As>< - < Ay><-.- ou, abreviadamente, 4=114,;

chama-se ao conjunto A produto dos conjuntos dados e a
estes factores, sendo A; o primeiro factor, As o segundo fac-
tor, etc., A, o n—ésimo factor, etc.; denomina-se multiplica-
¢do dos conjuntos-factores a operacio que transforma estes
no conjunto-produto.

Um caso particular importante da multiplicagdo que aca-
bamos de delinir apresenta-se quando 4,=Q, para cada #,
facto este que implica 4=Q. Neste caso a igualdade simbo-
lica & =IIQ, ou, em escrita mais explicita, Q(w)=I1Q,(w,) 1&-se

" »n

como segue: Q ou Q(w) é o espaco-produto de espacos-factores
Q, ou Q, (w,).

Observagdo. Alguns autores preferem os termos de mul-
tiplicacGo cartesiana e de produto cartesiano aos termos de
multiplicacdo e de produto empregados no texto.

Aceitamos como 6bvio que o produto A sai igual ao con-
junto vazio OCQ quando e s6 quando existe (pelo menos)
um #» tal que o factor 4, se identifica com o conjunto vazio
0,cQ,. Assim e com a convenc¢io 0-co=co - 0=0, podemos
afirmar que o numero de pontos do conjunto-produto resulta
sempre igual ao produto dos numeros de pontos dos con-
juntos-factores, circunstincia esta que torna plausivel a no-
menclatura usada.

Uma consequéncia imediata das nossas defini¢es e de
N1 é a proposi¢do seguinte:

N V]) «Dados dois conjuntos-produto ndo-vasios 4 e 4,
ambos definidos no mesmo espago-produto, tem-se a relagéo
de inclusio Ac 4" quando e s6 quando cada factor de 4 for
subconjunto do factor homologo de 4'. Em particular, tem-se
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a relagio 4=4" quando e s6 quando cada factor de 4 for
igual ao factor homélogo de A'.»

Designemos por I4,(»,) (#=1,2,...) a indicatriz do con-
junto 4,cCQ, e designemos por /4 () ou, mais explicitamente,
por /4 (wi,®2,...,0,,...) a indicatriz do conjunto 4 igual ao
produto dos 4,. Entdo, os argumentos wy,wg,...,0,,... Satis-
fazem a identidade

111An(’~°l,w2)- vy Onye. -)EH]A,-(“’"):(*)
n ”n

a qual pode tomar, por omissdo dos we, a forma da igual-
dade entre fungdes

6) ]1] Ap = H ‘[An ) (*)
n n

esta bastante semelhante a relacio 8 4). Justifica-se 6) como
segue: Se o segundo membro valer 1, sai o, e 4, para cada »
e o primeiro membro toma o valor 1; se o segundo membro
valer 0, sai w, e 4, para algum » e o primeiro membro toma

o valor 0.

&
& *

Passamos ao estudo das propriedades mais importantes
da multiplicagio dum numero finito ou duma infinidade nu-
meréavel de conjuntos.

Para comecar, vamos ver, através dum exemplo, que a
multiplicacdo referida ndo goza em geral da propriedade comu-
tativa. Com efeito, seja Qy=11,2], 4i=1{1}, Q=1{1,2| e 4=1{2{;
entdo, A< A:=|{(1,2)}=|(2,1)| =A< 4;; mas, Q<=
=1{(1,1),(1,2),(2,1),(2,2)| =Q:><Q;, um caso excepcional de
comutatividade.

A multiplicacio referida fica, porém, gozando da proprie-
dade associativa debaixo da convencio natural, embora nio
seja forcada, de que qualquer ponto (w,02,...,0u,...) do

(v Aqui o primeiro produto é de conjuntos e o outro produto € de
niameros ou fungdes.
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espago-produto nio se altera se associarmos, as vezes que
quisermos, coordenadas consecutivas do ponto no agrupa-
mento ordenado correspondente. Neste trabalho adwitiremos
sempre a associatividade da multiplicacdo de conjuntos.

Consideremos apenas dois espagos-factores, Q; e Q,, e
suponhamos que ; contém os conjuntos 4; e A e que Q
contém os conjuntos A4, e 45. Nesta conformidade, aparecem
duas modalidades da propriedade distributiva da multiplicacdo
com respeito a subtrac¢do, as quais vém registadas na formula
seguinte (cuja primeira parte evidencia uma certa analogia
com N 18 4).

) @) (Aim A< Ay (Ar< As)— (i< A

Verificacdo de 7).—7 a). Qualquer das relagdes (»;,0) 6
€(Ai—Ai)< Az e (w1,0) 6 (A1><As)—(Ai1< As) € equivalente as
relagdes simultaneas w e 4,0, ¢ A1 e o6 A>.—7 b). Seme-
Ihante a 7 a).

Consideremos agora um namero finito qualquer N de
espacos-factores Q,(#=1,2,...,/V) e admitamos que, escolhido
um #, o espaco £, contém os conjuntos A4, ,,, onde o indice
natural p, corre ou de 1 até um numero A, incluido ou de
1 até +oo. Nesta conformidade, vale a igualdade

8) B (Udup)= U (Ayp<de, 5} AN, pu)y

1=5u=N pa PirPase e ofN

a qual relere a propriedade distributiva da multiplicacdo com
vespeito d unido e apresenta uma semelhan¢a formal acen-
tuada com N 14). Para verificar a igualdade 8), tome-se em
conta que um ponto (w;,02,...,0,,...) pertence a qualquer
dos seus membros quando e s6 quando valem simultinea-
mente as relagdes w e 4, para algum py,we 4, para
algum ps, etc., oy e Ay, ,, para algum py.

Caso cada » tirado de 1Z#</V torne disjuntos dois a
dois os conjuntos 4, ,, correspondentes, os produtos A, <
XAz, p>< < An, py Saem também disjuntos dois a dois e a
igualdade 8) toma o aspecto particular
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8') E (2 A“:Pn): P (A1:?1><A2:P2><' ! 'XAN:PN)!

1=n=N FATY ZETRREY 2
o qual lembra N 14"

Se tivermos 4,=A4,+ A} para cada », entio a igual-
dade 8') e a proposi¢io N VI conduzem a relagao®

] n)— 1l )= b y
9> (1§n§NA ) (1§M§NA 1=p=<2oN-1 APC
c U (A< o<y} A< Apga < - < Ay,
1=m=N

onde os A3 sdo os conjuntos diferentes (ou vazios) que podem

obter-se, substituindo em II B, cada simbolo 5, ou por
1=n=N

A4, ou por A} e suprimindo II A4, dos produtos assim
1=n=N

formados. Na hipotese 4,=Q, para cada », o primeiro mem-
bro de 9) passa aser ( I A7)
1=n=<N
Segue uma proposicio que pode deduzir-se das conside-
ragbes produzidas nesta sec¢do e de que nos serviremos na
continuagio do nosso estudo.

N VII) «Suponha-se que o indice natural # corre de 1
até um namero /V incluido'e que o indice natural p corre ou
de 1 até um numero P incluido ou de 1 até +oo; a cada #»
faca-se corresponder um espag¢o contendo 0s conjuntos nao-
-vazios A, e A,,,. Entdo, a hipotese 1 4,= Ul 4, ,) implica

" P #

a relagdo seguinte: UA.,,=4, para cada » admissivel.»
2

Demonstracdo de N VII. Seja qual for p, a hipétese do
enunciado da, por causa de N II, de N 7a) e de N V], a rela-
¢do A,, ,C.A, para cada n; logo U 4,, ,C A, para cada #. Doutro

?

lado, a formula 8) da (U 4.,,) DUl 4,,,), donde, por causa
7 P P =

da hipétese do enunciado e por causa de N VI, a relacio
Uda, DA, para cada n Fica assim completada a nossa
?

demonstragéo.

® Os termos do segundo membro de 9) devem ser agrupados con-
venientemente para que N VI permita a passagem ao terceiro membro.
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Passamos a considerar uma colec¢do finita ou numeravel
de espagos-factores Q,(n7=1,2,...). Se o indice natural p
correr ou de 1 até um nudmero £ incluido ou de 1 até + e
se a cada » corresponderem conjuntos 4, ,CQ,, entio vale
uma propriedade que podemos classificar de permutabilidade
entre as opevagies de multiplicagdo e de interseccdo e que vem
expressa através da igualdade seguinte:

10) 1t (Q A, p)= N4, ).

Verificacdo de 10). Qualquer dos dois membros de 10)
tem, por causa de 6) e de 3 4), uma indicatriz que ¢ igual ao
produto ao longo dos indices # e p das indicatrizes dos con-
juntos 4, ,. Sendo assim, 2 ) prova 10).

#
* ES

Por fim, dois exemplos.

Exemplo 7. Sdo dados os espagos-factores Q,(n=1,2,..., V)

e os conjuntos A4,CQ, e 4,cQ,. Nesta conformidade, vamos

generalizar a primeira parte da relacio 9) de modo que possa

aplicar-se a um diminuidor arbitrdrio. Pois bem, por causa

de N 13 @) e de 10), sai (I1.4,)— (11 45)= 4,)~[1 (4.NA)]
" ” " n

de modo que 9) da a igualdade
9 (I A)—-( 0 4dy= 2 43,

1=n=<N 1=n=xN 1Zp=soi-1
onde os 4; sdo os conjuntos diferentes (ou vazios) que podem

obter-se, substituindo em I 5, cada simbolo B, ou por
1=a=N

A,N A, ou por A,— A, e suprimindo I (A4,NA,) dos pro-
.

1= N

dutos assim formados.

Exemplo 8. Quando Q(w) é o espago dos numeros reais
finitos, preferimos as letras X e x as letras Q e o, respecti-
vamente. Chamamos recta real ou espaco real a uma dimensde
ao espaco X (x) ou X descrito. Este pode representar-se geo-
metricamente por meio dum eixo real, quer dizer por meic
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duma recta dotada duma origem, dum sentido de percurso e

duma escala de comprimentos de segmentos; isso, porque

havera correspondéncia biunivoca entre os pontos proprios

da recta representativa e as abscissas x desses pontos.—Dada

uma coleccdo finita ou numeravel de rectas reais X, (x.)

(n=1,2,...), ponha-se X(x)=HIX,(x,) ou, em escrita abre-
k22

viada, X=0X,. Neste caso damos ao produto o nome de
n

espaco real a tantas dimeusées quantos os factores; o espago
real a duas dimensées denomina-se também plano real. Se as
dimensdes dum espago real forem duas (ou trés), podemos
representa-lo geometricamente por meio dum espa¢o eucli-
deano a duas (ou trés) dimensdes dotado dum sistema de
eixos coordenados (em geral ortogonais) figurativos das rectas-
-factores; isso, porque havera correspondéncia biunivoca
entre os pontos proprios do espago representativo e os agru-
pamentos ordenados das coordenadas desses pontos.

O, As operacdes de projecgido e de marginacio. Cilindros.
Tomemos o espaco real a trés dimensdes X = X< Xp>< X3 des-
crito no exemplo 8. Entdo, é absurdo admitir que o conjunto
com 3 pontos 4=1(1,1,2),(1,2,2),(2,1,2)} C X possa resultar da
multiplicagdo de conjuntos 4,cXi, 4:cX. e A;CX;, pois,
se tal sucedesse, qualquer dos dois conjuntos 4; e 4, com-
por-se-ia dos pontos 1 e 2 e o conjunto 43 seria formado pelo
unico ponto 2, factos estes que obrigariam 4 a ter 4 pontos.
Todavia, a hipétese da associatividade da multiplicagdo im-
plica X=(X;><X,)<X; de modo que 4 sai igual ao produto
do conjunto {(1,1),(1,2),(2,1){ c X;><X; pelo conjunto 2] C X,

O que precede mostra que conjuntos extraidos dum
espago-produto ndo sio necessariamente produtos de con-
juntos extraidos dos espacos-factores. E esta a razdo por que
o estudo subsequente nio se limita 2 andlise de casos mais
ou menos triviais.

Dado o espago-produto Q(w)=I0Q, (»,), de dois ou mais

factores, reparta-se a coleccdo dos valores # possiveis por
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duas colecgbes nfo-vazias, a primeira constituida pelos
valores %4,i>/%,7>4,... € a outra constituida pelos valores
restantes #,s>7,¢>s,...®, Caso suprimamos as coordena-
,--. em cada ponto weQ, os pontos resultantes
(0 y 05y 0y o) =W, 4, 7,...) formam o espago Q,><Q><Qy>< - =
=Qa,4,7,...y, 0 qual fica inteiramente definido pelos indices
#, s, 4,..., tomados por ordem, e, portanto, ndo se altera se
permutarmos os indices 4, 4, 7,... de qualquer modo ou se
associarmos, as vezes que quizermos, um numero finito ou
infinito desses indices, supostos consecutivos, na sucessio
correspondente. Ao espacgo Q,;,;,..) chamamos, por um mo-
tivo que veremos mais adiante, espaco marginal de Q com
respeito @ Qp><Q>< Q<.

Posto isso, caso suprimamos as coordenadas numeros
%y, 1, j,... em cada ponto dum conjunto néo-vazio arbitrario
AcQ, fica um conjunto bem determinado 4, :,..=Au,ij,...C
cQan,i, 4.y Chamamos projeccdo de A sobre Qg ; ;..\ (e segundo
a direccdo de Q,><0;><Q;><...) ndo s6 a operagdo que trans-
forma 4 em A4u,:,;,..), como também ao resultado desta ope-
racio. E entdo 6bvio que a projecgio de Q sobre Qg ;, ;.. sai
igual ao préprio espago marginal &, ; ;... e, mais geralmente,
que a projec¢do do produto A=I1.4, sobre Qg ; ;.. satisfaz

das wp,0; y O

a igualdade A(;,,,-,j“_,)=A,.><AS><i4t><~‘-.

Completamos as defini¢bes dadas, introduzindo a conven-
¢do que a projecgdo Uu,s, ...y, correspondente ao conjumnto
vazio Oc{, se identifica com o conjunto vazio de Qu ;...

Ora bem, seja qual for o conjunto ACQ (vazio ou néo-
-vazio) e sejam quais forem as determina¢des dos argumen-
tos o, ,ms,04,. .., sal sempre a igualdade

sup La(oryon,08,.)=Lay i@, 05, 06,...);
@ 60Y,0,60,,0,60;,. ..
quer dizer, a omissio dos argumentos ww da a igualdade
entre funcoes

() Excepcionalmente, a primeira (ou a segunda) coleccio parcial
terd quer apenas trés numeros %, ¢ e § (ou 7, s e ¢) quer s6 dois ntmeros
% e i(ou v e s)quer um Unico namero % (ou #).
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11) sup LTa=1lay .5 -

0, €Y, 0, €€, 0,60 ,...

Verificacdo de 11). Fixem-se de qualquer modo as coor-
denadas o,, oy, o,.... Entdo, se o segundo membro de 11)
valer 1, o conjunto 4 nido pode ser vazio, sai (o;,w2,03,..)e 4
para alguma escolha de v, eQ;, v;e$;, 0;68;,... e, portanto,
o primeiro membro toma o valor 1; se o segundo membro
de 11) valer 0, sai (o, ws, »3,...) e A para qualquer escolha
de 0,6Qp, 0;6Q;, w;6Q;,... e, portanto, o primeiro membro
toma o valor 0. Estd assim terminada a verifica¢do de 11).

Uma consequéncia imediata de 11) é a seguinte: Caso o
espaco Q< Q;>< Q;> ... contenha mais dum ponto, con-
juntos A diferentes podem dar a mesma projec¢ido sobre
Q,s,5,...,. Por outras palavras, a operagio de projeccdo sobre
Qn,i,5,.. € uniforme, mas ndo ¢ univalente.

Doutro lado, é imediato que o supremo de /4 ao longo
dos vy, w;, w;,... possiveis sai igual a iteracdo dos supremos
de /4 primeiro ao longo dos «;,, depois ao longo dos w;, em
seguida ao longo dos w;, etc. e que tal iteragdo de supremos
nio se ressente se permutarmos os seus passos de qualquer
modo ou se associarmos, as vezes que quisermos, um nu-
mero finito ou infinito de passos consecutivos num s6 passo
mais amplo. Por causa do exposto e por causa de 11) e de
2 b), podemos afirmar que projectar A4 sobre Qu,:,j,...) € a
mesma coisa que projectar 4 sobre O, projectar depois o
resultado da primeira operagdo ou seja Ay, sobre &y, 4, pro-
jectar em seguida o resultado da opera¢do anterior ou seja
Ap o sobre Qq, 5 iy, etc. e podemos afirmar mais que as ope-
ra¢oes de eliminagio separada de cada uma das coordenadas
Why 03y 07,... gozam das propriedades comutativa e associativa,

Vejamos agora mais algumas propriedades da operagio
de projeccéo.

Considere-se uma colecc¢io finita ou numeravel formada
por conjuntos 4, A', A4",..., todos extraidos do espag¢o Q.
Nesta conformidade, pode estabelecer-se o par de relacdes
seguinte, onde a segunda relacdo traduz a propriedade dis-
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tributiva da operacdo de projeccdo com wespeito a operacdo
de unido.

12) a) Ac A implica Au,i ;.. 0CAw,ij.;
b)) (AU A UA"U.. dwyirgy.n=Aw,ij.. 3 U Alr,i,j..0U
UA&,z',j,...)U Tt

Verificagdo de 12).—12 a). De Ac A tiramos primeiro,

por causa de 2 a), que sup li£ sup Iy e
@, 60,,0,60;,,.. 0, 6, 0 EQ;y. ..

depois, por causa de 11), que Au ;.. C A%, i5,..0-—12 b).

Parta-se da igualdade elementar sup (sup(LayLay..)]=
0, €0, 0,60;,. ..

=sup( sup L4, sup l4,...) e aplique-se a nota
0 €8, 0; 68, .. 0, €Q),0,€0;,. ..

a 8 ¢), a igualdade 11) e a relagio 2 &).

Por fim, dois exemplos.

Exemplo 9. Tomem-se o plano real X=X;<X; (exem-
plo 8) e nele os dois conjuntos elementares disjuntos 4=}(1,1)}
e A'=|(1,2) Sai A(2)=;15=A(2); portanto, A(Q)CA(/Q),A(2)—
—Aly=OgyF1 =(Ad— s e (AN A)py= Oy F| 1| = Ay Aly-
Este exemplo mostra trés coisas: 1.° 4y i 7. yC A, ,...) ndo
conduz necessariamente a 4AC A'. 2.° As projeccdes de dois
conjuntos disjuntos sobre o mesmo espago marginal podem
ficar com pontos comuns, ao passo que a definicdo de pro-
jeccdo impede que fiquem disjuntas as projec¢bes de dois
conjuntos com pontos comuns sobre o mesmo espago margi-
nal. 8. Ndo se pode assegurar a propriedade distributiva da
operag¢do de projec¢do nem com respeito a subtracgdo nem
com respeito a intersecgao.

Exemplo 10. Caso se faga a representacido geométrica do
plano real X=X;><X; pelo modo explicado no exemplo 8,
entio as projecgoes de conjuntos extraidos de X sobre a recta
real marginal X=X, (ou Xy=2X;) e segundo a direcgdo da
recta real X, (ou X;) adquirem os significados bem conhecidos
da geometria plana elementar. Semelhantemente, caso se faca
a representacio geométrica do espago real a trés dimensoes
X=Xi><Xy<X; pelo modo indicado no exemplo 8, as projec-
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¢des de conjuntos extraidos de X quer sobre o plano real
marginal X5=X;><X; e segundo a direc¢do da recta real X
quer sobre a recta real marginal X 3=X; e segundo a direc-
cdo do plano real X;><Xs, assim como as projecgdes seme-
lhantes que podem obter-se por mudang¢a dos indices, todas
essas projeccbes adquirem os significados bem conhecidos
da geometria elementar no espacgo.

% * *

Muitas vezes ha conveniéncia em beneficiar a operagéo
de projec¢io com novas propriedades uteis, limitando, para
o efeito, a sua aplica¢do a conjuntos seleccionados dum modo
especial. Nesta ordem de ideias, apresentamos a defini¢do
seguinte:

Postas as mesmas hipoteses que nos conduziram ao con-
ceito de espago marginal, um conjunto CCQ diz-se um czlindro
de geratrizes paralelas a Q,,2;,Q;,..., quando (e sé quando)
pertencem ambos a C ou a €7 quaisquer dois pontos de Q
que tenham as mesmas coordenadas ,,w;,0,... € que se
distingam apenas por uma ou mais das coordenadas wy,
Wiy Bjyeen

A defini¢do dada permite concluir sem esforgo que C é
cilindro de geratrizes paralelas a Q,,Q,,Q;,..., quando e s6
quando a indicatriz /¢{w;,ws,m3,...)0u, em escrita abreviada,
I¢ for independente da escolha de w,eQ;,0,6Q;,0,68;,....
Deste facto e da formula 3) tiramos a proposicdo seguinte:

N VIII) «Dado o espago-produto Q=0;><Q><Q3>< .-,
saem cilindros de geratrizes paralelas aos espagos-factores
Q,,Q2;,9;,... ndo sé6 o conjunto JCQ e o préprio espago L,
como também qualquer conjunto que seja interseccfio, unido
ou diferenca dum numero finito ou duma infinidade nume-
ravel de cilindros de geratrizes paralelas a Q,,Q;,Q;,...»

Quando se projecta um cilindro € de geratrizes paralelas
aos espagos-factores Q,,Q;,Q;,... sobre o espaco marginal
Qu,i,7,..y, 0 conjunto-projec¢do C, s +,...=Cau,: ;,..) denomi-
na-se também base ou conjunto marginal de C no espago
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Q,:,7,..) € a operacdo de projec¢io denomina-se também
marginacdo de C com respeito a Q;,<Q;><Qp><.--. Quanto ao
cilindro C, diz-se elementar no caso particular de ter uma base
elementar, quer dizer uma base formada por um s6 ponto.

Consideremos um cilindro qualquer C de geratrizes para-
lelas a Q;,Q;,9;,.... Por causa das propriedades da indica-
triz de C e por causa das propriedades gerais da operacio
de projecgdo, podemos afirmar que marginar C com respeito
a Q,<Q;<Qp><.-. & a mesma coisa que marginar C com res-
peito a €, marginar depois o resultado da primeira operagio
ou seja o cilindro () de geratrizes paralelas a Q;,0Q;,...
com respeito a Q;, marginar em seguida o resultado da ope-
ragio anterior ou seja o cilindro C; ; de geratrizes paralelas

a Qj,... com respeito a Q;, etc. e podemos afirmar mais que
as operacdes especiais de eliminag¢fo separada de cada uma
das coordenadas wj,;,®;,... aqui descritas gozam das pro-

priedades comutativa e associativa.

Tomando agora em conta a indole da indicatriz de C,
logo se vé que quaisquer determinac¢des dos argumentos
®1,02,03,... satisfazem a igualdade

sup jc(wl ) @2,03,. . ')'[Q;,XQiXQ,-X--- (&);,,&),',Cz)j,. . )=
0 €8, €0;,0;€0;,. ..

=.[C((L)1,&)2,&)3,. . .)-

Por isso e por causa de 11), a indicatriz do cilindro CcQ de
geratrizes paralelas a Q,,Q;,Q;,... e a indicatriz da base
correspondente Cu i, j,..)C Q4,4 7,...) estdo relacionadas pela
igualdade entre funcdes

! —
11) le=1cys;, ., '[9,,><Q,-><QJ-><-~:

onde o ultimo factor do segundo membro é idénticamente
igual a 1.

Uma consequéncia imediata de 11') é que os cilindros C
e C', ambos de geratrizes paralelas a Q,,Q;,Q;,..., saem
iguais, quando e s6 quando forem iguais as bases Cy . ;...
e Cla,i,7,...). Por outras palavras, a margina¢ido com respeito
a Q;,<Q;><Q;><- .. é uma operagio uniforme e univalente.
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Outra consequéncia facil de 11') é que Zodo o conjunto
DcQq i, ;,..) resulta da marginacdo com respeito a Q,><Q;<
>Q;><--- do cilindro de indicatriz igual ao produto da indi-
catriz de D pela indicatriz de Q;><Q><Q;><-.-.

Ora bem, se substituirmos os conjuntos 4, 4, 4",... da
formula 12) pelos cilindros C, C', C",. .., todos de geratrizes
paralelas a Q;,Q;,9Q;,..., entdo 12) cede o lugar ao par de
relagbes seguinte, onde a segunda relacdo traduz a proprie-
dade distributiva da marginagdo com wespeito a unido ¢, em
particular, com respeito a@ adicdo.

12') @) CcC'yquando e sé quando Cp,s ;.. CCl,1,5,..)
&) (CUC'UC"U-- i gy=Cu,ij..o UC m,i 5. 5U
UC",sj,..,U---, podendo substituir-se o sinal U
pelo sinal +, quando e s6 quando as bases
Conyiireyy Clnyisiyy C'hyiygn s+ - - forem disjun-

tas duas a duas.

Verificagdo de 12').—12' a). Resulta de 2a) e de 11').—12'5).
Atendendo a 124) e a 2.° do exemplo 9, basta mostrar que
dois cilindros disjuntos C e (' produzem bases disjuntas ou,
equivalentemente, que a auséncia de pontos de £ que con-
firam o valor 1 a ambas as indicatrizes /¢ e /¢ implica a au-
séncia de pontos de Q5. ;,...) que confiram o valor 1 a ambas
as indicatrizes /¢, ; , ¢ Lcg,., ,- Logo 11') prova 12’ b).

Passamos para uma formula que refere a propriedade
distributiva da marginacdo com respeito @ subtraccdo.

18) @) (C—Caigy0=Cliriy oy~ Cla,iris
6) (C,irgycy=(Cla,i,j,0) -

Verificagdo de 13).—13 a). Atendendo a N VIII, a 11
e a 3¢), podemos escrever
L0 '](C‘“C/)(h,i,j,,,.)zlc'(1_—[C/):191‘><Qi><""[C(h,i,f,.<.)“C’(h,i,j,..,)'
Logo 24) prova 13a).—18 ). Trata-se do caso particular de
13 @) que se obtém, mudando Cem Q e C' em (.
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Seguem dois exemplos.

Exemplo 11. O leitor prove a propriedade distvibutiva da
marginagcdo com respeito @ operacdo de intewseccdo, expressa
pela relacgio

(CnC'nC" 0 Yaiygy o =Cyirsy o )V Clityiy gy )N Cliyi gy N e

Exemplo 12. Caso se faga a representagio geométrica
do plano real X=X;><X; pelo modo explicado no exemplo 8,
entdo os cilindros de geratrizes paralelas a recta-factor X
(ou X)), extraidos de X, passam a ser lugares de rectas para-
lelas a X; (ou X;) e as bases desses cilindros na recta mar-
ginal X5 =X (ou Xy)=X:) passam a ser as intersec¢bes (no
sentido geométrico da palavra) dos lugares referidos com a
recta marginal correspondente. Semelhantemente, caso se
faca a representacfio geométrica do espaco real a trés dimen-
sdes X=X;<X;><X; pelo modo indicado no exemplo 8, os
cilindros de geratrizes paralelas a recta-factor X; (ou X; ou
X;), extraidos de X, e as bases desses cilindros no plano
marginal X =X;><Xs (ou X5 =X><X30u Xy)=Xe><X5) adqui-
rem os significados bem conhecidos da geometria elementar
no espago.

Observacdo final. Permutando coordenadas e recorrendo
a hipotese da associatividade da multiplicag¢do, € possivel
estabelecer uma correspondéncia biunivoca entre os pontos
(&)1,&)2,&)3,...)691><93><93>< --- €08 pontos (CO(],,’,"]"“.),(&)h,tx)i,&)j,...»e
e Qu, i s, << Qi< Q<. ). Caso CC Q< Q< Qy>< - - seja um
cilindro de geratrizes paralelas a Q,,%,,Q;,..., a correspon-
déncia referida transforma C no produto da base Ci,: ;..
pelo espago ,><Q;><Q;><... e vice-versa, conforme pode
ver-se como segue: Ou trabalha-se directamente com as defi-
ni¢des competentes ou aplica-se 11') ao (cilindro) transfor-
mado de C e usam-se, em seguida, as relagbes 6) e 24).

10. A operagdo de corte. Consideremos o espago-produto
Q (w)=IQ, (»,), de dois ou mais factores, e repartamos a colec-
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cdo dos valores de # possiveis por duas colec¢des ndo-vazias,
a primeira constituida pelos valores 4,7>/%,7>7,... e a outra
constituida pelos valores restantes »,s>7, z‘>s,...(*) Esco-
lhido qualquer conjunto AcCQ, fixe-se o ponto i s,¢,...)=
=(wh, 0}, 0}y...)€Q,,s,1,..), intersecte-se 4 com o cilindro
elementar £ de base | s, ..,/ € de geratrizes paralelas a
Q,,Q:,9,... e projecte-se o conjunto AN E sobre Qu,: ;...
Representamos a projec¢do (AN E)p,i,z,..0CQn,i,j,..) pelo
simbolo A/w(,,s,¢,...) ou ainda pelo simbolo A/(w},w},w},...)
e chamamos corte feito no conjunto A pelo ponto wiys,:,..) N0
86 a opera¢do que transforma 4 em A4/of, s, ..., como tam-
bém ao resultado desta operacio.

As consideracdes precedentes, a relacdo 34) e as 1gual-
dades 11') e 11) mostram que se verifica a identidade

Lijuy., ,(rr05,0. )=

= sup (£ g(w1,02,...)- ]sm/r . o(mh,co,-,...)‘]Q(h“’m)(w,.,ws,...)},

©,68,,0,60;,...
a qual se transforma, por um calculo elementar, em

14) IA/(")M 17‘9 )((’J’Y(’)S)wh'--)z
= [L4 (01, 02,08, )]y, — o ol ol

A férmula 14) permite tirar vdrias conclusdes.

Para comegar, o segundo membro de 14) ndo se altera se,
em lugar de impormos as igualdades o, =w},0,=0},0;=wv},...
todas duma s6 vez, as impusermos ou uma a uma e por qual-
quer ordem ou por blocos tais que cada um deles seja com-
posto por igualdades consecutivas (em numero finito ou
infinito). Por outras palavras, assiste-nos o direito de afirmar
que cortar 4 pelo ponto (w},®},©},...) é a mesma coisa que
cortar primeiro 4 pelo ponto wj, cortar depois o resultado
da primeira operag¢io ou seja 4/w) pelo ponto «f, cortar em

(v} Repete-se a nota (x) & pagina 35,
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seguida o resultado da operagdo anterior ou seja A/(w},w})
pelo ponto «}, etc. e podemos afirmar mais que as operagdes
de fixagdo separada de cada uma das coordenadas j,w},0},...
gozam das propriedades comutativa e associativa.

Uma consequéncia facil de 14) é a proposi¢cdo seguinte:
N IX) «Dados um conjunto A4 contido no espago-produto
NQ, (»,) e o corte feito em A4 pelo ponto (w}, w},»f,...) situado

n

no espago Q;><Q;><Q;><- .-, entdo o ponto (uf,wd,... m,...)=n
pertence a 4, quando e s6 quando pertencer ao corte o ponto
que resulta de o’ por omissio das coordenadas n},w},0},... . »

Vejamos agora outra consequéncia de 14). Se C for um
cilindro de geratrizes paralelas a Q,,Q;,Q;,..., entdo 14),
juntamente com 11') e 24), da a relagdo entre conjuntos

14 Cu,i,j,..)=C/(o},0},0},...) para qualquer
ponto (@}, o, @7, ...).

Observacdo. Quando o transformado do conjunto 4cCQ
pelo processo indicado na observagio final da ultima seccio
for o produto de dois conjuntos U e V, o primeiro extraido
do espago Q,<Q;<Q,><.-- e o outro extraido do espaco Q<
><Q;<Q;><..-, entdo a igualdade (entre fungdes) obvia /4=
=/lpxr, a igualdade (também entre fun¢des) dada em 6) e a
identidade 14) conduzem a
gt sot. . @ astoy < Y=L 08,68, ) Ly (ory0,0y .
Consequentemente, o corte A/(w),w},»},...) sai igual a U
ou igual ao conjunto vazio Ou,i,j..), conforme o ponto
(0}, 0}, 0%,...) pertencer ou deixar de pertencer a /. No caso
particular 4=1I 4, onde 4,CQ, para cada #, é U= 4,><A4:<

"
<A< e V=A< A< Ap><.--- de modo que A /(w},0f,0},...)
sai igual a 4,><A;<Ap»<--- ou igual a Oy ; ; ..., conforme
(o}, 0, 0%,...) pertencer ou deixar de pertencer a A4,><d;<
<Ap<--.. No caso muito especial 4 =Q resulta entdo
Q/(w‘},,w?,mj"-,...):Q(;,,;,j,,,,).
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£ &

Considere-se uma colecgdo finita ou numeravel formada
por conjuntos 4,4, A",..., extraidos do espago-produto L.
Nesta conformidade, pode estabelecer-se o par de relacdes
seguinte, onde a segunda relagio traduz a propriedade distri-
butiva da operacdo de corte com respeito @ unido e, em par-
ticular, com respeito a adicdo.

15) a) Ac A implica A/(o,07,...)C A [(wh,07,...);

) (AUA'UA"U--)] (@02, .. ) =[A] (0,05, ..) U
Uld ) (wh,wiy. . UL (0h,05,...)]U---, podendo
substituir-se o sinal U pelo sinal + quando os
conjuntos A,A4,A4",... forem disjuntos dois
a dois.

Verificagdo de 15).—15 a). A hipotese feita e 2 a) déo
14214 para qualquer we{ e, em particular, para todo o » tal
que w,=0h,0;=0f,.... Logo 14) e 2 a) provam a implica¢do
posta.—15 4). Em face da defini¢do do cilindro elementar £,
a igualdade do texto sai equivalente a igualdade

(AuAUA"Y - INEln, o y=(ANE)p,i,. s U(ANE)g,z,..0U
U " NEYn, i, 90U+,

a qual decorre das propriedades distributivas da operagio de
intersec¢do e da operagdo de projec¢do com respeito a ope-
racio de unido. Doutro lado, sdo disjuntos os cortes feitos
pelo ponto (u},4},...) em dois conjuntos disjuntos, suponha-
mos 4 e A, porque /4-/4=0 para qualquer ponto (oy,es,...)
e a identidade 14) dao gy w0,. ..y Larj(al,of,...)=0 para qual-
quer ponto (w,,m,...). Esta assim terminada a verificacido
de 15 £).

Passamos para uma férmula que refere a propriedade dis-
tributiva da operacdo de corte com respeito d subtracedo.

16) a) (A—A')/(m‘},,w‘},...)=[x4/(m‘},,w?,...)]—[A"/(w(}“m'},...)];
b) A_‘/(w‘},,m‘},...)=[A/(w‘),,0)?-,...)1—.
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Verificacdo de 16).—16 a). Resulta de 14), 3¢) e 2 b).
~16 6). Trata-se do caso particular de 16 @) que se obtém,
mudando primeiro 4 em Q e 4' em 4 e tomando em conta
depois a parte final da ultima observacio.

Por fim, dois exemplos.

Exemplo 13. O leitor prove a propriedade distributiva da
operacdo de corte com respeito d operagdo de interseccdo, expressa
pela relagio

AnANA"N-) @yl )=
=[A[(0hy07,.. )IN[A [ (0, 02,. . )]N[A"] (@5, 08,... )]0 -

Exemplo 14. Considerem-se os conjuntos 4=|(1,1),(2,2)}
e A=}(1,38),(2,2)!, qualquer deles extraido do plano real
X=X;><X,. Se cortarmos 4 e A' pelo ponto 1;, quer dizer
pelo ponto 1eX;, sai 4/1,=]1{CX; e 4'/1,=]3{cX;; por-
tanto, podem ser disjuntos os cortes feitos por um mesmo
ponto em dois conjuntos que ndo sido disjuntos. Se cortar-
mos 4 e A' pelo ponto 2;, quer dizer pelo ponto 2e X;, sai
Al2=2lc X e 4'/2,=|2]cX,; logo concluimos que a rela-
¢do 15 @) ndo é invertivel.

b) Espagos mensuraveis

11, Classes de conjuntos extraidos do mesmo espago. Corpos.
Dado o espago Q de ponto genérico », vamos representar por
20 0 novo espa¢o que tem por ponto genérico o conjunto
genérico 4 extraido de Q. Entdo, escolhido qualquer A, pode-
mos escrever ACQ, interpretando A como confunto (even-
tualmente vazio) de pontos situados em Q, e podemos escrever
também A e 29, interpretando 4 como ponto situado em con-
Juntos (jamais vazios) extraidos de 22. A um conjunto de pon-
tos pertencentes a 20 chamamos também c/asse, em pormenor
classe vasgia se o conjunto for o vazio e classe ndo-vazia nos
demais casos; esta nomenclatura tem a vantagem de estabe-
lecer a distin¢do entre conjuntos extraidos de Q e de 29,
mesmo que ndo se faca referéncia expressa a esses espagos.
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Como ¢é natural, as notagdes, as defini¢bes e as proprie-
dades vistas a-propdsito dos conjuntos extraidos dum espago
qualquer continuam em vigor quando se passa de { para 29,
Vejamos alguns exemplos: Se 4, 4, 4",... forem conjuntos
extraidos de ©, entdo {4,4', A",...{ denota a classe formada
por esses conjuntos; a relagdo Oe|O| significa que o con-
junto OcQ estd situado na classe elementar formada pelo
tnico conjunto O; se @ e & forem dois conjuntos extraidos
de 29, qualquer das relacbes equivalentes QC&H e BDE
le-se @ é subclasse de B ou B é sobreclasse de @; se tivermos
uma familia (ndo necessariamente numeravel) 7 de indices ¢,
se a cada fe7 corresponder uma classe &, de conjuntos (de
pontos ») e se as diversas classes &, forem disjuntas duas a
duas, isto é, se ndo existir conjunto situado simultaneamente
em classes &, de indices diferentes, entio chamamos soma
das classes €; ao longo do indice { e representamos por

3 @, a nova classe que € formada por todos os conjuntos A
tel

tais que 4e &, para algum fe 7.

Caso Q tenha um numero finito /V de pontos, é ébvio que
o numero de conjuntos que podem extrair-se de Q sai igual
ao numero de combinagdes distintas (vazias e ndo-vazias)
que podem formar-se com /V objectos ou seja igual a 2V, Foi
mesmo este 0 motivo por que escolhemos o simbolo 22 para
representar o espago dos conjuntos extraidos de Q. Ora bem,
quer os pontos de Q constituam uma colecgido finita quer cons-
tituam uma infinidade qualquer, vale a proposicdo seguinte:

N X) «A poténcia dum espago € sempre inferior 2 potén-
cia da classe formada por todos os conjuntos que podem
extrair-se dele.»

Demonstracdo de N X. Consideremos um espago qual-
quer Q(») e a classe 2@ de todos os conjuntos 4cCQ. Como
as relagdes weQ e |o] 622 sdo equivalentes e como existem
sempre conjuntos ACQ que nio sio elementares, vé-se ime-
diatamente que a poténcia de Q ¢é igual ou inferior a de 20
Por isso, basta mostrar que é absurdo supor iguais as potén-
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cias de Q e de 22 ou ainda que ¢é absurdo supor iguais a
poténcia de { e a do conjunto de todas as indicatrizes /(w)
definidas em Q.

Admitamos que cada £ e Q se corresponde com uma indi-
catriz /; (»). Claro que qualquer ntimero /; (¢) s6 pode ser 0
ou 1. Se pusermos /(£)=1—/; () para cada £e(, fica definida
uma func¢ido /(»), a qual € indicatriz e ndo pode coincidir com
nenhuma das fungdes /; (»). LLogo € impossivel estabelecer
uma correspondéncia biunivoca entre o conjunto de todos
os pontos § e o conjunto de todas as indicatrizes definidas
em . A nossa demonstragio estd assim terminada.

A teoria dos conjuntos ocupa-se muito de certas classes
de conjuntos que gozam de propriedades especiais. Aqui
estudamos apenas dois casos, um nesta seccdo e o outro nas
secegdes posteriores.

Vamos dar uma definicdo.

Uma classe @ de conjuntos extraidos do espago Q diz-se
um corpo (definido em Q), quando e s6 quando satisfaz simul-
taneamente as trés condigbes seguintes:

1.» A classe & nfio ¢é vazia.—2.* Todas as vezes que se
tenha 46@, sai 4 e&.—382 Seja qual for a colec¢do finita
formada por conjuntos 4, 4s,..., Ax tais que 4,e& para
n=1,2,...,V, sai sempre U A.eq.

1=u=N
Se a classe @ for um corpo, a defini¢do dada impde as
propriedades que passamos a escrever.

17) a) OeaeQeq,;
b) Aeq e Be& implicam A—Be@Q;
¢) A.ed paran=1,2,..., Nimplica N A4.eq.

1=n=N

Verificacdo de 17).—17 a). Pela condig¢do 1.2, existe um
conjunto 4e&; logo as condicbes 2.* e 3.* ddo sucessiva-
mente A e, A+ A =QeQ e O =0e9.—17 b). A igual-
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dade N 12) e as condi¢gdes 2.2 e 32 ddo A—B=(4A"UB)eq.
—17 ¢). Tira-se, por exemplo, de N 11), da condi¢cdo 3.* e
de 17 b).

Observagdo. O conjunto das condigbes 1., 2.* e 3.2 €
equivalente ao conjunto formado pelas condigdes 1.2 e 2.2 e
pela propriedade 17 ¢). Com efeito, o ultimo conjunto implica,
por causa de N 10 @), o primeiro conjunto.

Por fim, alguns exemplos.

Exemplo 15. Suponhamos que Q é o espa¢o formado
pelos numeros naturais. A classe & formada por todos os
conjuntos finitos extraidos de Q nio respeita a condig¢do 2.2
da defini¢do de corpo.

Exemplo 16. Consideremos o espago Q& dos numeros
reais w tais que 0Lw<(1. Vamos provar que € corpo a classe
Q@ formada por todos os conjuntos que se reduzem a somas
dum numero finito (igual ou maior que um) de intervalos do
tipo laLw<<b|, com 0LaLbL1, intervalos esses que saem
vazios ou nido-vazios, conforme for b=a ou 6>a. Para o efeito,
basta verificar, de acordo com a ultima observacio, as con-
di¢oes 1.2 e 2.2 da definigdo de corpo e a propriedade 17 ¢).

Ora bem, é 6bvio que a classe & nfo é vazia;

se = 2 {a.ZLo<b,,
=N

onde 0La,Lb,£1 para cada n e onde, podemos supo-lo,
.1 b, para cada n</N, entdo sal

A—Z‘Oé&)<als+ E gbném<an+1z+;bh"éw<l !;

1<n=N-1

se A= 2 P%an,p,,ém<bn,1>n$1
n

=y Py

onde n corre de 1 a NV e onde, dado #, € 0La,, 5, £b,,,,£1 para
cada p,, entdo sai, por causa de N 14'), a igualdade

N A= 2 (3al,p1é(’)<bl,/},$ Nn--nN %ax\’,p;\vé(i)<[)N,p;\-w,

1SN Piyen PN
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cujo segundo membro tem um ntmero finito de parcelas
tais que cada uma delas é manifestamente um intervalo do
tipo laLw<bd}, com 0LaLbL1.

Exemplo 17. As relagbes 24) e 3¢) e as notas a 3d) e a
3g) mostram que a classe & de conjuntos extraidos de Q é
um corpo, quando e s6 quando a classe J das indicatrizes
correspondentes for, em primeiro lugar, uma classe niao-vazia
e tal que qualquer /eJ forca 1—Je g e tiver, além disso, a
propriedade seguinte: Qualquer colec¢do finita de indicatri-

zes [, [z,..., Iy tais que /,ed para n=1,2,...,/N impbe a
relagio sup [/,edJ ou, equivalentemente, impde a relagdo
1=n=<N
inf 1,ed.
1=n=<N

12, Corpos-6. Espacos mensuraveis., Vamos agora intro-
duzir corpos especiais que se revestem de importancia basica
para o desenvolvimento da nossa teoria.

Definicdo. Uma classe @ de conjuntos extraidos dum
espaco { diz-se um corpo-s (definido em Q), quando e s6
quando satisfaz simultineamente as trés condi¢des seguintes:

12 A classe @ ndo € vazia. — 2.2 Todas as vezes que
se tenha de@, sai 4A7e¢@.— 382 Seja qual for a colecgio
finita ou numerdve! de conjuntos 4,,A4s,...,A4,,..., todos
pertencentes a &, sai sempre U4, ea. ‘

#

Passa-se da definicdo de corpo para a de corpo-s, conser-
vando as condigfes 1.2 e 2.* e acrescentando a condi¢do 3.2
o pedido que ela se verifique também para colecgdes nume-
raveis de conjuntos. Portanto, todo o corpo-¢ é um corpo,
mas a afirmagfo inversa escusa de ser verdadeira.

Se a classe & for um corpo-g, a defini¢do dada impde as

propriedades que passamos a escrever.

18) @) Oeq e Qeq; b) Aeq e Beq implicam 4—Beg;
¢c) se A1, As,...,4,,... pertencerem a &, entio
NA4.eq.
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Verificacdo de 18). Formalmente igual 4 verificagdo de
17). O recurso a N 11) pode envolver unides com uma infini-
dade numerdvel de parcelas.

Observacdo. O conjunto das condigles 1.2, 2.2 e 3.2 desta
sec¢io € equivalente ao conjunto formado pelas condigdes
1.2 e 2.» e pela propridade 18 ¢). Prova-se esta equivaléncia
com o auxilio de N 10 a).

Seguem alguns exemplos.

Exemplo 18. O corpo do exemplo 18 ndo é corpo-g, pois
a igualdade obvia N |(0Lw<1/n|{={0| contradiz a proprie-

1=nlw
dade 18 ¢).

Exemplo 19. Se o espaco Q for o conjunto {1,2,3,4{, 0
leitor verifica facilmente que € corpo-¢ tanto a classe @ for-
mada pelos quatro conjuntos O, Q, {1,2| e {3, 4}, como tam-
bém a classe @' formada pelos quatro conjuntos O, &, {1} e
12,3,4].

Exemplo 20. Dado qualquer espago Q, a classe 22 for-
mada por todos os conjuntos 4CQ é obviamente um corpo-g,
o mais amplo que pode definir-se em Q. Também a classe
{0,Q| é obviamente um corpo-s, o menos amplo que pode
definir-se em Q, isso por causa da propriedade 18 a).

Exemplo 21. Imitando o processo usado no exemplo 17,
vé-se que uma classe @ de conjuntos extraidos de { é um
corpo-s, quando e s6 quando a classe J das indicatrizes
correspondentes for, em primeiro lugar, uma classe ndo-vazia
e tal que qualquer /e J forca 1—/eJd e tiver, além disso, a
propriedade seguinte: Qualquer colec¢do finita ou numera-
vel de indicatrizes /1, /2y...,/s,..., todas pertencentes a J,
impde a relagdo sup/,ed ou, equivalentemente, impde a

"

relacdo inf/,e J.
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Todo o corpo-¢ encontra-se, podemos dizé-lo, ligado ao
espago em que ¢ definido. Sendo assim, € uso referir o bina-
rio constituido pelo espaco Q de ponto genérico » e pelo
corpo-g, seja @, de conjunto genérico 4CQ, classificando-o
como espaco mensurdvel e representando-o pelo simbolo
[Q(w),&(A)] ou, abreviadamente, por (£, &). Nesta conformi-
dade, chama-se conjunto mensurdvel a todo o conjunto Aeq.

Veremos mais adiante que a classifica¢do de mensuravel,
atribuida a um espa¢o ou a um conjunto, significa que ele
pode ser dotado duma medida. E mesmo esta a origem da
escolha do adjectivo mensurédvel.

Tomando em conta a definigio de corpo-o e as proprie-
dades expressas em 18), podemos estabelecer a seguinte
proposicdo relativa aos conceitos de espago e de conjunto
mensuraveis. ‘

N XI) «Dado um espag¢o mensurivel (Q,&), saem men-
suraveis ndo s6 o conjunto OcQ e o préprio Q, como também
qualquer conjunto que seja interseccdo, unifo ou diferenca
dum namero finito ou duma infinidade numerdvel de con-
juntos situados em &.»

A proposicio N XI exibe os espagos mensurdveis como
ambiente adequado 2 pretensdo que sejam transformacgGes
internas as que relacionam os conjuntos duma classe dada
pelas operagbes mais correntes.

13. Operacdes sobre corpos-s definidos no mesmo espacgo.
O problema da geragdo de corpos-c. Se tivermos dois cor-
pos-o, suponhamos & e @', ambos definidos em Q, entio a
propriedade 18 @) mostra que nio podem ser disjuntos e
mostra ainda que a sua diferenca € uma classe de conjuntos,
a qual certamente nio é corpo-o. Mais, a classe QU &' escusa
de sair um corpo-o; veja-se o exemplo 19 onde a dita classe,
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formada pelos seis conjuntos O, Q, {1}, 1,2/, |3,4] e |2,3, 4],
ndo inclui a soma |1|+{3,4}=11,3,4} e, portanto, nio
cumpre com a condi¢do 3.2 da definicdo de corpo-a.

Em face do exposto compreende-se bem o interesse que
oferecem as duas proposi¢fes desta sec¢io, a primeira das
quais é a seguinte.

N XII) «Considere-se um espago mensuravel (3, &), uma
classe &'C@ que verifique as condi¢des 1.2 e 3.2 da definicdo
dum corpo-s e mais a classe € formada por todos os con-
juntos extraidos de Q que sejam subconjuntos dalgum con-
junto situado em &'. Entdo, sai corpo-s (definido em Q)
a classe Qol que se obtém, unindo qualquer 4e& com
qualquer 7eZ. Mais, tem-se QCQoT em todos os casos e
tem-se &=go{, quando e s6 quando TC&.»

Demonstracdo de N XII. Comecemos por mostrar que a
classe @0, evidentemente nio-vazia, verifica as condic¢Ges
2.2 e 8. da defini¢do dum corpo-o.

22 Se de@ e Tc A ed, entio A" T". Logo a relacio
N 10), o conjunto das propriedades N 9), a igualdade N 14",
a condigdo 2.* da defini¢do de corpo-c e a propriedade 18 ¢)
dio (AUT) =(A NTHNe=(ANTHN(4 + 4)=
= A NA)+[(A NTHN A)Je@oT. — 82 Se Ad,eq e
I'ncA,eq' para w=1,2,8,..., entdo a proposicdo N II, a
condicdo 3.* da definicdo de corpo-s e a relagdo 6bvia

UZ.c U4, dao U(A.UT)=(U4)U(UT)eQod.

S6 falta provar o periodo final do enunciado. Como
OeT, a escolha de qualquer Aeg da a relacio A=A Oe
€0, da qual depreendemos @C Qo€ Se TcaQ, a escolha
de qualquer 4e & e de qualquer 7TeT d4, por causa da con-
digdo 3. da definicdo de corpo-s, a relagio AUTeq, da
qual tiramos @o Zc Q. Finalmente, se ¢ ndo for subclasse de
@, basta tomar A=0O e TeT tal que 7 ¢ @ para obter a rela-
¢do 7=0U T ¢ @, da qual inferimos que @o T @. Esta pois
completada a nossa demonstragio.
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Ao corpo-g representado por &o € no enunciado de N XII
corresponde o espa¢o mensuravel (Q, o T). Para facilitar as
referéncias futuras ao assunto, vamos chamar ao primeiro
desses entes matemadticos corpo-o completivo de & com respeito
a classe @' e vamos chamar ao outro espago mensurdvel com-
pletivo de (Q,Q) com wvespeito @ classe &'. Damos o nome de
completagio de @ ow de (Q,Q) com respeito @ classe &' a ope-
ragido que transforma @ em QoCTou (,Q) em (2,Q0T). Um
corpo-¢ ou um espaco mensurdvel diz-se complefo [incom-
pleto] com wespetto @ classe @', quando e s6 quando é igual
ao [diferente do] seu completivo com respeito a essa
classe.

Vejamos agora dois exemplos.

Exemplo 22. Se a classe @ de N XII for tal que Qe @,
entdo o corpo-¢ completivo de & com respeito a @ € a
classe 29

Exemplo 23. A completacdo do primeiro corpo-s do
exemplo 19 com respeito a classe elementar cujo tnico con-
junto € |1,2{ dd o corpo-c formado pelos oito conjuntos
O, & {1, 12], 11,2}, 3,41, {1,3,4} e }2,3,4{.

*

A classe Qo 7 supracitada é, em razdo da sua definigio,
uma classe especial de uniées de subconjuntos de conjuntos
situados em &, mas pode ser considerada também, por causa
da parte final de N XII, como a unido de @ com outra classe
definida a custa de @. Ora bem, a situagio apresenta-se
menos artificiosa quando se pretende intersectar corpos-¢
definidos no mesmo espago em lugar de uni-los. Com efeito,
vale a proposi¢io (extensiva a corpos) que passamos a
enunciar,

I) «Qualquer intersec¢io de corpos-¢ [corpos] definidos
num espago & €, por sua vez, um corpo-¢ [corpo] definido
em Q.»
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Demonstracdo de 1. Considere-se uma familia qualquer 7
de indices # e suponha-se que a cada {e 7 corresponde uma
classe @; que € corpo-¢ [corpo] definido em Q. Vamos provar

'que a classe @ = ) @, satisfaz as trés condicdes da definicio
teT

dum corpo-¢ [corpo)

1.2 A classe & ndo é vazia, pois 18 @) [17 a)] d4d Qe &.—
2.2 Se Aed, entdo a definicdo de intersec¢do e a condigdo
2.2 dum corpo-c [corpo] dio A eQ para cada #, donde
A e@.—8.2 Se os conjuntos 4,(n=1,2,3,...) pertencerem
todos a & e formarem uma colec¢do quando muito numera-
vel [colecgdo finita], entdo a definicdo de intersecgdo e a con-
dicdo 3.2 dum corpo-s [corpo] ddo U A, e @: para cada ¢, donde

»

U4, eaq. Esta assim completada a demonstragio de L

Se @ for uma classe arbitraria formada por conjuntos G
do espacgo £, entfo @ escusa de ser um corpo-s. Como gc29,
o exemplo 20 mostra que existem sobreclasses de @ que sdo
corpos-¢ e a proposi¢do / mostra que a intersec¢do @* de
todas essas sobreclasses é um corpo-g, o qual contém evi-
dentemente @ Damos a @* o nome de corpo-c gerado por @,
consideramos @ como classe geradora de @ e dizemos que a
operagdo que transforma @ em @* € a da geragdo dum corpo-a
a partir de Q.

Se gc& e se @ for um corpo-s, tem-se Obviamente
@*c@; por outras palavras, §* € subclasse de qualquer
corpo- que contenha @ Eis a razdo porque € frequente
chamar-se a @* corpo-c minimo construido sobre @.

Vamos agora estabelecer férmulas que referem proprie-
dades da geragdo de corpos-s as quais sdo consequéncias
mais ou menos imediatas da definicdo dessa operagio.

19) a) GC@* seja qual for g, e §=@% quando e s
quando @ for corpo-c;
b) @CH implica §*Cob*;
¢) QCHCE* implica §* =dH*.
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Verificacdo de 19.—19 a). Primeiro, a relagdo de incluséo
@C@* ja foi mencionada no texto. Doutro lado, se @ for
corpo-¢, tem-se @DO@* e, se @ ndo for corpo-g, a igualdade
G=@* torna-se impossivel.—19 4). Qualquer corpo-s que
contenha 5 contém também @.—19 ¢). Sai @*CH* (%)%,
por causa de 19 4), e sai ainda @*=(@*)*, por causa de 19 a).

Observacdo. . Podemos substituir no texto precedente a
palavra corpo-c por corpo e o simbolo @* por @ (para dis-
tinguir) sem que dai resulte qualquer prejuizo para as dedu-
coes feitas.

Por fim, um exemplo.

Exemplo 24. Qualquer dos dois corpos-¢ do exemplo 19
admite classes geradoras elementares, o primeiro a classe
formada pelo conjunto {1, 2| ou a formada pelo conjunto {3, 4}
e o outro a classe formada pelo conjunto elementar {1} ou a
formada pelo conjunto n&o-elementar {2,3,4/}.

14. Decomposicées dum espaco mensurdvel, Consideremos
o espaco mensurdavel (,&) e suponhamos que a classe
D=41A4,,A42,...,44,...}1 € formada por uma colec¢do quando
muito numerdvel de conjuntos mensuraveis, ndo-vazios, dis-
juntos dois a dois e tais que =2 4,. Nestas circunstincias

"
¢ uso dizer que a classe 9 é uma decomposi¢do ou uma par-
tigdo do espaco mensurdvel dado.

Uma decomposicgdo, subentende-se de (Q,Q), diz-se finita
ou infinita, consoante tiver um nimero finito ou infinito de
conjuntos, e diz-se redutivel ou irredutivel/, conforme algum
ou nenhum dos seus conjuntos admitir subconjuntos men-
suraveis proprios. Alguns autores ddo o nome de dfomos aos
" conjuntos duma decomposi¢io irredutivel.

Chamamos classe das somas extraidas da decomposicdo
D=|Ay,A4s,...,A4s,...| e representamos pelo simbolo
§(A1,Az,.. .y Au,...) ou, abreviadamente, por § a classe das
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somas Ai+A4s+---+A4,+ -+, onde, seja qual for », a parcela
4, signifca um subconjunto zmpriprio arbitrario de A4,.
Mais, chamamos classe das somas associadas @ decomposicdo
D=141,Azy..., Auy...} € representamos por Z(Ai, Asy.syAuye-)
ou, abreviadamente, por & a classe das somas 47+A4+.--+
+ A+ .., onde, seja qual for », a parcela 4 significa um
subconjunto mensurdve!/ arbitrdrio de A,. Note-se que a
escolha 4,=0 [ou A4,=0] para cada » dd a (inica) soma
vazia no caso das somas § [ou Z].

Completamos as defini¢des aqui dadas, chamando soma

das classes associadas & decomposicdo D=A1, Azye.oyAuy. ..}
e representando pelo simbolo (4, 4:,...,4.,...) ou, abre-
viadamente, por € a soma @i+&e+---+&,+---, onde, dado

n, a parcela @, denota a classe formada por todos os sub-
conjuntos (proprios ou improéprios) de 4, que sejam men-
suriveis e ndo-vazios. Repare-se que as classes &, sfo
disjuntas duas a duas, o que justifica que se tenha falado na
sua soma.

Posto isso, vamos estabelecer a proposi¢do seguinte:

N XIII) «Escolhida qualquer decomposi¢io 9 do espago
mensuravel (2,Q), sai igual a @ ndo sé6 % ou seja a classe
das somas associadas a 9, como também o corpo-¢ gerado
por € ou seja pela soma das classes associadas a 9.»

Demonstracdo de N XIII. Seja 9={A:,4s,..., 4u,...}
a decomposigdo escolhida. Entdo, sai $C @, porque a condigdo
8.2 da defini¢io dum corpo-c torna mensuravel qualquer
A+ A+ -+ A+ €%, e sal também QC%, porque as
propriedades N 9 4) e N 9 a), a defini¢do de 9, a igualdade
N 14') e a propriedade 18 ¢) fazem com que 4e& conduza a
A=A4AN(2A4,)=2(ANA,), onde cada interseccio ANA4, ¢é

um conjunto mensuravel 4.

Acabamos de provar que ¢=%. Doutro lado, as defini-
¢coes de @ de % e de @F, juntamente com a condigdo 3.2 da
definicdo dum corpo-¢ e com a propriedade 18 a), permitem
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escrever a relagio @C%C@*, da qual tiramos, por causa de
19 a) e de 19 ¢), que se verifica a igualdade Z=¢*. Logo
estd completada a demonstrag¢io de N XIIL

QOutra proposi¢io relativa ao assunto em estudo é a
seguinte :

N XIV) «Escolhida qualquer decomposi¢io 9 do espago
mensuravel (Q,@), entdo § ou seja a classe das somas extrai-
das de 9 coincide com o corpo-¢ gerado por 9. Mais, tem-se
SC & em todos os casos e tem-se §=&, quando e s6 quando
D for irredutivel.»

Demonstracdo de N XIV. Seja D={41,Azsy..., An,...| 2
decomposi¢do escolhida e comecemos por provar que a classe
8, evidentemente néo-vazia, verifica as propriedades 2.2 e 3.2
da defini¢do dum corpo-s.—Condigéo 2.2 A hipdtese que 4,
é subconjunto impréprio de A4, e as propriedades N 3 5),
N 3¢, N1 b) e N T ¢) implicam a igualdade 4,=4,+
+(A.,~A4,), onde 4,—A), é também subconjunto impréprio
de A,. Portanto, a definicio de 9 e a proposi¢do N II' con-
duzem a Q=(2.4,)+(2(4.—A,)) ou, equivalentemente, a

(24, =2(A,— A}).—Condigdo 3.2 Tomemos conjuntos 2.4, ¢

e§(p=1,2,8,.,.), onde, seja qual for p, se tem 4,,C 4,
para cada z. A proposi¢do N II mostra que U (245 )= U(U 4.;),
P u n P

onde as propriedades da unifo for¢am todo o conjunto U 4.,
?
a ser subconjunto impréprio de 4,. Portanto, U(2 4, ,)=2 4,
P ”

onde cada A, é subconjunto impréprio de 4,.

Ora bem, as defini¢gdes de 9, de § e de 2%, juntamente
com a condi¢do 3.2 da defini¢do dum corpo-¢ e com a pro-
priedade 18 a), permitem escrever a relagio PCSCD*, da
qual tiramos, por causa de 19 ¢), a igualdade §*=9*. Doutro
lado, o facto que § é corpo-¢ e a propriedade 19 g) ddo §=7*.
Logo §=9* e s6 falta provar o periodo final do enunciado.

Todo o conjunto situado em § € mensurdvel, por causa
da propriedade 8.* da defini¢do dum corpo-s. Se 9 for irre-
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dutivel, sai 9=¢, de modo que N XIIl implica &@=€*=9*=S8,
e, se 9 for redutivel, existe um 7 tal que 4, contém um
subconjunto mensurdvel préprio 4, o qual ndo pode coinci-
dir com .--+4,+--- €8, quer no caso 4,=0 quer no caso
A=A,

A parte final de N X1V mostra que meras adi¢des efec-
tuadas sobre os conjuntos duma decomposi¢do irredutivel
dum espa¢o mensuravel permitem obter todos os conjuntos
mensuraveis desse espaco. Este facto confere uma posi¢do
importante as decomposi¢bes irredutiveis e leva-nos a exa-
miné-las mais de perto. Antes de mais nada, vale a propo-
sicdo seguinte:

N XV) «Caso um espago mensurdvel admita certa de-
composicdo irredutivel, esta é a inica que existe.»

Demonstracio de N XV. Consideremos duas decomposi-
¢oes irredutiveis 9 e 9 do mesmo espaco mensurdvel e sejam
§ e § as classes das somas extraidas de 9 e de 9, respectiva-

mente. Como N XIV torna §=§, qualquer conjunto situado

em 9 sai igual a uma soma de conjuntos situados em 9, a qual
soma nio pode ter mais do que uma parcela, isso por causa
da irredutibilidade de 9. Concluimos que 92cC9. Trocando

agora os papeis de 9 e de 9, chegamos semelhantemente a

P9, terminando assim a demonstracio de N XV.

Dado o espa¢o mensurdvel (Q,&), podemos admitir que
@ ¢ definido por uma classe geradora @, a qual pode ser
subclasse prépria ou imprépria de @. Se pusermos de lado o
caso destituido de interesse @=|0,Q}, citado no exemplo
20, a classe @ deve incluir um conjunto A=0,Q, ao qual
corresponde a decomposicio {4, A47|. Assiste-nos, pois, o
direito de supormos conhecida uma decomposi¢do de (Q, Q)
com pelo menos dois conjuntos. Desejamos usar @ para dis-
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tinguir se tal decomposicdo é redutivel ou irredutivel, nio
havendo no tultimo caso outra decomposi¢do nas mesmas
condicbes, isso por causa de N XV. No primeiro caso pode-
mos estar interessados em formar uma decomposi¢io dife-
rente com cada um dos seus conjuntos contido num conjunto
da anterior e a seguir podemos estar interessados, eventual-
mente, em retomar a questdo inicial sobre a nova decom-
posigéo.

Alcancam-se os objectivos aqui expostos com o auxilio
da seguinte proposi¢io, redigida de modo que abranja tam-
bém o caso @={0,0}.

N XVI) «Seja 9={4,42,...,Axs,...} uma decomposicio
do espago mensuravel (2, @) e seja @ uma classe geradora de
Q. Se @ estiver contido em &, quer dizer na classe das somas
extraidas de 9, entfdo 9 sai irredutivel, Se existir um con-
junto 4e@ tal que A¢ 8, entdo D sai redutivel e hd um valor
do indice 7 que faz de qualquer dos conjuntos 4,14 e 4,— 4,
disjuntos e de soma igual a 4,, um subconjunto mensurivel

proprio de A,.»

Demonstracdo de N XVI. Suponhamos primeiro que ¢cs.
Entdo, a propriedade 19 4) d4 g*C %, com &=@*, por hipétese,
e com §=¢* devido a N XIV e a 19 a). Logo a3 e a parte
final de N XIV prova que 9 é irredutivel.

Suponhamos agora que existe A& @ tal que 4 ¢ 8. Entdo,
as propriedades N 9 ) e N 9 ¢), a definicdo de 9 e a igual-
dade N 14') ddo 4=2(A4.,N A), havendo a certeza que existe

um 7 tal que 4,N A é subconjunto proprio de 4, isso por
causa da propriedade N 9 a) e da hipotese 4 ¢ 3S. Este facto
e a mensurabilidade dos conjuntos 4,N A4 e A,— 4 [assegu-
rada pela rela¢do @C& e pelas propriedades 18 ¢) e 18 )]
permitem completar a demonstragio de N XVIL

Segue uma proposicio relativa a poténcia de qualquer
classe de conjuntos que seja corpo-s.

N XVII) «Se o espago mensurdvel (2,Q) admitir uma
decomposicdo irredutivel finita, o numero de conjuntos de
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@ sai igual a 2%, onde NV significa o numero de conjuntos da
decomposi¢do. Mais, se (Q,Q) admitir uma decomposi¢io
irredutivel infinita, a poténcia de & €é a do continuo. Final-
mente, se todas as decomposicdes de (2, @) forem redutiveis,
a poténcia de & ndo pode ser menor do que a do continuo.»

Demonstracdo de N XVII. Comecemos por supor que
(Q,) admite a decomposi¢ao irredutivel D= |4, A2,y Auy.nef.
Por causa de N XIV, a classe & identifica-se com a classe §
dos conjuntos diferentes que podem obter-se, substituindo
em =X A, cada simbolo 4, ou por O ou por 4,. Portanto, se

#n
9 for uma decomposi¢io finita com, digamos, N conjuntos,
qualquer das classes § e & fica com 2V conjuntos e, se a
decomposicdo 2 for infinita, os conjuntos situados em § cor-
respondem-se biunivocamente com os nimeros 0, @1 @z...ay...,
onde a, vale 0 ou t conforme A4, for O ou 4,, de modo que
qualquer das classes § e & fica com a poténcia do continuo
(compare-se com a observagdo final da seccio 5).

Se todas as decomposicoes de (2,Q) forem redutiveis,
entio a proposi¢io N XVI permite deduzir de qualquer
decomposi¢do 9 com um numero finito de conjuntos outra )
com maior numero de conjuntos. Logo existem decomposi-
¢des infinitas, as quais correspondem classes § com a potén-
cia do continuo. Como SC¢&, por causa da parte final de
N XIV, concluimos que a poténcia de @ ndo pode ser menor
do que a do continuo, ficando assim completada a demons-
tragio de N XVIL

Uma consequéncia imediata de N XVII é o coroldrio
seguinte:

N XVII') «Quando um corpo-s é formado por uma infi-
nidade de conjuntos, esta nio pode ter a poténcia do nume-
ravel»

Por vezes, é util a proposi¢ido seguinte:

N XVIII) «Se o espago mensurdvel (2,&) admitir uma
decomposi¢io irredutivel e se & for um corpo-¢ contido em



TEORIA DA MEDIDA E DA PROBABILIDADE 61

&, entdo o espaco mensuravel (Q, &) admite também uma
decomposi¢do irredutivel.»

Demonstracido de N XVIIL. Seja 4' o conjunto genérico
de & e seja D={4,,A42,...yA44,...} uma decomposigio irre-
dutivel de (,Q). A hipétese feita @'C @ e a parte final de
N XIV obrigam cada conjunto 4' a ser um conjunto de §,
quer dizer da classe das somas extraidas de 9, facto este que
resulta importante para a continua¢io da nossa demonstragéo.

Ora bem, escrevendo 4;=4;,1, dispondo por ordem dos
seus indices os possiveis conjuntos 4, =4, tais que, seja
qual for 4, a relagio 4'DA4,,; implica A'>A4, e represen-
tando esses conjuntos A, se os houver, por A5, 41 35,...,
fazendo tudo isso, nio so6 fica definida uma colec¢fo de con-
juntos 4, ,, de indice genérico p;, como também a intersec¢io
de todos os conjuntos 4'D.4,,; se reduz a soma nio-vazia
2 A, 5=Al. Supondo A}=Q, igualando a 4;,; o primeiro 4,

#s

disjunto de A, dispondo por ordem dos seus indices os
possiveis conjuntos A4, ==A4.,; tais que, seja qual for 4, a
relacdo A'D.As,1 implica A'D A4, e representando esses con-
juntos 4,, se os houver, por 4: 2,4 s,..., fazendo tudo isso,
nfo so6 fica definida uma colec¢fio de conjuntos As, ,, de indice
genérico p;, como também a intersec¢do de todos os conjun-

tos 4'DAs 1 se reduz & soma ndo-vazia 2 4, ,=A43. Etc,, etc.
P2
Supondo AU AU ... UA15+Q, tomando em conta que a

unifo escrita €, por forga de N XIV, um conjunto situado em
§,igualando a 4, 0 primeiro 4, disjunto de 45U 43U --U Ah1,
dispondo por ordem dos seus indices os possiveis conjuntos
Au=F A, 1 tais que, seja qual for 4, a relagio 4'D.4,,; implica
A'DA, e representando esses conjuntos .4,, se os houver,
por A,,2,An,s,y. .., fazendo tudo isso, nio s6 fica definida uma
coleccdo de conjuntos 4, ,, de indice genérico g, como tam-
bém a intersec¢dio de todos os conjuntos 4'D.4;,; se reduz a

soma nfo-vazia 2 4, ,=.A4). Etc., etc. Acabamos de formar a
Ph
colec¢do dos conjuntos 4, ,, onde o indice natural 4 corre

de 1 até H> 1 ou até +o« e onde, fixado %~ de qualquer
modo, o indice natural p, corre de 1 até P, 1 ou até +oo.
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Notando agora que cada 4, ,, é, por constru¢do, um conjunto
A, e que, escolhido qualquer », sai 4,=4, , para um certo
hZmn e para um certo p,, podemos recorrer a definicdo de
9, a proposicio N II e a definicdo dos conjuntos 4j para
tirarmos a relagio Q= ZA,, U(y Ay p)= UA".

Fixemos A'== O. TOddS as vezes que A,=A4, A, a
relacdo A4, 1C.A'" é absurda, porque ela e 4’7 ¢ @ implicavam
Ap, A7 portanto, sai 4,1 A, donde 45 .A4'". Concluimos,
pois, que qualquer conjunto A4'==0 €é a unido de um ou mais
conjuntos Aj.

Pondo de lado o caso trivial 4] =Q, consideremos con-
juntos arbitrarios 4j e A4}, com />4. Entéo, o facto que 4,1
¢ simultaneamente subconjunto de 4} e disjunto de A prova
a existéncia dum conjunto situado em @/, seja 4}, que torna
correcta a relagio AjC4 e, simultaneamente, torna falsa a
relacio A4)C A4}, pois a inexisténcia de tal conjunto impli-
caria®™ a conclusao absurda A4,D A, . Portanto, o conjunto A4,
sai disjunto de A9, pois a hipotese contraditéria dava 4, ,c 4}
para um certo p;, donde a relagdo Ajc Al a qual estaria
em desacordo com a definicio de A4j. Consequentemente,
os conjuntos A, com /k variavel, sdo disjuntos dois a dois e
qualquer conjunto A' == O é a soma de wm ou mais conjuntos Aj,.

Posto isso, escolhido qualquer 4, o conjunto Ch—- ﬂA;—

—situado em @/, por causa de 18 ¢) no caso de ex1st1rem valo—
res />4 e por causa de 18 @) no caso duma interseccido
vaziat"—¢& simultineamente sobreconjunto de Aj e disjunto
de todos os conjuntos 4§, com />4, que houver, isso pela
defini¢do dos conjuntos 4; e pelas propriedades da intersec-
¢do. Nesta conformidade, tem-se primeiro 4} = Cie@'; depois,
ou sai a relagdo 43= C;e &' ou entdo verifica-se a igualdade
= (C4— A}, de modo que a propriedade 18 4) da Aje&';
etc., etc.; dum modo geral, supondo % > 2, ou resulta a rela-
¢io Ay=Cle@ ou entdo o conjunto A} é a diferenca entre
% € uma determinada soma nio-vazia de parcelas tiradas

(v} Intersectem-se todos os conjuntos 4’4,
(+¥) Vejam-se as linhas 6 a 8 da pagina 18,
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da coleccio AY,..., A}, de modo que a hipétese A%e Q' para
g=1,...,/—1 e a condig¢do 3.2 da defini¢do dum corpo-¢ con-
duzem também a relacdo 4% e Q'; etc., etc. Concluimos, dai e
do acima exposto, que {4}, 43,...,4%,...] € uma decompo-
sicdo irredutivel de (Q,&'). Lsta assim terminada a demons-
tragio de N X VIIL '

Vejamos agora um corolario interessante da proposi¢do
precedente.

N XVII) «O espago mensuravel (2,Q@) admite decom-
posicdo irredutivel todas as vezes que o espago ( tiver uma
poténcia finita ou numeravel.»

Demonstracio de N XVIII', Suponhamos que os pontos
de Q formam a colecgdo finita ou numeravel vy, wa,...,0,,...
e que 29 é o corpo-c mais amplo definido no exemplo 20. Como
o espaco mensurdvel (Q,29) admite a decomposic¢do irredu-
tivel |joil,{waf,e .., {0uf,...}, basta substituir em N XVIII os
simbolos @ e @' por 29 e €, respectivamente, para obter a
proposicao N XVIII'.

Por fim, dois exemplos.

Exemplo 25. Considere-se o espago Q cujos pontos  séo
as funcées reais da variavel real x definidas em OZLxL1
e tome-se para & o corpo-s de classe geradora @ formada
pelo conjunto L das fungdes w limitadas, pelo conjunto C
das funcdes » continuas e pelo conjunto [ das fun¢des » com
derivada {inita. Entfo, a proposi¢io N XVI mostra que
{D,C—~D,L—-C,L"| ¢ uma decomposi¢do irredutivel de
(@, @), pois C=D+(C—D) e L=D+(C=D)+(L—-C).

Exemplo 26. Considere-se o espago () cujos pontos w séo
os dez ntmeros 1, 2,...,10 e tome-se para @ o corpo-s de classe
geradora @ formada pelos quatro conjuntos {1,2,8,4,5},
12,8,5,7], 4,5} e {4,8,9]. Entdo, as proposi¢gdes N XVIII' e
N XV asseguram que (2, &) admite uma e uma s6 decompo-
sicdo irredutivel que vamos designar por 2. Se aplicarmos
N XVI a decomposi¢io 9, formada pelos trés conjuntos
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$1,2,3§=5],2,3,4,5}—"{4,5§, {4,5{ e {6,7,8,9,10{=
=1{1,2,8,4,5|, esta sai redutivel, pois {2,3,5,7(e@ sem
ser soma extraida de 9,, e d4, com A iguala |{2,3,5,7| e
com A, sucessivamente igual a cada um dos conjuntos
situados em 9;, a nova decomposi¢ido P, formada pelos seis
conjuntos {1}, {2, 3!, 14}, |5}, 16,8,9,10] e |7{. A decomposi-
¢do D, € redutivel, pois {4,8,9/e@ sem ser soma extraida
de 2:, e da, com 4 igual a {4,8,9] e com A4, igual a
16,8,9,10/, a nova decomposicio formada pelos sete con-
juntos {14, {2,38}, {4}, {5}, 16,10}, 17} e {8,9!, a qual coincide
com 9, visto que as somas extraidas dela compreendem todos
os conjuntos pertencentes a @.

15. A recta de Borel. Nesta sec¢do ocupar-nos-emos
dum espag¢o mensurivel especial que nio admite decomposi-
¢do irredutivel e que € muito importante sob varios pontos
de vista.

Consideremos o espago dos numeros reais finitos ou seja
a recta real X (x) do exemplo 8. Vamos introduzir ou, talvez
melhor, vamos recordar ao leitor a nomenclatura que é cos-
tume usar para referir certos conjuntos fundamentais de
pontos x.

Dados dois ntimeros reais @ e >4, qualquer deles finito
ou infinito com sinal qualificado, os conjuntos ja<x< b},
laLx b, laLx<bl e jalxLb| dizem-se intervalos de (pon-
tos) extremos a ¢ b, sendo a o extremo esquerdo ou inferior
e b o extremo direifo ou superior. O primeiro desses inter-
valos classifica-se de aberto, o segundo de fechado e qualquer
dos dois ultimos de semiaberto ou de semifechado (de aberto
do lado do sinal < e de fechado do lado do sinal ). Note-
mos que o sinal £ nio pode figurar junto a um extremo
infinito.

Tomemos um intervalo de extremos @ e 4. Ele diz-se
infinito, quando e sé6 quando ocorre pelo menos um dos casos

—=—ocob € b=+ co=~a, sendo infinito do lado esquerdo
ou inferior no primeiro caso e infinito do lado direito ou
superior no outro; o intervalo infinito dos dois lados coincide
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manifestamente com X. O intervalo considerado diz-se finifo
na hipotese de nio ser infinito. Mais, diz-se siguificativo se
a<b e diz-se nulo se a=54. O intervalo nulo fechado de
extremos @ e & reduz-se ao conjunto elementar formado pelo
Unico ponto a=6 e qualquer intervalo nulo que nido seja
fechado identifica-se com o conjunto OcCX.

Quando houver conveniéncia em distinguir os intervalos
que acabamos de descrever doutros que vamos definir mais
tarde e que estdo contidos em espag¢os reais a mais do que
uma dimensio, entdo podemos chamar aos primeiros znfer-
valos lineares ou infervalos a uma dimensdo.

#

Posto isso, consideremos a classe @ formada por todos
os intervalos finitos da forma {a£Lx< b}, isto ¢, fechados do
lado esquerdo e abertos do lado direito. @ gera um corpo-¢
que representamos pelo simbolo & e que denominamos corpo
de Bovel e também corpo de Borel linear ou corpo de Borel a
uma dimensdo (caso haja conveniéncia em distingui-lo doutros
corpos de Borel a definir mais tarde em espagos reais a mais
do que uma dimensdo). Aos conjuntos B e $B chamamos con-
juntos de Borel e também conjuntos de Borel lineares ou
conjuntos de Borel a wma dimensdo. Ao espago mensuravel
[X (), B(B)], abreviadamente (X, &), chamamos recta de Borel
e também espaco de Borel a uma dimensdo.

Vamos verificar em seguida que os conjuntos lineares
mais acessiveis sio todos conjuntos de Borel. Para comegar,
temos a proposicdo seguinte:

N XIX) «Qualquer intervalo (linear) € um conjunto de
Borel.» ;

Demonstracdo de N XIX. Sejam ¢ e b6 a dois numeros
reais finitos arbitrdrios e seja #» o elemento genérico da
sucessio dos numeros naturais. Entdo, a proposi¢io N XI
da sucessivamente as relagbes X ={— oo <x <+ o}e &,
Ula-nLx<bl=|-c0<x<bleB, | —co<a< | ={0Lr< +oole B,
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Ulb+1/nLa<dool=]b<x<+ooleB, [6<x<+oof =

={—ocoluLbleB, laLx<HFoo|l—{b<x<too|=|aLxLb}eB,
laLxLbl—laLlx<bi=\ble B, latxLb]—lal=la<xLdleB e
jaLx<bl—|al=|a<x<ble B, as quais provam a nossa tese.

Vejamos agora um corolario de N XIX, a saber:

N XIX") «E conjunto de Borel (linear) todo o conjunto
finito ou numerdvel formado por ntmeros reais finitos.»

Demonstracio de N XIX'. Todo o conjunto finito ou
numeravel de nimeros reais finitos que seja ndo-vazio pode
tomar a forma 2 }x,|, onde o indice natural » corre de 1 até

n

N+ ou até 4+ e onde, fixado » de qualquer modo, se tem
x, ¢ X. Portanto, a relagdo |x,|e & para cada #, imposta por
N XIX, e a condi¢do 3. da defini¢do dum corpo-¢ provam
0 nosso corolario.

Segue outro corolario de N XIX, a saber:

N XIX") <«A recta de Borel ndo admite decomposi¢io
irredutivel.»

Demonstracido de N XIX". A proposicdo N XIX mostra
que os unicos conjuntos admissiveis numa decomposi¢do
irredutivel de (X, ) sdo conjuntos elementares, como quem
diz intervalos nulos fechados. Mas, a soma dum namero finito
ou duma infinidade numeravel de tais intervalos nunca sai
igual a X. Portanto, estd provada a nossa tese.

Acrescentaremos novas propriedades da recta de Borel
na sec¢do n.° 20. Por agora, segue um exemplo destinado a
apresentar dois casos notdveis de conjuntos de Borel que néo
sdo abrangidos pelas proposi¢bes N XIX e N XIX'

Exemplo 27. Considerem-se o conjunto B' formado pelos
numeros irracionais, igual ao complemento do conjunto
(numeravel) formado pelos numeros racionais, e o conjunto

1=nlo \ 1=Sm=3n—1 ) 3
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igual a diferenca entre um intervalo e a unifo duma infini-
dade numeravel de intervalos. Logo se repara que cada um
dos conjuntos B' e B" é um conjunto de Borel sem ser inter-
valo e que B’ tem a poténcia do continuo. Além disso, se
usarmos o sistema de numeragio na base 3, entdo B'" passa
a confundir-se com o conjunto das dizimas de parte inteira
nula e de mantissa formada exclusivamente por algarismos
iguais a 0 e a 2, conjunto este que tem a poténcia do conti-
nuo, conforme pode vér-se por um processo semelhante ao que
se usou na observacgio posta a seguir a N 15').
£
Ed Ed

Passamos a introduzir algumas classes geradoras do
corpo de Borel  distintas da classe @ acima considerada
(formada por intervalos dependentes de dois parametros).

1. Pode tomar-se para classe geradora de B a classe 9f
constituida por todos os intervalos contidos na recta real. Com
efeito, a proposi¢do N XIX d4 a relagdo @C yCB=g* e esta
implica, por causa de 19 ¢), a igualdade 9 *=2.

9.° Pode tomar-se para classe geradora de B a classe &
formada por todos os subconjuntos préprios da recta real que
gozem da propriedade de serem intervalos abertos infinitos do
lado esquerdo. Com efeito, se atendermos 2 férmula 19), ndo
s6 a relagdo obvia HC 9 forga H* C B, como também qualquer
par de numeros reais finitos @ e 6>a impde, por causa da
propriedade 18 4), a relacdo |—co<x<b|—|—0<lx<al=
—laLx<bleH*; logo resulta primeiro @CH*, depois BCH*
e, por fim, H*=4. Note-se que a classe & € formada por
intervalos (infinitos) dependentes dum s6 parametro.

3. SeY for um subconjunto de X tal que X coincide com
o conjunto dos pontos de acumulacdo de Y, entdo pode tomar-se
para classe geradora de & a classe B formada por todos os
intervalos da forma | —oo<<x< |, com ye¥. Na realidade, ndo
s6 a relacio obvia H'CdH e a formula 19) arrastam £'*CéB,
como também a cada ntmero real finito 6eY ™ corresponde
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uma sucessdo crescente de nimeros y,(#=1,2,3,...) per-
tencentes a Y e tais que lim y,=46, donde, pela condigdo 3.2

n—->x

da definicdo dum corpo-s, a relagio U} —co<x< 9.} =

=|—co<x<bleH*; logo resulta primeiro HCH* e depois
H™ = hH* = B. Note-se que a escolha do conjunto Y coincidente
com o conjunto dos ntumeros racionais da uma classe gera-
dora o' numerdvel.

4.° Escolhidos wma varvidvel real finita u ¢ um niimero
real ¢, finito arbitrdrio ou infinito com sinal qualificado, entdo
pode tomar-se para classe geradora de B a classe (c) consti-
tuida por todos os intervalos de extremos ¢ e u que sejam abertos
do lado direito e, simultineamente, fechados ou abertos do lado
esquerdo, fechados se ¢>—co e abertos se c= —oo. Efectiva-
mente, pondo de lado o caso B (—w)=d jd examinado em 2.°,
fica ndo s¢ a relagdo 5 (¢)c@, como também qualquer par de
nimeros reais finitos @ € 6> a permite igualar {aZx<b| a
jalx<lci+icLx<bloua jcLrx<bl~{cLx<al oua jaLa<lc| -
—1b£x<cl, conforme for aZc2b ou c<<a ou ¢>>5; logo resulta
primeiro @C6* (¢) e depois b£* (¢)=@*=4.

5.°° Tome-se a classe J cujo elemento genérico é o com-
plemento do elemento genérico de 6. Entdo, os conjuntos que
podem obter-se somando um mimero finito de intervalos situados
na classe Q+H+J=3 formam um corpo J o qual é wma classe
geradora de $B. Antes de mais nada, a constituicio de e a
condicdo 3.* da defini¢do dum corpo-s ddo g HC B=0*,
donde, por causa de 19 ¢), a igualdade g*=&. Doutro lado,
se tomarmos em conta a observagio posta a seguir a for-
mula 17), a classe ¢ manifestamente ndo-vazia, sai um corpo
desde que satisfaca a propriedade 17 ¢) e a condicio 2.2 da
defini¢cdo dum corpo. Pois bem, & cumpre efectivamente com
ambas as exigéncias feitas porque logo se reconhece que
Ke df arrasta K~ e g e porque a validez de N 14), o facto que
a intersec¢io de dois intervalos quaisquer situados em § se
reduz a um intervalo também pertencente a § e a propriedade
associativa da intersecgdo, estas trés circunstancias fazem
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com que a hipdtese Ki,Ks,...,K,edf implique a relagio
KiNnkK:N---NK,edt

16. Restricdo dum corpo~¢ a um subespago. Seja Q' um
subespag¢o do espago Q e seja @ uma classe de conjuntos
extraidos de Q. Representamos pelo simbolo @|Q' a classe
formada por todas as restrigées A4|Q' tais que e & e cha-
mamos a esta classe restricdo de @ a Q' ou (classe) @ dado Q'
ou & na hipdtese (de se verificar) Q' ou ainda & sob a condicdo
(de se verificar) Q.

Vamos agora supor que & é um corpo-¢ € vamos mostrar
que, nesta hipodtese, a classe @|Q' verifica as trés condigdes
da defini¢do dum corpo-¢ em relagioa Q|Q': 1.» Nio € classe
vazia, pois abrange Q|Q.—22 Se A4|Qe&|Q), tem-se 4 e
e a propriedade 5 ¢) dda (A|Q)Y eq|Q.—82 Se 4,|Qe
e q|Q(n=1,2,8,...), tem-se U 4,e6Q e a propriedade 5 ¢) da
U4, |2 ea| Q.

" Posto isso, representamos o espaco mensuravel (Q|Q,g|Q")

também pelo simbolo abreviado (,&)|Q' e chamamos-lhe
restricdo do espaco mensuravel (2, Q) a Q' ou (espaco mensurd-
vel) (Q,Q) dado Q' ou (Q,Q) na hipdlese (de se verificar) Q' ou
ainda (Q, @) sob a condi¢do (de se verificar) Q.

Passamos a enunciar uma proposicio que relaciona as
decomposi¢bes dum espago mensurdvel e da restricio do
mesmo a um seu subespago.

N XX) «Se 2 for decomposicio (decomposigio irredu-
tivel) do espag¢o mensuravel (Q,&) e se Q for subespago de
Q, entdo a classe dos conjuntos nio-vazios situados na res-
tricio de @ a Q' sai uma decomposig¢io (decomposicio irre-
dutivel) da restri¢do de (Q,&) a Q'»

Demonstracdo de N XX. Se 9 for a decomposigio
VA1, Asye ooy Auy. .}, a vestricio 9| Q' fica igual a

1A41]|Q, A:1Q,. .., 4,]Q,...}, com 4,]|Qe@]|Q), seja qual for z.



70 PEDRO BRAUMANN

Como o exemplo 6 e a definicio de decomposicdo dio
2(A4,]9)=0|Q) concluimos que a classe dos conjuntos

nido-vazios situados em 9| Q' € uma decomposi¢io de (Q,Q)|Q".

Suponhamos agora que 9 ¢é irredutivel. Se existisse um
conjunto 4|Q'eq|Q" que fosse subconjunto préprio de A4,|Q
para um certo valor de %, entdo a propriedade N 9 4) e o
exemplo 5 davam 4|Q'=(4 |8 )N(A4.|Q)=(A4N A,)|Q e, por-
tanto, a irredutibilidade de 9 for¢ava 4|Q' a sair igual a um
dos dois conjuntos O|Q' ou 4,|Q, uma conclusio manifesta-
mente absurda. Fica assim terminada a demonstracio de
N XX.

Observacdo. Mesmo que 9 seja redutivel, a classe dos
conjuntos nfo-vazios situados em 9]Q' pode sair decomposi-
¢do irredutivel de (Q,&)|Q. Por exemplo, considere-se a
decomposi¢do da recta de Borel formada pelos conjuntos
|{kLx<k+1|, com & a percorrer a sucessio dos numeros
inteiros, e tome-se o conjunto dos nameros inteiros e pares
para subespago da recta real.

17. Corte feito num corpo-g por um ponto. Consideremos
o espago-produto Q=IIQ,, de dois ou mais factores, uma
n

classe @ de conjuntos extraidos de Q e um ponto fixo
(0% y08,...) 6 Q<< .- =L, Atribuimos o simbolo @/(w%,®7,...)
e damos o nome de corfe feito na classe & pelo ponio
(0% ,%,...) a classe formada pelos cortes A/(w},wf,...) que o
ponto considerado faz nos conjuntos 4 e .

Vamos agora supor que & € um corpo-¢ € vamos mostrar
que, nesta hipotese, a classe /() ,w?,...) verifica as trés
condi¢bes da definicdo dum corpo-¢ em relagio ao espago
marginal Qg,:..y: 1.2 A classe é ndo-vazia, pois abrange
Q/(wh,0f,.. . )=u,s,.. (veja-se o texto do fim da pag. 43).— 2.2
Se A/(wh,0},...)e&[(wh,0},...), tem-se 4 e¢& e a propriedade
16 4) da [A/(m(},,w‘},. )] e @f(0h, 0l .. ). —38.2 Se 4/ (wh,0},...),
Al(oh, ey ),y e @f(wh,0f,...), tem-se AUAd'U---eq
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e a propriedade 15 &) da [A/(wh,e},... ) JU[A (0} ,0?,...)]U
U---eQf(@h,ol,...)
Posto isso, representamos o espago mensurdvel

[Q/(m‘},,m‘},...),a/(m‘},,w(},. . ‘)]

também pelo simbolo abreviado (@, &)/(«},?,...) e chama-
mos-lhe corte feito no espaco mensurdvel (Q,Q) pelo ponto
(0hy0Fyeu)

De acordo com as consideragdes postas a seguir a for-
mula 14), podemos afirmar que cortar uma classe de con-
juntos extraidos de & ou um espago mensurdvel por um
ponto (w},®},...) ¢ 2 mesma coisa que cortar a classe ou o
espaco pelo ponto w},, cortar depois o resultado da operagéo
anterior pelo ponto «}, etc. e podemos afirmar mais que as
operacdes de fixacio separada de cada uma das coordenadas
wj,»’,... gozam, em qualquer dos dois casos, das proprieda-
des comutativa e associativa.

Segue uma proposi¢do relativa ao corte feito numa
decomposicdo qualquer e, em especial, numa decomposicio
irredutivel dum espago mensurivel.

N XXI) «Se Q for um espago-produto de dois ou mais
factores e se 9@ for decomposi¢io (decomposicdo irredutivel)
do espago mensuravel (Q,Q), entdo a classe dos conjuntos
ndo-vazios situados no corte feito em 9 por um ponto per-
tencente a um espag¢o marginal de Q sai uma decomposigdo
(decomposi¢do irredutivel) do corte feito em (Q, Q) pelo ponto
considerado.»

Demonstracido de N XXI. Se tivermos Q=1IQ,, se 9 for

a decomposicdo {4, 4,...} e se fixarmos o ponto {o,,?,...[€
6 Q< Q<. ..5£Q, o corte D/(w},w},...) fica igual a classe

A [(0p 03,0 ), A [(0h 08,0 )y 0oy

formada por conjuntos todos situados em @/(w},»?,...). Como
a propriedade 15 &) e a defini¢do de decomposicdo dio
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(A/(wh,y 02y )]+[A] @k, 0. )]+ =Qu ;.. concluimos que
a classe dos conjuntos ndo-vazios pertencentes a 9/(o} ,07,...)
¢ uma decomposic¢do de (Q,@)/(wh,wi,...).

Suponhamos agora que 9 € irredutivel. Se existisse um
conjunto A,/(«},»},...)e@/(wh,w},...) que fosse subconjunto
préprio, digamos do conjunto A/(w},},...), entdo a pro-
priedade N 9 4) e o exemplo 18 davam A4 /(e},e},...)=
=(A,NA)/(%,0%,...) e, portanto, a irredutibilidade de 2
forgava o corte feito em A4, a sair igual a um dos dois con-
juntos O/(w;,w?,...) ou A/(w},w?,...), uma conclusio mani-
festamente absurda. Fica assim terminada a demonstragio
de N XXIL

Observacdo. Mesmo que 9 seja redutivel, a classe dos
conjuntos nio-vazios situados em 9/(w},«’,...) pode sair de-
composicdo irredutivel de (Q,q)/(w},»?,...). Por exemplo, se
Q=11,2], se Qy=1{1,2}, se Q=0x<Q, se w]=1y, isto &, 160y,
se & for o corpo-¢ mais amplo que pode definir-se em Q e
se @ for a decomposi¢do redutivel de (Q,&) formada pelo
conjunto {(1,1),(2,2)] e pelo complementar deste, entdo o
corte D/1, fica igual & decomposi¢do irredutivel de (Q,&)/1;
formada pelos conjuntos {1} e {2} contidos em Q.

18. Projeccdo e marginacio dum corpo-9, Consideremos
o espago-produto Q=IIQ,, de dois ou mais factores, uma

n
classe @ de conjunto genérico ACQ e o espago Q,<Q><... =

=Qu,:,...) ou seja o espaco marginal de Q com respeito a
Qp><Q;><- ... Representamos pelos simbolos @, s,... ou @a,s,...)
a classe formada pelas projeccbes A, ,..=Au,,...) corres-

pondentes aos conjuntos 4 e chamamos projeccdo da classe
Q sobre Qu,;,..y (e segundo a direccdo de Q,><Qp<...) quer a
operacio que transforma & em Qu,:..., quer ao resultado
desta operacio.

Se @ for a classe formada pelos cilindros Ce @ de gera-
trizes paralelas a Q,,Q;,..., a classe @, ;,...=@u,:,...), a das
bases C,s,...=Cu,:,...,) correspondentes aos conjuntos C, sai
evidentemente uma subclasse de @, s,...). Chamamos margi-



TEORIA DA MEDIDA E DA PROBABILIDADE 73

nacdo da classe @ com respeito a Q,><Q><.-. 4 operagdo que
transforma & em y,;,..., € damos o nome de base ou classe
marginal de @ em Qu,:,...) ao resultado dessa operagdo.

De acordo com as consideragdes feitas a proposito das
formulas 11) e 11') e com as propriedades dos cilindros de
geratrizes paralelas a Q;,Q;,..., podemos afirmar o seguinte:
As transformacdes de @ em @u,s,...) € em Cu,;,...) S4o ambas
operagées uniformes, mas em geral ndo sio univalentes;
malis, qualquer destas operagdes ¢ equivalente a uma suces-
sio de opera¢bes simples do mesmo género as quais elimi-
nam, a primeira o espago-factor Q,, a segunda o espaco-
-factor Q;, etc., gozando essas eliminagées das propriedades
comutativa e associativa.

Partindo agora da hipétese que @ € um corpo-s, vamos
mostrar que a classe @u,:,...) verifica as condigdes 1.* e 3.7
mas escusa de satisfazer a condigdo 2.* da definicdo dum
corpo-¢ em relacdo a Qg ;.0 1.2 A classe é nio-vazia, pois
abrange Qu,:,...,.—2.* Se Q for o espago-produto de dois fac-
tores citado na ultima observagdo, se A=}(1,1),(1,2),(2,1)}
ese @={0,4,A47,Q], entdo &z compde-se dos trés con-
juntos Q(Q)=Q1,32} e O(g)CQl, donde 22%—9}5 Qy.— 3.2 Se A(h,,',,,,),
Apyiy . yye e € Qi ..y tem-se AUA'U---e ea propriedade
126) da Ap,i,..y U Alpyi,o U € Qiayiy e

Acabamos de ver que @, suposto um corpo-g, ndo se pro-
jecta necessariamente sobre ;. segundo um corpo-c.
Todavia, a marginagio de @ com respeito a Q;><{Q;><... pro-
duz sempre um corpo-c. Na realidade, como a proposi¢do
NVIII for¢a a classe de cilindros @ acima mencionada a sair
um corpo-g, todo o ponto (0%, @fy...) € Qp><Q><. .. da um corte
e/(@%,?,...) que € também um corpo-s e a dedugdo fica
completa se tomarmos em conta que a férmula 14') impde a
relagiio entre classes

20)  Cg,i,7,..0 = €/ (0,565, )
para qualquer ponto (wj,w?,07,...).

Posto isso, representamos o espago mensuravel
(Qn,i,..,Cyi,..y) também pelos simbolos abreviados
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Q,D@p,s,..) ou (2,&),,s,... e chamamos-lhe base ou espaco
mensurdvel marginal de (Q, Q) em Qp,:,... A operagdo que
leva a formacio de (Q,Q)w,s,..., diz-se marginacdo de (Q, &)
com respeito a Qp><Q><--. e goza dbviamente de propriedades
decalcadas das inerentes a marginacio de Q.

Exemplo 28. O leitor pode provar o seguinte: Se & for
0 corpo-¢ mais (ou menos) amplo que pode definir-se em Q,
a base @u,;,...) sai o corpo-¢ mais (ou menos) amplo que pode
instituir-se em Qg ;, ...) (veja-se o principio da pag. 40).
&
Segue uma proposicdo relativa as decomposicdes de
bases dum espago mensuravel.

NXXII) «Seja @ um corpo-s definido no espago-produto
Q=IHQ, e seja @ a classe dos cilindros que pertencem a & e

que tém geratrizes paralelas aos espacgos-factores Q,,Q;,... .
Entédo, para que uma classe de conjuntos forme uma decompo-
si¢do (decomposicio irredutivel) da base do espago mensuravel
(2,9) no espago marginal Qg ;.. ), é condigdo necessiria e
suficiente que ela resulte da margina¢io, com respeito ao
espago-produto ,><Q,><..., duma decomposic¢io (decomposi-
¢do irredutivel) do espago mensuravel (Q,@). Em particular,
se (2,4) admitir uma decomposicido irredutivel, o mesmo
sucede a base de (Q,Q) em Qq ;... 4>

Demonstracdo de N XXII. Vamos dividir a demonstra-
¢io em trés fases.

1.2 fase. Se 9=|C,('...! for uma decomposicdo de (Q, @),
a propriedade 12'4) e a circunstancia que a univaléncia da mar-
ginacdo®™ obriga a base dum cilindro ndo-vazio a sair nio-
-vazia, estes dois factos provam que a classe Du,;,..)=
={C,i,..59 C'n,1,..,- . .| forma uma decomposicio do espaco

I

(*) Evidentemente, a marginacdo do texto refere-se a conjuntos e
ndo a classes.
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mensuravel (@, ), s,..0=(Q,@a,:,..). Inversamente, tal de-
composicdo constitui sempre uma classe de bases correspon-
dentes a cilindros situados em @, os quais sdo nio-vazios e
tem por soma L.

2.2 fase. Se 9 for decomposicio irredutivel de (2,€) e so
neste caso, a parte final de N XIV, a propriedade 12' §) e a
fase 1.2 da demonstracio actual conduzem a uma base Din i ey
que é decomposicdo irredutivel de (Q,Q)a,s,...-

8.2 fase. Se (Q,Q)admitir uma decomposicio irredutivel,
o mesmo sucede a (2, @), por causa de N XVII, de modo que
podemos aplicar a fase 2.* da nossa demonstragio.

Observacdo. A base (Q,@),:,..., pode ter decomposicdo
irredutivel mesmo que (Q,&) nio a tenha, Por exemplo, se
Q=0,><Q,, onde ; é uma recta real e Q; € um espago com
poténcia finita ou numeravel, e se & designar o corpo-g mais
amplo que pode definir-se em Q, entdo a base (), €y), com
Q4 =9, admite decomposicdo irredutivel, por causa de
N XVIII, e é absurdo supor que (Q,Q) possui decomposi¢do
irredutivel porque tal hipétese e as proposi¢des N XVIII e
N XXII davam uma decomposi¢do irredutivel para (2, &)w),
onde @ significa o corpo-c formado pelos cilindros com base
de Borel em O, e com geratrizes paralelas a Q;, produzindo
assim um conflito com a asser¢do feita em N XIX'.

Para terminar, apresentamos uma proposicdo de que nos
serviremos na sec¢ido seguinte.

N XXIII) «Suponhamos que os conjuntos duma classe
@ definida num espago-produto séo cilindros de bases extrai-
das do mesmo espago marginal Q' Entio, se tomarmos
bases em ', o corpo-¢ gerado pela base de @ coincide com a
base do corpo-¢ gerado por @.»

Demonstracdo de N XXIIl. Designamos o espago-produto
do enunciado pelo simbolo Q e representamos as bases de
@ e de @ em Q' por @ e @¥, respectivamente. Entdo, as pro-
priedades da marginagio instituem uma correspondéncia
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biunivoca, classe por classe, a qual emparceira cada corpo-o
que € definido em Q' e que contém @ com o corpo-¢ formado
por cilindros que ¢ definido em 0, que contém @ e que
admite o primeiro corpo-c como base. Concluimos dai que
@*, o corpo-¢ gerado por @, € a base da intersec¢do de todos
0s corpos-s tais que contém @ e que se compdem de cilindros
com bases extraidas de Q. Doutro lado, se & for um corpo-¢
arbitrario que contenha @, entdo & sai sobreclasse do corpo-g,
digamos %, que goza das propriedades de conter @ e de se
compor dos cilindros situados em @ e dotados de bases
extraidas de Q' [veja-se o texto anterior a 20), com @ substi-
tuido por %]. Portanto, resulta @'*=@* e fica assim comple-
tada a nossa demonstragio.

19. A multiplicagdo de classes quaisquer e, em especial, de
corpos-0. Consideremos os espagos Q,(#=1,2,3,...), for-
mando uma coleccio finita ou numeravel, e suponhamos que
em cada (), se encontra definida uma classe @, de conjunto
genérico A,. Entdo, a classe dos produtos II 4, possiveis,

n

definida no espago-produto Q=10Q,, gera um corpo-s que
representamos pelo simbolo 11 &, ou, abreviadamente, por @
e a que corresponde o espag¢o mensuravel (Q,@)=(11Q,,11&,).

Nesta conformidade, podemos dizer que & resulta da multipli-
cagdo das classes Q, ou que & € o produto dos factores Q,.

A definigdo dada implica que é um corpo-¢ qualquer
produto dum ndmero finito ou duma infinidade numeravel
de classes. Esta propriedade acarretar-nos-a diversas van-
tagens notacionais as quais compensardo o pequeno inconve-
niente de haver necessidade de distin¢do entre a classe @,
por exemplo, e o produto II @;=@f.

n=1
Nada impede que se escolham as classes-factores @, de
modo tal que cada uma delas seja um corpo-s. Neste caso par-
ticular, podemos dizer que (Q, Q) resulta da multiplicacdo dos
espagcos mensuraveis (2,,&,) ou que (Q,Q) é o produto dos
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factores (Q,,Q,) e podemos figurar a situagio pondo a igual-
dade simbdlica

21) Q,a@)=(112,,0&,)= {Q, , ).

Observacdo. Mesmo que cada uma das classes-factores
@, seja um corpo-s, a classe dos produtos I14,, geradora de

@, ndo costuma sair um corpo-s definido em Q. Assim, se
tivermos Q,=11,2,3,4}=Q; e se @ e @, forem, respectiva-
mente, o primeiro e o segundo dos dois corpos-o definidos
no exemplo 19, a classe dos produtos A4;><4, compde-se de
dez conjuntos distintos, a saber OCQ,><Q;, o espago Q;<Q,,
os dois cilindros de geratrizes paralelas a Q; cujas bases em
Q; sio os conjuntos |1} e {2,8,4], os dois cilindros de gera-
trizes paralelas a Q, cujas bases em {; sdo os conjuntos
{1,2! e |3,4/ e mais os quatro produtos |(1,1),(2,1)},
13, 1), (4, D, 1(1,2),2,2),1,9),(2,3),01,4,,4] e
1(3,2),(4,2),(3,3),(4,3),(8,4),(4,4) |, quando a proposicio
N XVII torna impossivel a existéncia dum corpo-s com dez
conjuntos.

Segue uma proposi¢io que esclarece o modo como a
multiplicacio dum numero finito de espagos mensuraveis se
reflecte nas suas decomposigdes.

N XXIV) «Suponhamos que (,Q) € o produto dos es-
pacos mensuraveis (Q,,@,) (n=1,2,...,N<+) e que 2o
espaco-factor de indice genérico # corresponde uma decom-
posi¢io 9, de conjunto genérico 4,,,,. Entdo, a classe dos
produtos da forma A, ,><As <+ ><An,py sai uma decom-
posicdo de (2,Q), a qual fica irredutivel quando e s6 quando
todas as decomposi¢bes 9, forem irredutiveis.»

Demonstracdo de N XXIV. A defini¢do de decomposi¢do
dum espago mensurdavel e a igualdade 8') ddo a relagéo

Q=112 4, 4,)= 2 (Al,pxXA2,pi><"'><AN,m);
n Pn PI:PSN--;PN



78 PEDRO BRAUMANN

onde as parcelas do ultimo somatoério, todas nio-vazias, per-
tencem a @ e, portanto, formam uma classe 9 que é decom-
posicdo de (2, @).

A proposicdo N VI mostra que 9 sai redutivel quando
alguma das /V decomposi¢des 9, for redutivel. Mais, se as
decomposi¢bes 9, forem fodas irredutiveis, entdo, dado =,
qualquer conjunto A,e&, fica situado na classe §, das
somas extraidas de 9,, por causa de N XIV, e, portanto,
qualquer conjunto HA pertence a classe § das somas extrai-

das de 9, donde, atendendo a 19), a relagdo @cC$, a qual
prova primeiro que =& e depois que 9 sai irredutivel. Fica
assim completada a demonstragio de N XXIV.

Exemplo 29. Retomemos os dois espagos mensuraveis
(Q,@n) e (:,9:) da ultima observagdo, o primeiro com a
decomposi¢io irredutivel formada pelos conjuntos |1,2| e
{8,4{ e o outro com a decomposi¢do irredutivel formada
pelos conjuntos |1} e {2,8,4{. Entdo, a classe formada pelos
ultimos quatro dos dez conjuntos 4;>< 4, mencionados é uma
decomposi¢do irredutivel de (Q:,@)<(Qz, @), isso por causa
de N XXIV. Logo a proposi¢do N XVII forca @;><@, a ter
2¢=16 conjuntos, os dez conjuntos A,><A; e mais seis que
o leitor facilmente constroi.

Exemplo 30. Se tivermos uma infinidade numeravel de
espagos mensurdveis (2,,&,), se a cada # corresponder uma
decomposicio P, de conjunto genérico 4, ,, e se D,==1{Q,)
para uma infinidade de valores de #, entdo a classe T dos
produtos U 4, ,., disjuntos dois a dois, ndo pode ter poténcia

n

inferior a do continuo, como pode vér-se por um método

semelhante ao método usado na observag¢do feita a seguir a

N 15'). Posto isso, é absurdo admitir a existéncia duma de-

composicdo irredutivel 9 do espago mensuravel Q.. @),
n

pois tal existéncia e a proposi¢do N XIV forcariam qualquer
conjunto situado em T a sair uma soma extraida de 9 e, por-

tanto, confeririam a classe ¢ uma poténcia quando muito
igual a4 do numerdvel.
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Vejamos agora algumas propriedades importantes da
multiplicagdo de classes, de corpos-c e de espagos mensura-
veis. Para comecar, vamos enunciar a proposicio seguinte:

N XXV} «Dados os espacos Q,, formando uma colec¢do
finita ou numerdvel, e dadas as classes @, tais que Q, per-
tence a &, para cada %, entdo o produto das classes conside-
radas nio se altera se substituirmos um factor qualquer ,,
que seja corpo-g, por uma classe geradora construida de
maneira que o espaco 2, em que ela se encontra definida
possa igualar-se & uniio dum ndmero finito ou duma infini-
dade numerdvel de conjuntos situados na classe.»

Demonstragdo de N XXV. Designemos o conjunto gené-
rico de qualquer classe @ afectada dum indice pelo simbolo
A afectado do mesmo indice e substituamos um qualquer dos
factores &@,, que seja corpo-s, por uma classe geradora o
de conjunto genérico G,. Entdo, a relagio 6bvia 0,Cyu e a
propriedade 19 4) implicam que Q=G> X Gy X @<
X} Pu41><--+, 0 corpo-¢ gerado pela classe dos produtos pos-
siveis A;1>< -+ <Ay 1< Gu>< Ayp1< - -+, saia subclasse de
A=<+ XDt} QX Auga< -+, 0 corpo-c gerado pela classe,
seja & dos produtos possiveis A;><. > A, 1>} A< Ayiy>< -

Representemos agora por @, D e § as classes dos cilindros
da forma Q<+ x<Q, 1< Gpy< Qi 1<, &llx---xQn_lenxQonm
e A< XAy 1><Qy <A yup13< -+ -, respectivamente. Como @ é
subclasse da classe geradora de @ e como a proposicio
N XXIII impde a igualdade C*a,..,n—1,n41,...)= 8% =y, a qual
s6 € possivel com @* =9, tiramos de 19 4) e de 19 a) que se
verifica a relagio 9@ Doutro lado, se admitirmos que
existem conjuntos G, ,e @,, formando uma classe finita ou

numerdvel e tais que U G,,,=Q,, entdo, sejam quais forem
»
os conjuntos mensurdveis Ai,..., 4y, Aui1,..., 2 hipétese

da associatividade da multiplicagdo de conjuntos, a pro-
priedade 8) e a condigio 8.* da defini¢do dum corpo-¢ dio
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U (A1><~ .o ><An_1>< G”;PXA%-{—IX' . .):
?
=A<< Ay 1)><(U G, p)><(Apg1><---) =
4
=A< X A< Q< <€ @,

donde concluimos que se verifica a relagio §Cg.

Ora bem, qualquer conjunto pertencente a &¢, por causa
de 10), a intersec¢io dum conjunto situado em 9 com um
conjunto situado em &. Este facto e a propriedade 18 ¢) pro-
vam a relacio #C@, a qual, juntamente com a relagdo ja
deduzida @C&@=&* e com as propriedades 19 ¢) e 19 a), con-
duz a igualdade =& ou seja a tese afirmada no nosso
enunciado.

Observacdo. A condigio imposta a classe geradora @,
no enunciado de N XXV nio pode ser dispensada. Por exem-
plo, se tomarmos os espacos mensuraveis do exemplo 29 e
se substituirmos &, pela classe geradora elementar @ for-
mada pelo (unico) conjunto |1}, entdo o produto @i<@,
gerado pela classe dos quatro conjuntos O Q<Qs,{(1,1),(2,1)},
1(3,1),(4,1)] e Q<|1}, admite uma decomposicio irredutivel
formada por trés conjuntos®) e, portanto, tendo 8 conjuntos,
encontra-se impossibilitado de coincidir com o produto @;><
(formado por 16 conjuntos).

A proxima proposigio trata da associatividade do tipo
de multiplicacdo que estamos a estudar.

N XXVI) «Quando se trabalha com um ntimero finito
ou com uma infinidade numeravel de factores, a propriedade
associativa da multiplicagdo de conjuntos transmite-se a
multiplicagio de classes, de corpos-¢ e de espacos men-
suraveis.»

Demonstragdo de N XXVI. Suponhamos que em cada
um dos espagos {,, formando uma colecgido finita ou nume-

(*) Esta decomposicio irredutivel constréi-se facilmente com o auxi-
lio da proposi¢io N XVI.
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Nota—O enunciado completo de N XXVI ¢ o seguinte:

N XXVI) «Quando se trabalha com um numero finito
ou com uma infinidade numeravel de factores, a propriedade
associativa da multiplica¢fo de conjuntos transmite-se a2 mul-
tiplicacdo de classes desde que cada uma destas goze da pro-
priedade seguinte: Pertencem-lhe conjuntos que formam uma
coleccdo finita ou numeravel e que tém unido igual ao espago
correspondente.

Em aditamento, saem sempre associativas a multiplica-
cdo de corpos[-¢] e a de espagos mensuraveis.»

ravel com produto igual a Q, se encontra definida uma classe
@, de conjunto genérico 4, a qual goza da propriedade refe-
rida no enunciado.

Seja @ o corpo-¢ que se obtém multiplicando certas
classes &, de indices consecutivos, seja ' o espago-produto
em que se encontra definida a classe @), seja Q' o espago
marginal de Q com respeito a Q' e seja Q a classe cujo con-
junto genérico resulta do produto genérico I 4, quando se

#n

substituem os produtos parciais situados em &' por conjuntos
arbitrarios situados em &'. Entdo, como a propriedade 19 )
da @C@*, com Q=11 @,, s6 falta deduzir a relagio @*C & para

que fique demonstrada a parte principal da tese.
Posto isso, representemos por @ a classe dos cilindros com
base da forma I 4,¢ @' e com geratrizes paralelas a (cada um

7

dos factores de) Q' representemos por 9 a classe de todos os
cilindros com base situada em @' e com geratrizes paralelas
a Q' e representemos por § a classe dos cilindros com base
da forma I 4,cQ" e com geratrizes paralelas a (cada um dos

factores de) @'. Ora bem, se substituirmos, no texto da demons-

tracdo de N XXV, os indices 1,..., #—1, n+1,... pela colec-

cdo dos indices » e os conjuntos G,, 4, e Q, pelo produto

genérico IT 4,, pelo conjunto genérico de &' e pelo espago &,
7

respectivamente, entfo concluimos, com o auxilio de N XXIII,
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que @*=9 e concluimos ainda, por cilculos orientados no
estilo das primeiras linhas da pdgina 80, que @C& e que §Cd.
A seguir, as relagbes @GCQ e @*=9 dido 2C G e as relagdes
DCQ e §CQ ddo @*C @ ou seja o resultado pretendido.®

Passamos para a parte complementar da tese. Em pri-
meiro lugar, é evidente que um corpo [-¢] é sempre uma
classe que goza da propriedade referida no enunciado. Depois,
a associatividade da multiplicacdo de espacos mensuraveis
decorre, sem dificuldade, da segunda parte de 21).

Observacdo. A condicio imposta a cada uma das clas-
ses-factores do enunciado de N XXVI nfo pode ser dispen-
sada, conforme mostra o caso Q=Q:=03=1{1,2| e Q1=@>=
=s=1{{1}].

Vejamos agora uma proposi¢do relativa ao corte que um
ponto faz num produto de corpos-g.

N XXVII) «Dada uma colec¢do finita ou numerdvel de
espacos mensuraveis (Q,, @,) (r=1,2,3,...) de produto igual
a (Q,@), entdo o corpo-c que se designa por &, >< Qs >< Qs >+ -
[0 espaco mensuravel (Q,, @,)><(Qs, @s)><(8s, Q1)< ---] coincide
com o corte feito em & [em (Q,&)] por qualquer ponto situado
no espaco marginal Q. ;.. .»

Demonstracdo de N XXVII. Representemos por & a classe
formada por todos os conjuntos que sio produtos da forma
04,, com A,¢@, para cada #, e recordemos que, escolhido
”

qualquer ponto of,,s,...y€ Q¢.,s,...), 0 principio da sec¢do n.° 17
mostra que o corte (Q,@)/w},s,..., € um espaco mensuravel
sujeito a igualdade Q/w(,,s,..)=0,><Q><.... Nesta conformi-

dade, a tese do enunciado sai equivalente a afirmacio que
coincidem os corpos-c designados por @/efs,...) € por &,
< @s><---, respectivamente,.

(*) Quando o ntimero de valores do indice ¢ se reduz a 1, resulta
uma associatividade especial correspondente & convencéo II @,=¢] feita
n=gq

no principio desta secgdo e resulta também uma variante da proposicio
N XXV a qual isenta cada um dos espagos , da obrigagdo de pertencer a @, .
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Seja qual for o conjunto Pe & com a particularidade de

ser A,=Q, para n==7,s,..., tem-se a igualdade P/wf,s,..)=
— A,< A;><---, a qual prova que a classe geradora de
Q,><Cs><--- esta contida em &[wf,s,...). Logo verifica-se a

relacdo de inclusio @< @s><---C&Q/wf,s,...) € s6 falta dedu-
zir a relagdo de inclusdo oposta.

Representemos por @ a subclasse de & formada pelos
conjuntos A4 tais que A/wl,s,.. )6 QX @><--. Ora bem,
@ D & porque o ponto escolhido faz em todo o conjunto
Pe & um corte que ou € vazio ou € igual a A,><A4><---.
Mais, @0 € um corpo-o visto que a hipotese Ae@ implica
A e @, isso por causa de 165), e visto que a hipétese
A, A4, A",...eq" implica AUA'UA"U---e&’, isso por causa
de 155). Portanto, @'=¢&, donde @, >X<@s><---DA/wf,s,...)-
Fica assim completada a nossa demonstragdo.

A proposi¢io N XXVII admite dois corolarios que vao
revelar-se titeis numa fase posterior do nosso estudo. Eis o
primeiro.

N XXVII') «Sao dados os espagos mensurdveis (2, ,Gx)
e (Q,a) da proposi¢io N XXVII. Entdo, um conjunto ndo-
-vazio da forma 11 S, com S, CQ, para cada », s6 pode perten-

(2

cer a @ desde que se tenha a relagéo S, e @, seja qual for #.»

Demonstracdo de N XXVII. Suponhamos que 4=11S,e&,

que A==0 e que existe um valor » do indice » tal que S e&l-
Como qualquer ponto why=(0f,. .., 001,001, ..) 651> - <
S, 13<S,1><--+ torna A4 [wly=S,, sai Q/wlyFQ, €, portanto,
resulta uma incompatibilidade com N XXVII. Consequente-
mente, o nosso corolaric fica demonstrado por redugdo ao
absurdo.

Passamos agora 2o segundo dos corolarios anunciados.

N XXVII") «Sio dados os espagos mensurdveis (Qn s Q)
e (Q,@) da proposi¢io N XXVIL Entdo, o corpo-s o espaco
mensuravel] marginal da classe @ [do espaco mensuravel
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(2,&)] no espago Q.<Qi><Q,;><... coincide com a classe
Q< @s><8ls ><--- [com o espago mensurdvel (Q,,&,)><(Qs, &)<
>X<(Qsy Q)< ]

Demonsiracdo de N XXVII". Seja @ o corpo-¢ formado
pelos cilindros de & que tém geratrizes paralelas a (cada um
dos espacos-factores de) Q.5 ...y € seja of,s,...) um ponto fixo
situado em Q. ... Nesta conformidade, a relagio 20) e a
defini¢do de espaco marginal de (Q,@) em Q,<Q;><... mos-
tram que a tese do enunciado se verifica, quando e s6 quando
o corpo-¢ designado por @/wj,s..., coincide com o corpo-
designado por &,><@s><---. Como @C& e como vale N XXVII,
s6 falta deduzir a relagdo de inclusdo @, <@Qs><-- - C@/w,s,...).
Mas, esta relagdo sai do segundo trecho da demonstracio de
N XXVII se nele substituirmos & por e.

Fechamos esta sec¢fo com duas proposi¢des sobre corpos
geradores de produtos de classes. Eis a primeira.

N XXVIII) «Suponhamos que em cada um dos espagos
Q,(m=1,2,...,/V) se encontra definido um corpo &, de con-
junto genérico A4, . Entdo, os conjuntos que podem obter-se,
somando um numero finito de produtos do tipo A;><As><---
-+ ><Ay, formam um corpo definido no espaco Q;><Qs>< .- <Qu,
o qual € uma classe geradora do produto @i ><@e><---<Qy .»

Demonstragio de N XXVIIL. A classe § das somas dum
ntmero finito de produtos do tipo I 4, é, evidentemente,

ndo-vazia e é também geradora de 11@,, isso por causa da
"

condi¢do 8. que figura na defini¢do dum corpo-c e por causa
da propriedade 19¢). Portanto, s6 falta provar que § verifica
as condigdes 2.* e 3.* da definicZo dum corpo.

Ora, dado um conjunto U= U ( II A4, ,) tal que, seja
1I=p=P 1=n=N

qual for p, se tem A4, ,ed, para cada #», entdo a relacio
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N 10 @), a rela¢do 9) devidamente adaptada e a convengio
2V —1=/, permitem escrever a igualdade

U_= n ( Il Au,p)_: ﬂ I: 2 A})’:l]!

1=p=P 1=n=N 1=p=P 1=isL
onde, fixado de qualquer modo o indice p, 0s 45, sdo os con-
juntos diferentes (ou vazios) que podem obter-se, substituindo

em II B, , cada simbolo B, , ou por 4, , ou por 4, ,e
1=u=N

suprimindo I 4, , dos produtos assim formados. Dai e da
1=u==N

igualdade N 14') tiramos a relagédo

U-— S (AaNAun- Ny,

1=4,b,...,lp=

a qual, juntamente com a igualdade 10), com a condi¢do 2.2
da definicdo dum corpo e com a propriedade 17 ¢), leva a con-
clusio U"e . Mas, a proposicdo NII obriga qualquer unido
dum numero finito de conjuntos Se$ a ser um conjunto do
tipo U. Consequentemente, a classe § verifica as condi¢des
2.2 e 3.>da defini¢do dum corpo, conforme desejavamos provar.

Por motivo semelhante ao invocado na observacio feita
a proposito da formula N15'), a demonstragio de N XXVIII
nio serve para o caso duma infinidade numeravel de corpos
@, Eis a razdo por que apresentamos a proposi¢io seguinte.

N XXIX) «Dados os espagos Q,,(#=1,2,3,...), em ntimero
infinito, suponhamos que em cada Q, se encontra definido
um corpo @, de conjunto genérico 4, . Entio, se considerar-
mos os conjuntos que podem obter-se, formando as somas

dum ntmero finito de produtos II 4, tais que cada par-
1=nl{}w

cela tem quando muito um numero finito de factores 4, = Q,,,
esses conjuntos constituem uma classe que é um corpo
definido no espago 11  Q, e que é geradora do produto

1=nltw
I & >
1=n+w»
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Demounstracdo de N XXIX. A classe das somas referidas
no enunciado, digamos @, € dbviamente uma classe nfo-vazia,
pois abrange o espago-produto em que se encontra definida.

Além disso, dado um conjunto U= U ( II A4, ,) tal que,
1=Sp=P 1m0t

seja qual for p, se tem 4, ,eQ, com cada ne 4, ,=2, com
n>n(p), basta pér N=sup#(p) para que a propriedade asso-
?

ciativa da multiplicacdo de conjuntos dé a igualdade

U= U [Al,px"‘XAN—l,pX( i Q.n)}.

1=p=P N=n<l4w

Portanto, podemos retomar os calculos do segundo tre-
cho da demonstracdo de N XXVIII, sob a condi¢do de substi-
tuirmos § por € e cada conjunto Ay , pelo espagco N Q,.

N=nl+4wo
Concluimos que @ é um corpo e s6 falta mostrar que € €
uma classe geradora de @= I  &,.
1=n+4-»

Evidentemente, sai @C@, pois qualquer conjunto Ce@ &
a soma dum ntmero finito de conjuntos (especiais) da classe
geradora de &@. Doutro lado, dados quaisquer conjuntos
A.ed,(n=1,2,8,...), a igualdade 10) e a propriedade 18¢)
implicam

22) N Q< <Quax A< Q<. )= I A, e,

1=n<» 1=nlw

donde, por causa de 19), a relagio @C¢€*. Em suma, ecgce*
e a formula 19) permite concluir que se verifica a igualdade
¢*=@, conforme desejavamos provar.

20. Espacos de Borel com um nidmero de dimensdes arbi-
trario. Na sec¢do n.° 15 ocupamo-nos da recta de Borer ou
seja do espaco de Borer a uma dimensdo. Agora vamos
desenvolver o estudo iniciado e vamos generalizd-lo a um
numero de dimensfes maior do que 1.

No exemplo 8 vimos que o plano real ou espago real a
duas dimensdes pode ser definido pela igualdade X(x)=
= Xi (%)< Xs(#2), abreviadamente X=X;<X;, onde X; e X,
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significam duas rectas reais, e mencionamos que tal espago
pode ser representado geométricamente por um plano eucli-
deano dotado dum sistema de eixos coordenados figurativos
das rectas-factores.

Se B,(B51) e B:(B:) forem os corpos de Borel lineares
definidos em X; e em X;, respectivamente, escrevemos & (B)
para designar o produto desses dois corpos, o qual é um
corpo-¢ definido em X. Nesta conformidade, a classe & diz-se
corpo de Borel plano ou corpo de Borel a duas dimensées, os
conjuntos Be B dizem-se conjuntos de Borel planos ou con-
Juntos de Borel a duas dimensées e o espago mensuravel
(X (x),8(B)], abreviadamente (X,), diz-se plano de Borel
ou espaco de Borel a duas dimensdes. Aos conjuntos B espe-
ciais que sio da forma Ji< /s, onde JicX; e J.cX, sfo
intervalos lineares (veja-se N XIX), a esses conjuntos 5
podemos chamar intervalos planos ou intervalos a duas dimen-
sbes ou ainda paralelogramos de lados® Jy e Js.

No exemplo 8§ vimos também que o espago real a trés
dimensdes pode ser definido pela igualdade X (x)=X;(x1)><
< Xo (22)>< X3 (x3), abreviadamente X=X,><X;><X;, onde X,
X, e X; correspondem a trés rectas reais, e menciondmos
que tal espago pode ser representado geométricamente pelo
espaco euclideano a trés dimensdes dotado dum sistema de
eixos coordenados figurativos das rectas-factores.

Se B:(B:) e B:(Be) tiverem os significados anteriores e
se &s3(B;) for o corpo de Borel linear definido em Xj, escre-
vemos ainda &(B) para designar o produto desses trés cor-
pos, o qual € um corpo-s definido em X. Nesta conformidade,
a classe B diz-se corpo de Borel a trés dimensies, os conjuntos
B e B dizem-se conjuntos de Borel a trés dimensies e o espago
mensuravel (X,) diz-se espaco de Borel a trés dimensoes.
Aos conjuntos B especiais que sdo da forma /Ji></2>< /3, onde
JicXi, J.cXe e JsX; sdo intervalos lineares, a esses con-
juntos B podemos chamar intervalos a trés dimensées ou
ainda paralelipipedos de arestas J1, ]2 ¢ Js.

(#) Se tivermos eixos coordenados ortogonais, € corrente dar o nome
de rectdngulos aos paralelogramos do texto.
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Os casos da multiplicagdo de corpos e de rectas de Borel
até agora referidos merecem atenc¢o pela nomenclatura espe-
cial que lhes corresponde e pela possibilidade duma repre-
sentacio geométrica sugestiva.

Dum modo geral, se tivermos uma colec¢do finita ou
numerdvel de rectas reais X, (x,) (z=1,2,3,...), entdo a
igualdade X (x)=I1 X, (x,), abreviadamente X=I1 X,,, define X

n kel

como espago real a tantas dimensdes quantos os factores
presentes.
Seja &,(B.) o corpo de Borel linear definido em X, e
seja B(B)=I18,(B,). Entdo, a classe 8, definida em X, diz-
n

-se corpo de Borel com o mesmo numero de dimensoes que X,
os conjuntos Be B dizem-se conjuntos de Bovel com o mesmo
nimero de dimensoes que X e o espaco mensuravel (X, 8) diz-
-se espago de Borel com o mesmo ntimero de dimensoes que X.
Aos conjuntos B especiais que sdo da forma Il /,, onde cada

n
factor J,cX, ¢ vm intervalo linear, a esses conjuntos B
podemos chamar infervalos com o mesmo nikmero de dimensées
que X ou ainda, se N >3, lkiperparalelipipedos de arestas

]1,]2,--.,_[,,,,,__

Seguem algumas proposi¢des destinadas a alargar e a
aperfeicoar os resultados alcan¢ados na proposi¢io NXIX e
nos seus corolarios.

N XXX) «k conjunto de Borsr todo o intervalo contido
num espago real.»

Demounstracdo de NXXX. Trata-se duma reafirmacio de
factos referidos na primeira parte desta secgio.

Passamos para um corolario de N XXX, a saber

NXXX") «Nenhum espaco de BoreL admite decomposi-
cdo irredutivel.»
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Demonstracdo de NXXX'. Se (X,#) for um espago de
BoreL com um numero qualquer de dimensdes, entdo N XXX
obriga todo o conjunto elementar a situar-se em . Nestas
condic¢bes, basta decalcar a demonstracio de N XIX" para che-
garmos ao resultado desejado.

Posto isso, convém recordar duas defini¢cées que é usual
dar na teoria dos conjuntos: Um conjunto de pontos contido
num espa¢o real com um numero finito de dimensdes diz-se
fechado se (e sé se) contiver o seu derivado e diz-se abderto
se (e so se) for o complemento dum conjunto fechado. Escu-
sado serda dizer que o derivado dum conjunto € o conjunto
dos seus pontos de acumulagio.

Agora podemos enunciar um novo corolario de N XXX,
a saber:

NXXX") «Todo o conjunto aberto contido num espaco
real com um ntmero finito N >.1 de dimensbes é um con-
junto de BoreL igual a uma unifo finita ou quando muito
numeravel de produtos de NV intervalos lineares finitos e
abertos.»

Demonstracdo de N XXX". Como valem a proposi¢do
N XXX e a condi¢do 3.* da definigio dum corpo-¢, sé falta
provar que todo o conjunto aberto contido no produto X das
N rectas reais X, (x,) (#=1,2,...,/V) pode ser igualado a
uma unifo quando muito numerdvel de produtos do tipo
descrito no enunciado.

Suponhamos que Y X é um conjunto aberto ou, equi-
valentemente, que Y~ é um conjunto feckado, represente-
mos por 4,(p=1,2,8,...) o elemento genérico da classe
numeravel formada pelos intervalos a /V dimens&es do tipo
M {a,<x,<Ba|, com «, & f,>«, racionais para cada », e desi-

2

gnemos por U a unifo (finita ou numeravel) dos intervalos
A, especiais que estdo contidos em Y. Entdo, é obvio que
UcY e logo se vé que UDY pela razdo seguinte: Se exis-
tisse um ponto y=(y,,...,¥,)eY com a propriedade ye U,
primeiro seria impossivel determinar nameros positivos dJ, e
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¢, tais que as somas y,+e¢, e as diferencas y,—3, fossem to-
das racionais e que, simultaneamente, 1} v, —0,<x, <y, +:,!
n

saisse subconjunto de Y, depois seria possivel formar uma
sucessdo de pontos (¥1,4,...,¥n5,9)€Y (9=1,2,3,...) conver-
gente para y e, por fim, o ponto y ficaria situado em Y7,
uma conclusio incompativel com a hipotese yeY. Fica assim
terminada a nossa demonstracio.

Acrescentamos mais um coroldrio, a saber:

NXXX'") «Todo o conjunto fechado contido num espago
real com um ntmero finito V1 de dimensdes é um conjunto
de Borer igual a uma interseccdo finita ou quando muito
numeravel de complementos de intervalos a /V dimensdes do
tipo referido no enunciado de N XXX".»

Demonstracio de NXXX". A nossa tese é uma conse-
quéncia imediata da proposigio N XXX'") da condigdo 2. da
definicdo dum corpo-¢ e da relagio de Morgan N 10a).

Passamos a dar exemplos de conjuntos de Borel multi-
dimensionais que nio sdo intervalos.

Exemplo 31. E conjunto de Borel todo o conjunto finito
ou numeravel contido num espa¢o real com um ntmero
qualquer de dimensées. Prova-se a afirmac¢do feita somando
conjuntos elementares.

Exemplo 32. Considerem-se trés numeros reais finitos
o, B e y tais que «24+3?>0 e tomem-se os trés conjuntos R,
R' e R" do plano real X de ponto genérico (x,x2) que sido
caracterizados pelas rela¢des que se obtém sujeitando a ex-
pressio ax;+fx:+7 a ser nula, positiva e negativa, respec-
tivamente. Entdo, se pusermos K(&,k)=|—r La<rli|x<
| — koL xs L ks| para todo o par de numeros naturais £; e £,
a igualdade 6bvia X= ( K (%1,%:) e as formulas N94) e N 14)

kyyks

ddo a relagio R+R'= U (R+R")NK (%, k)], a qual, junta-
kyyke
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mente com NXXX'" e com a condigdo 3.2 da defini¢do dum
corpo-¢, prova que a soma R-+R' é um conjunto de Boger.
Analogamente se mostra que a soma K+R" é um conjunto
de Borer. Portanto, basta atender as igualdades A=(R+R')N
NR+R"), RR=(R+R)—~R e R'"=(R+ R")— R, a primeira
decorrente de N 14') e as outras duas imediatas, para que
N XI declare R,R',R" e R'4+ R" sucessivamente conjuntos
de BorgL.

A abundancia de classes geradoras do corpo de Borel
linear (patenteada através da parte final da secgdo n.° 15)
e diversas propriedades afirmadas através dos teoremas da
seccdo n.° 19 facultam-nos uma liberdade de escolha notavel
se quizermos substituir a classe dos produtos II B, por outra

n

classe geradora do corpo de Borel 1, a qualquer namero
n
de dimensdes. Seguem algumas das escolhas possiveis.

1. A classe dos produtos B'><B", onde B' significa
qualquer conjunto de Borel linear e B" significa qualquer
conjunto de Borel plano, é uma classe geradora do corpo de
Borel a trés dimensdes, conforme pode ver-se através de
N XXVI Idem para a classe dos produtos B'><B5'.

2.2 A classe dos intervalos pluridimensionais da forma
0| —oo<x,<by}, onde n corre de 1 a V< 4o e onde, dado 7,

n

o simbolo &, significa um numero real finito arbitrdrio, € uma
classe geradora do corpo de Borel 1 83,, conforme pode ver-se

»
através de 2.° da parte final da secc¢do n.° 15 e através do uso
repetido de N XXVI no caso particular correspondente a nota
da pagina 82.

3.° Escolhidas /Vvariaveis reais finitas u, (n=1,2,...,V)
e /N numeros reais ¢,, qualquer deles finito arbitrario ou infi-
nito com sinal qualificado, entdo sai classe geradora do corpo
de Borel a /V dimensdes a classe o5 (cy,0e,...,cy) constituida
por todos os produtos de /V intervalos lineares /, tais que,
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dado #, o conjunto /, toma a forma Ju, Zx,<c,} ou |cuLxn<tt,)
ou |—oco<lx,<u,}, conforme for wu,Zc, ou w#,>c,>—c0 ou
tn=—co. Com efeito, a propriedade afirmada é consequéncia
de 4.° da parte final da secg¢do n.° 15 e do caso particular de
N XXVI referido na nota da péagina 82.

4.° Escolhida qualquer das rectas reais X, (n=1,2,...,V),
designemos por S, e K, os conjuntos genéricos das classes
S. € i, respectivamente, onde §, e %, se supbem definidos
do mesmo modo que § e J¢ em 5.° da parte final da seccéo
n.° 15. Nesta conformidade, a classe dos conjuntos que podem
obter-se somando um numero finito de produtos IL.S, ¢, por

3
causa de 8'), a mesma que a dos conjuntos que podem obter-se
somando um numero finito de produtos I K,. Este facto e.as

proposi¢des N XXVIII e N XXV mostram que € corpo gerador
de I &8, a classe dos conjuntos que podem obter-se somando

k3

um numero finito de produtos da forma 11.S,.
n
5. Uma classe geradora do corpo de Borel a uma infini-
dade numerdvel de dimensdes € o corpo formado pelas somas

dum ntumero finito de produtos Ir B, tais que cada
1=n{+»
parcela tem quando muito um numero finito de factores

B, =+ X,. Prova-se a afirmacfo feita substituindo os simbolos
Q,,a. e 4, do enunciado de N XXIX por X, ,8, ¢ B,, res-
pectivamente.

¢) Espagcos de medida

21, Funcées aferidoras, conteidos e conteidos-s, O estudo
ifeito a respeito das operagdes sobre conjuntos e a respeito
dos espag¢os mensurdveis proporciona-nos condigdes 6ptimas
para tratarmos de novos conceitos muito importantes em
relacio a teoria que estamos a elaborar.

Consideremos uma classe de conjuntos nio-vazia @ de
elemento genérico A4, definida num espaco Q (), e considere-
mos mais uma correspondéncia funcional o tal que cada con-
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junto 4 tem por homdlogo um numero real ¢ (4), inito arbi-
trario ou infinito com sinal qualificado. Ent&o, a funcdo de
conjunto 9(A) ¢ uma fun¢do numeérica real definida em . Esta
fun¢do recebe o nome de funcdo aferidora (definida em &) se
for nio-negativa e ndo constantemente infinita, por outras
palavras, se 9(A)>0 para qualquer 4 e se existir um 4 tal
que 9 (A4)<+co.

Dada uma funcéo aferidora 9(A4), definida em &, chama-
-se valor dum conjunto A4 fixo ao nimero que a funcio ¢ faz
corresponder a esse conjunto.

Uma funcfo aferidora diz-se nula se atribuir o valor zero
a qualquer conjunto 4; diz-se significativa se atribuir valor
positivo a algum conjunto 4; diz-se finita se atribuir valor
finito a qualquer conjunto A, diz-se infinita se atribuir o
valor +oo a algum conjunto 4; diz-se normada se Qe@ e
0(Q)=1; diz-se ndo-normada se Qe ou se ¢(Q)=£1; diz-se
finita-c se qualquer conjunto 4 for a soma dum numero finito
ou duma infinidade numerdvel de conjuntos tais que cada
um pertence a & e fica com valor finito; diz-se infinita-c se
ndo for finita-c. Evidentemente, uma funcfio aferidora finita
sal sempre finita-o.

Seguem duas definigdes bastante importantes para a con-
tinuacio desta exposicio.

Considera-se a funcio aferidora o(A4), definida em &, como
tendo a propriedade aditiva finita ou aditiva simples se qualquer
colecgdo finita de conjuntos Ay, As,..., Aye Q, disjuntos dois a
dois e de soma situada em g, for tal que se verifica a igualdade

23)  o(dit et An)=9(A)+o(A)+ - o (dw).

Mais, a fun¢do aferidora ¢(A4) considera-se como tendo a
propriedade aditiva-c ou aditiva generalizada se qualquer colec-
cio finita ou numeravel de conjuntos A, 4s,---,4.,-- €@,
disjuntos dois a dois e de soma situada em @, for tal que se
verifica a igualdade '

23) ¢ (it Aot At o) =0 ()40 ()9 () oo
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Reconhece-se imediatamente que toda a fungio aferidora
aditiva-c é finitamente aditiva, mas que uma fun¢io aferidora
finitamente aditiva escusa de ser aditiva-c.

Vejamos agora dois exemplos.

Exemplo 33. Dado o espaco Q=11,2,3, 4|, considere-se
a classe @ formada pelos trés conjuntos A=]1,2{, 47 e Q.
Entdo, a funcio o tal que o(A)=1¢e ¢(4)=9(d)= 4o sai uma
funcdo aferidora definida em &, a qual € infinita, ndo-nor-
mada, infinita-c e aditiva-s; doutro lado, a fungdo 9 tal que
0(A)=3 e o(A4)=9(Q)=1 sai uma funcdo aferidora definida
em @, a qual é finita e normada sem ser finitamente aditiva.
Evidentemente, ambas as fun¢des consideradas sZo signifi-
cativas.

Exemplo 34. Considere-se o espago Q formado pelos
numeros naturais e seja 4 o conjunto genérico que pode
extrair-se de Q. Entdo, a fungdo o caracterizada por ¢(A4)=0
para qualquer 4 finito e 9(4)=+o para qualquer A4 infinito
sai uma fun¢do aferidora definida no corpo-¢ mais amplo que
pode instituir-se em ©, a qual é significativa, infinita, ndo-
-normada, finita-c e finitamente aditiva, mas ndo € aditiva-o.

Passando ao estudo especial das fun¢des aferidoras fini-
tamente aditivas, vamos enunciar a proposicio seguinte:

N XXXI) «Considere-se uma classe nio-vazia & de con-
junto genérico 4, definida em certo espago. Entdo, qualquer
funcio aferidora finitamente aditiva ¢ (A4) goza das proprie-
dades seguintes:

a) Se Oe@, sai ¢(0)=0.—b6) Para A', A—A'eq, a rela-
cio A'c A implica 9(A4")<L2(A4) em todos os casos e implica
mais ¢(A—A)=0 (A)—¢(A4") quando e s6 quando ¢ (A)<+oo.
—c¢) Seja qual for a colec¢do finita ou numerdvel de conjuntos
A, e (n=1,2,8,...), disjuntos dois a dois e tais que A+
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+Ar+1+---e @ para cada % tirado do campo de variagido de #,
verifica-se sempre a desigualdade 2 ¢ (A,) Lo (2 A,).»

Demonstracdo de N XXXI. Vamos provar sucessivamente
cada uma das alineas do enunciado.

@) Seja qual for 4, a propriedade N 7' 4) e a igualdade
28) dio ¢(A)=0(A+ O)=9(A)+9(0). Portanto, basta escolher
0(A)< +oo para que saia 9(0)=0.—6) A relacio A'C 4 tem
a consequéncia ¢bvia 4=A4'+(A—A"). Este facto e 23) dio
9(A)=g(A)+3(Ad—A"), com o(A—A)>0, donde 3(4)Ls ()
em todos os casos e 9(A—A)=0(4)—9(A') quando e sb
quando a ultima diferenca nfo tiver a forma indeterminada
co—oo.—¢) A igualdade 23) torna evidente que esta alinea s6
carece de demonstragdo quando os conjuntos 4, formam uma
coleccdo numeravel. Neste caso a proposigdo NII', as hipoteses
feitas com respeito aos conjuntos 4, e as propriedades supos-
tas para a funcio 9 ddo a relago o( A+ + A+ A1+ )=
=o(d1+ -+ At (Aupr+ - )0 (A)+ - +9(A,), valida para
qualquer 7, da qual tiramos a desigualdade suposta fazendo
crescer # para oo,

Para que possam aplicar-se as igualdades 23) e 23") e as
diversas alineas da proposi¢do N XXXI, € preciso fazer varias
hipoteses relativas aos conjuntos envolvidos. Algumas dessas
hip6teses podem ser dispensadas no caso da classe & de con-
junto genérico 4 sair um corpo, caso este em que se chama
conteride (definido em ) a qualquer fungio o(4) aferidora fini-
tamente aditiva e se chama conterido-s (definido em &) a qual-
quer funcio o(4) aferidora aditiva-c. Em face do exposto,
todo o contetdo-s é um contetdo, mas um contetdido escusa
de ser um contetdo-o [veja-se o texto depois de 23') e tam-
bém o exemplo 34].

Vamos agora enunciar uma proposicdo concebida no
estilo de N XXXI.
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N XXXII) «Se A4 for o conjunto genérico dum corpo &
definido em certo espaco Q, entdo qualquer conteudo v(4)
goza das propriedades seguintes:

a) 0(0)=0.—b) A relagio A'c A, com A'eq, implica
9(A)£9(A4) em todos os casos e implica mais ¢(A4d—A)=
—o(A4)—9(A') quando e s6 quando ¢(A4')< --o0; em particular,
0(A)£L9(Q) em todos os casos e 9(4)=0(2)—o9(4) quando
e s6 quando 9(A)<+o.—¢) Seja qual for a colecgdo finita
de conjuntos A,eQ(n=1,2,...,/V), disjuntos dois a dois,
sai sempre a igualdade 2 o(4,)=9(2 4,); mais, seja qual for

a coleccio numeravel de conjuntos A,ed(7=1,2,8,...),
disjuntos dois a dois e tais que 2.4, e &, sal sempre a desi-
n

gualdade 29 (A4,)<Lo (2 4,), a qual se transforma for¢gosamente

na igualdade correspondente se o(A) for um contetdo-z.—
d) Qualquer colec¢do finita de conjuntos A4,e&@ impde a
desigualdade o(UA4.)£29(4.); mais, se 9(A4) for um con-

teudo-o, a desigualdade escrita estende-se a qualquer colecgdo
numeravel de conjuntos 4, e & tais que U4, ec.»
k(4

Demonstracdo de N XXXII. Vamos provar sucessivamente
cada uma das alineas do enunciado.

a) Veja-se 17 a) e N XXXl a).—b) No caso geral veja-se
17 ) e N XXXI5); no caso particular veja-se 17 @) e substi-
tua-se A' e A do caso geral por 4 e , respectivamente.—
¢) Para a primeira parte veja-se a condi¢do 3.* da defini¢do
dum corpo e a igualdade 23); para a segunda parte servem
as propriedades dos corpos, a alinea ¢) de N XXXI e a igual-
dade 28').—d) Na primeira parte, as propriedades dos corpos,
a formula 1), a proposi¢do N IV e a aditividade simples da
funcio o permitem estabelecer a igualdade

o(4U AU UAdU-)=

a qual também se alcanga na segunda parte recorrendo as
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trés primeiras das razdes j4 invocadas, acrescidas da hipo-
tese UA,eQ e da aditividade generalizada da funcio ¢. Em
%

seguida, a igualdade escrita, a propriedade N 9 @) e a alinea 5)
da nossa proposi¢do conduzem a desigualdade

o (AU AU--- Ul ) Lo ()9 ()4 9 ()t -y

a qual desejavamos deduzir.

22. Quase-medidas, medidas e espagcos de medida. Vamos
agora considerar um caso particular sumamente importante
do estudo feito na parte final da seccio anterior.

Dado o espaco mensuravel [Q(w), &(A)], abreviadamente
(Q,Q), chama-se quase-medida [definida em & ou em (Q,a)] a
qualquer funcio aferidora ¢(4) que seja contetido e chama-se
medida [definida em & ou em (,Q)] a qualquer fungio afe-
ridora ¢(A4) que seja contetido-o. Evidentemente, toda a medida
¢ uma quase-medida, mas uma quase-medida escusa de ser
uma medida (veja-se o texto antes de N XXXII e também
o exemplo 34).

Dada a importancia do conceito de medida, vamos reto-
mar a definicdo respectiva desde o principio: Uma medida
é uma funcdo aferidora aditiva-c definida num corpo-a, como
quem diz definida num espaco mensurdvel.

Posto isso, vamos enunciar uma proposi¢io concebida no
estilo de N XXXIIL

N XXXIII) «Considere-se um espag¢o mensuravel (Q, &)
de conjunto mensuravel genérico 4. Entdo, qualquer quase-
-medida ¢(A) goza das propriedades seguintes:

a) ¢(0)=0.—b) A relacio A'cA, com 4 mensuravel,
implica o(A)Lo(A) em todos os casos e implica mais
o(A—A)=v(A)—9(A4") quando e s6 quando ¢ (A)< +oo; em
particular, ¢(A)Lo (Q) em todos os casos e ¢(A )=9(Q)—o(A)
quando e s6 quando 9(4)< +e.—¢) Seja qual for a colecgio
finita ou numerdvel de conjuntos mensuraveis 4,(»=1,2,3,...),
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disjuntos dois a dois, sai sempre a desigualdade 29 (4,)<L
Z9(2 A4,), 2 qual se transforma forcosamente na igualdade

correspondente quer no caso da colecgio considerada ser

finita quer no caso da funcio 9 ser uma medida.—d) Qual-

quer colec¢io finita de conjuntos mensuraveis 4, impde a

designaldade o (U A4,)£L29(4,), a qual se estende a qualquer
” k12

coleccdio numerdvel de conjuntos mensuraveis A4, no caso
particular da funcfo o ser uma medida.»

Demonstracdo de N XXXIII. Recordemos que & significa
o corpo-¢ de que 4 é o conjunto genérico. Entdo, a nossa
proposi¢ido € o caso especial de N XXXII em que a relacdo
U4.e@ nio pode falhar porque a isso se opde a condi-

n

¢cdo 3.* da defini¢do dum corpo-s.

Caso a fungio aferidora »(4) definida no espaco mensu-
ravel [Q(w), ¥ (A4)] saia uma medida, é preferivel assinalar-se
esta situagdo peculiar pondo a letra p em lugar da letra o.
Entdo, qualquer conjunto mensuravel fixo 4, fica com um
valor igual a ¢ (4o) ao qual é uso chamar medida de A,. Nesta
conformidade, podemos designar a medida p(A4), varidvel
com A, por funcdo medida, desde que nos convenha fazer
a distin¢do verbal entre medidas concebidas como funcées
e medidas concebidas como valores.

Se mergulharmos a medida p(A4), abreviadamente g, no
espago mensurdvel acima mencionado, no qual a supomos
definida, constituimos o terno [Q (), & (A),n(A4)], abreviada-
mente (2,¢,p), terno esse a que damos o nome de espaco
de medida.

O conceito de espago de medida é o conceito mais impor-
tante que até agora encontrimos. Pois, sdo os espagos de
medida que fornecem o ambiente adequado para o desenvol-
vimento ulterior da nossa teoria.
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Vamos agora dar um exemplo duma medida ou, equiva-
lentemente, dum espaco de medida. Tal exemplo pode servir
para eliminar da mente do leitor quaisquer davidas relativas
4 existéncia de medidas.

Exemplo 35. Dados os numeros 1, 2 e 3, consideremos
0 espago Q=11, 2, 3] e mais o corpo-q, seja @, formado pelos
quatro conjuntos O, {1,2], {3} e Q. Entdo, a fun¢io p sujeita
as igualdades ¢ (0)=0, ¢(]1,2])= 0, ¢ (|3])=3 € (@)= +oo
sal uma medida definida no espago mensuravel (2, &), a qual
¢ significativa, infinita, ndo-normada e infinita-s.

93, Teoremas diversos. Nesta secgdo vamos deduzir
varios resultados de que nos serviremos mais adiante.
Para comecar, enunciamos a proposi¢do seguinte:

N XXXIV) «Considere-se uma classe & de conjunto gené-
rico 4, definida em certo espa¢o, e suponha-se que o conjunto
vazio pertence a @. Entdo, dada qualquer coleccdo finita ou
numerdvel de constantes ndo-negativas ¢,(p=1,2,3,...),
a hipétese que cada uma das grandezas g,(A4) ¢ uma fungéo
aferidora finitamente aditiva [aditiva-¢], juntamente com a
convenc¢io ¢,9,(A)=0 quando ¢,=0 e ¢;(A)= oo, implica
que a combinag¢do linear e homogénea 2 ¢, 0, (A)=1v(A) sai, por

?

sua vez, uma fun¢fo aferidora finitamente aditiva [aditiva-s].
Em particular, se cada uma das fungdes 9,(4) for um con-
teado, um conteddo-s, uma quase-medida ou uma medida,
o mesmo sucede a fungio o(A).»

Demonstracdo de N XXXIV. A funcio 9(4) é aferidora
porque é bem definida e nfo-negativa para cada 4 e porque
N XXXI g) arrasta o (0)=0< +o. Mais, se tivermos qualquer
coleccdo finita [finita ou numerédvel] de conjuntos 4,e&
(n=1,2,8,...), disjuntos dois a dois e de soma situada em @,
entdo a definicdo da func¢do o e a hipotese ¢, (2 4,)=20,(4,)
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para cada p admissivel, uma e outra estabelecidas no enun-
ciado, ddo a relagio

02 A)=20c- 25 (A)] =23 0y 5, (4] =25 ()

a qual prova a aditividade simples [generalizada] da funcéo o.
Finalmente, para que a nossa demonstrac¢io fique completada,
s6 falta aplicar a deduc¢fo aqui feita ao caso particular dos
conteudos em que & é um corpo e ao caso particular das
quase-medidas em que & é um corpo-a.

A classifica¢io das fung¢des aferidoras que sdo contetdos
¢ um tanto facilitada pela proposi¢do seguinte:

N XXXV) «Se A4 for o conjunto genérico dum corpo &
definido em certo espago Q, entdo qualquer contetido »(A4) sai

a) nulo ou significativo, conforme ¢(Q)=0 ou 9(Q)>0;

b) finito ou infinito, conforme ¢ (Q)< + oo ou 9 (Q)= +co;

¢) {iinito-s quando e s6 quando existem conjuntos
A,eq@(n=1,2,3,...) disjuntos dois a dois, de soma
igual a Q e tais que se tem ¢(A4,)< +o para cada =
admissivel.»

Demonstracdo de N XXXV. As alineas a) e 4) resultam
consequéncias imediatas da desigualdade 0 Zo(A4)L9(Q), asse-
gurada por N XXXII 4). Mais, se o conteudo o(A) for finito-s,
entdo Q, um conjunto A4 possivel, sai igual 4 soma dum
nimero finito ou duma infinidade numeravel de conjuntos
tais que cada um deles pertence a & e tem valor finito.

Posto isso, s6 falta provar que a existéncia dos conjuntos
A, referidos na alinea ¢) forca a fun¢io ¢(A4) a ser finita-c.
Ora bem, admitida essa existéncia e escolhido qualquer 4,
sai A=2(ANA4.,), isso por causa de N 9 4) e de N 14/), e sai

”

ainda o (AN 4n)Lo(4)< too para cada #, isso por causa de
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N 9 a), de 17 ¢) e de N XXXII &), ficando assim completada
a nossa demonstragio.

Vejamos agora uma proposi¢io que nos vai aparecer
como corolirio de N XXXV e que pode considerar-se

como inversa de certo caso muito particular do teorema
N XXXIV. Ei-la:

N XXXV') «Considere-se um espaco Q e definido nele
um corpo [corpo-o] de conjunto genérico 4. Entdo, qualquer
funcio o(A) que seja conteido-c finito-c e significativo
[medida finita-c e significativa] determina uma colecgdo de
constantes ¢,>0(p=1,2,3,...) e uma colec¢do de contetidos-¢
normados [medidas normadas] o,(4) tais que qualquer A4
satisfaz a igualdade

a) o(A)y=ci-o(A)+ece- g2 (A)+-+cp-9p(A)+---.

O numero de parcelas do segundo membro de a) pode redu-
zir-se a um ou sai necessariamente infinito, conforme a fun-
¢do o () for finita ou infinita.»

Demonstracdo de N XXXV'. Representemos por & o
corpo [corpo-¢] de que 4 é o conjunto genérico e suponhamos
que v(A4) é um conteudo-o finito-o e significativo [uma medida
finita-o e significatival.

Se designarmos por A4,(p=1,2,3,...) os (eventuais)
conjuntos 4, da alinea ¢) de N XXXV para os quais 9 (4,)>0,
entio a aditividade-o da fun¢do o permite escrever o(Q)=
=Z29(A4,), saindo o numero de parcelas do somatério pelo

»

menos igual a um e saindo cada uma das parcelas positiva
e finita. Em face do exposto, podemos definir uma colecgdo
de constantes ¢, e uma colec¢do de fungdes 9,(4) pelas férmulas

2) @) G=s(A)>0; 8) o(A)=2(AN A en0.

Ora bem, a igualdade A=2(A4NA,) posta na parte final da
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demonstragio de N XXXV, a aditividade-s da fungdo 9, a eli-
minacido de todas as parcelas ¢(AN A, tais que »(A4,)=0
(se as houver) e as formulas 24) implicam a relacio

?(d)=2 ?(AﬂA})=f 6 - 95(A),

a qual prova a igualdade a) porque, escolhido qualquer p,
nio s6 vem 9,(Q)=9(A})/c,=1, isso por causa de 24), como
também toda a coleccdo finita ou numerdvel de conjuntos
C.,eQ(n=1,2,8,...), disjuntos dois a dois e sujeitos a res-
trigdo 2C, e & na hipotese de & nio ser corpo-o, impoe

n

2 (2C)=(1]¢cy) @(E(CnﬂA}))=§ 05 (Co)s

isso por causa de 24), de N 14", de 17 ¢) e da aditividade-¢
da funcio 9.

Quanto a parte final do enunciado, uma fungio 9(A)
finita permite por Q=_4,=4 e uma func¢do o(A4) infinita ndo
pode ser a soma dum numero finito de parcelas finitas. Fica
assim completada a nossa demonstragio.

S

Fechamos esta sec¢io com a proposi¢do seguinte.

N XXXVI) «Se g for um contendo definido num corpo @,
entdo a hipétese que o conjunto A situado em & satisfaz a
desigualdade ¢(A4)< 4+ torna impossivel a existéncia duma
classe formada por uma infinidade nio-numeravel de con-
juntos disjuntos dois a dois, todos contidos em A e per-
tencentes a @ e tais que 7 atribui valor positivo a cada um
deles.»

Demonstracdo de N XXXVI. Suponhamos que existe uma
classe nas condi¢bes do enunciado, seja a classe @ de con-
juntos A'. Como a alinea ) de N XXXII implica 9 (4')<Lo (4)
para qualquer A4', reconhecemos imediatamente que é inad-
missivel supor nulo o numero 9(4), abreviadamente o.
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Nesta conformidade, se designarmos por @i(/=1,2,3,.. Ja

classe dos conjuntos A’ sujeitos a desigualdade o/(/+1)<

<o(4")ZLo/l, sai a igualdade eatre classes & =2 @}, isso por-
I

que cada 4' pertence a uma e uma so classe @. Doutro lado,
se existissem /41 conjuntos Aie@ (i=1,2,...,/+1) tais que
o [Ixg(A)>0/(I+1) para cada 4, as alineas 6) e ¢) de N XXXII
davam a desigualdade absurda oo (A4 A A ) >(+1) -
- 9/(I+1). Portanto, @ € a soma duma infinidade numerdvel
de classes finitas, uma conclusdo incompativel com a hipdtese
duma classe @ infinita nio-numeravel. Fica assim concluida
a demonstracio de N XXXVL

94, Limites de sucessdes de funcdes aferidoras aditivas.
Dada uma sucessio de fungdes aferidoras aditivas com limite,
tem interesse saber se este ¢ uma fungio aferidora aditiva e,
eventualmente, indagar qual é o tipo da sua aditividade.
A questio que acabamos de levantar € resolvida em boa
parte pela proposi¢do seguinte.

N XXXVII) «Considere-se uma classe & de conjunto
genérico 4, definida em certo espago, ¢ suponha-se que o
conjunto vazio pertence a &. Entdo, a hipotese que a sucessdo
de funcoes aferidoras finitamente aditivas 9, (4) (p=1,2,3,...)
tem limite, quando p — oo, implica que este limite, seja ¢ (A4),
sai, por sua vez, uma funcéo aferidora finitamente aditiva. Em
particular, se cada uma das fungdes o,(A) for um conteudo
ou uma quase-medida, o mesmo sucede a funcdo o(4).»

Demonstragdo de N XXXVIL. A fungio 3(4) ¢ aferidora
porque ¢ bem definida e néo-negativa para cada 4 e porque
N XXXI @) arrasta 9(0)=0< +oo. Mais, se tivermos qualquer
coleccio finita de conjuntos A, e & (n=1,2,...,4V), disjuntos
dois a dois e de soma situada em &, 2 definigdo da funcédo v
e a hipotese v, (2 4.)=20,(An) para cada p, uma e outra esta-

belecidas no enunciado, ddo a relagio

(3 A,)= lim (20, ()= 2 ¢ ()
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a qual prova a aditividade simples da funcdo ¢. Finalmente,
completamos a nossa demonstra¢io considerando os casos
particulares em que & é um corpo e em que & é um corpo-o.

Vejamos agora um corolario de N XXXVI], a saber:

N XXXVII') «Retomem-se as func¢des aferidoras finita-
mente aditivas o,(A4) da proposicio N XXXVII Entéo, para
que a funcio aferidora limite o(4) resulte aditiva-s, é condi¢io
suficiente que se possa extrair da sucessio dos numeros p
uma subsucessio p, (¢=1,2,3,...) tal que cada funcio 9, (4)
saia aditiva-c e, simultaneamente, a sucessdo das funcgdes
95,(A) saia nio-decrescente. Em particular, se cada uma das
fun¢des o,,(A4) referidas na condigio suficiente for um con-
tetdo-c ou uma medida, o mesmo sucede & fun¢do g(A4).»

Demonstracdo de N XXXVII. Tendo em vista N XXXVII,
basta provar que a condi¢do estabelecida no nosso enun-
ciado forga qualquer colec¢do numerdvel de conjuntos A, e &
(n=1,2,8,...), disjuntos dois a dois e de soma situada em
&, a respeitar a igualdade ¢(2.4,)=20(4,). Ora bem, se

9p,(2 Au)= +oco para algum g, alcanca-se a igualdade mencio-
nada por intermédio das duas relagbes o, (2 4,)=219, (4,) e
9y,(A)£Lo(A) para qualquer A e, se 9,,(2.4,)< +oo para cada g,

alcanga-se a mesma igualdade por intermédio da relacdo
90 (2 A2 50 (3 A1) =0, (2 )]~ 2o, () +

212 [op () —0p (A1 =2 |y, (x‘ln)+;2 (901 (An) =05, (An) ]}

Fica assim terminada a nossa demonstracio.

Observacdo. Caso se deixe de cumprir a condicdo de
ndo-decrescimento mencionada no enunciado de N XXXVII,
ndo podemos assegurar a aditividade-¢ da funcio 9(4), mesmo
que cada uma das fungdes ¢, (4) seja aditiva-s. Exemplifique-
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mos: Escolhidos qualquer numero natural p e qualquer con-

junto 4 contido no espago formado por todos os nimeros

naturais, ponha-se ¢,(A4) igual ao produto da fracgdo 1/p pelo

numero de pontos situados em A ; entdo, cada uma das fun-

coes 9,(A) (p=1,2,8,...) sai uma medida finita-¢ e lim ¢,(4)
pow

identifica-se com a fun¢do ¢(A) do exemplo 84, a qual é
quase-medida sem ser medida.

25, A aditividade-o como caso particular da aditividade finita.
Iniciamos esta sec¢do apresentando algumas convengdes e
definicdes.

Dada uma colecgdo finita ou numerdvel de numeros reais
%, (n=1,2,3,...), qualquer deles finito ou igual a 4 ou
igual a —oo, escrevemos &, 4 [ x, | ] para assinalar que os x, ndo
decrescem [nfo crescem]. Caso se verifique a relagdo x, 1 [ %, ],
pomos x,1x[x, | x] para exprimir que x é o ultimo dos nume-
10S %, ou € o limite dos nimeros «x,, conforme tivermos uma
coleccdo finita ou numeréavel.

Se @ for uma classe de conjunto genérico A4, extraida de
certo espac¢o, entdo os simbolos que acabamos de introduzir
e os conceitos de colecgdo de conjuntos ascendente e descen-
dente permitem estabelecer as defini¢cGes seguintes:

Uma funcio aferidora ¢(A4) diz-se inferiormente continua
em & se a relagdo ¢(A.)19(U A.) for verdadeira para qual-

"

quer colec¢do numerdvel de conjuntos A,e@ (n=1,2,3,...)
tais que 4,1 e U4, e@. Semelhantemente, uma func¢io afe-

ridora ¢(4) diz-se superiormente continua em G se a relagido
o(A4.) i o(N Ay for verdadeira para qualquer colec¢do nume-

ravel de conjuntos 4,e@ tais que 4, , N A, e @ e ¢(Ap)<+oo

para algum £ tirado do campo de variagdo de #.
Posto isso, vamos enunciar a proposicio seguinte:

II) «Se tivermos um corpo [corpo-¢], suponhamos &,
extraido de certo espago, entio qualquer contetdo-¢ definido
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[medida definida] em @ ¢é ai uma funcio aferidora ¢uferios-
mente e superiormente continua.»

Demonstragido de 11.  Seja ¢ (A) um conteido-s definido
no corpo ¢ e admitamos as hipoteses 4,e@ (n=1,2,38,...),
A.t e UA,e&. Nesta conformidade, a alinea 6) de N XXXII

déd ¢(A4,)t, isso em todos os casos possiveis, e da ainda
o(U A,)= +oo, isso desde que saia ¢(A,)=+= para algum .

Mais, se ¢ (A4.)<<+o para qualquer 7, a formula 1), a aditi-
vidade-s da fungdo ¢ e a alinea ) de N XXXII impdem
a igualdade

o (UAan)= lim [p(A)+o(Ae— A+ +9(As—Aui)]= liTm o(A4.).

Em face do exposto, podemos afirmar que a funcdo aferi-
dora ¢(A4) é inferiormente continna em &.

Admitamos agora as hipoteses A,eQ(n=1,2,38,...),
A l,NA.eq e p(A)<+o para algum namero natural 2.

Nesta conformidade, a alinea 6) de N XXXII d4 ¢(4.,) 4, isso
em todos os casos possiveis. Mais, as igualdades obvias
Ar=U 4d.e N A,= N A, transformam N 11) na relagio

n=k n=k - n=1

N A,=A.—[ U (4—A4,)], onde a unido esta contida no
n=k

n=1

diminuendo 4; de modo que sai U (Ai—4,.)=Ai—( N An)ed.
n=k 1

Como A;—A.,1, concluimos da alinea 6) de N XXXII e da
continuidade inferior da fun¢io ¢ que se verifica a relacio

?(A)=¢( N A)=9( U (di—dy)= thg 0 (Ar—Au)=

ntw
Resulta a igualdade ¢o( N A,)=lim¢(4,), a qual prova, jun-
n=1 ntow

tamente com a relacdo 9(4,)|, que a funcio aferidora ¢ (4)
é superiormente continua em .
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Caso @ seja um corpo-s, a demonstracio precedente
torna-se um nada mais simples, pois os conjuntos U A,e NAds

n

saem for(;osamente mensuraveis.

Observacdo. Dado um contetudo-¢ infinito, a existéncia
dum % tal que ¢(A4r)<+o é uma restricio essencial se qui-
sermos que as hipoteses 4,¢@, 4.l e NA4,eq impliquem

n

a relacdo ¢(4,)!0(N4,). Exemplifiquemos com o espago de

medida [Q (0), @ (4), ¢ (A)], onde Q é o espago formado pelos
nimeros naturais, & é o corpo-¢ mais amplo que pode insti-
tuir-se em Q e  é a fungio que atribui a qualquer conjunto 4
uma medida igual ao ntumero dos seus pontos: Os conjuntos

A,=|nLo<+oo| tornam falsa a relagdo y(A,,)lp(r]An), ja

que u(A,)= -+ com qualquer # e y(ﬂAn) p(0)= 0.

*
ES Ed
A proposi¢io II mostra que a continuidade inferior ¢
uma condi¢fo necessdria para que um conteudo saia um con-
tetido-o. Vamos provar agora que a continuidade inferior
¢ também uma condi¢io suficiente para o fim indicado.

III) <«E contetudo-c todo o contetido inferiormente conti-
nuo. Em particular, ¢ medida toda a quase-medida inferior-
mente continua.»

Demonstracdo de 111, Consideremos um corpo @ de con-
junto genérico 4 e suponhamos que ¢(A4) é um contetdo
inferiormente continuo. Entio, escolhida qualquer coleccio
numeravel de conjuntos 4,e & (#=1,2,3,...), disjuntos dois
a dois e de soma pertencente a &, a aditividade simples da
fun¢do ¢ e as relagbes Obvias

implicam a igualdade

3 o(d)-limg( 2 A)=g( U Bi=e( _3_ A),

1=n<w
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a qual prova a aditividade-c da funcio ¢(4). Se & for um
corpo-¢, a demonstragdc dada simplifica-se coisa de nada.

A proposi¢do II mostra que a continuidade superior é
uma condi¢io necessaria para que um contetdo saia um
contetido-o. Mas, tal condig¢do nfo ¢ suficiente para o fim
indicado, conforme pode exemplificar-se tomando a quase-
-medida ¢(A4) do exemplo 34. Todavia, se limitarmos a rela-
¢do caracteristica da continuidade superior aos conjuntos
A.e @ tais que 4,1 ,NA,=0 e ¢(A4,)<+oo para cada # e se

n

impusermos, em contrapartida, a relagdo caracteristica da
aditividade-s em certos casos muito especiais, entdo resulta
uma condi¢ido suficiente proveitosa para que um contetdo
saia um contetdo-s.

1IV) «Seja @ um corpo [corpo-s] de conjunto genérico 4
e seja 9(A4) um conteudo definido [uma quase-medida defi-
nida] em &@. Entdo, ¢(A4) sai um contetido-s [uma medida]
quando se verifica a condigdo seguinte:

Escolhida qualquer colecgdo numeravel de conjuntos
A,eq (n=1,2,8,...), disjuntos dois a dois, de soma obriga-
toriamente situada na classe @ caso esta nfo seja corpo-¢
e tais que se verifica a desigualdade ¢ (4,)< -+ para cada »
admissivel, escolhida uma colec¢éo nessas condi¢des, a hipé-
tese ¢(24,)<-co implica a rela¢io ¢ (A, 1+Aup2+---)40,

quando 7zt o, e a hipotese ¢(2.4,)= -+ implica a existéncia
de conjuntos A,eQ(p=1,2,3,...), disjuntos dois a dois
e tais que se tem 2 4;=2 A,,9(24})=20(4)) e 9(A4)<+oo
» " ? ?
para cada p.»
Demonstragdo de IV. Vamos distinguir trés casos de

coleccdes numerdveis de conjuntos A,eQ, disjuntos dois
a dois e sujeitos a relagdo 2 4, e se @ nio for corpo-g.
n

1.2 caso. Suponha-se que existe um % tal que ¢ (A4,)= +oo.
Como A4,c3 4,, a alinea 6) de N XXXII dd ¢(2 4,)=+oco=

=29 ().
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2.° ¢gso. Suponha-se ¢ (A4,)< +oo para cada n e ¢ (2 .4,)<

< +oo. Como as propriedades dos corpos dido a relagio
A1+ Ao+ - €@, valida para qualquer #, tiramos da pro-
posicio N II' e da aditividade simples da funcdo ¢ que se
verifica a igualdade

(P(i‘ An)zﬂo(Al)’]F e _|—CP(An)+:P (A1z+l+An+2+ . ')o

Portanto, a relacdo ¢ (4, 1+ Ausre+---)1 0, admitida no enun-
ciado, permite-nos escrever mais uma vez ¢ (2 A4,)=2¢(4,).

3.2 caso. Suponha-se ¢(A4,)< -+ paracada n e ¢ (2 4,)=

= +t-co. Seja qual for o conjunto 4} referido no enunciado, a
relagio A, 2. 4,, a propriedade N 9 4) e a igualdade N 14)

dao A, =2(A4, N A.), com ¢(A,)<+oo, isso por hipétese, e

com ¢(Ap N A,)< +oo para cada #, isso por causa de N 9 a)
e de N XXXII &); portanto, a condi¢cio do enunciado assegura a
relacdo o (AL N Aus1)+(As 0N Auye)+---)10, quando #too, a
qual permite escrever ¢(A,)=20¢(A45 N A.), isso pelo estudo

feito no 2.° caso. Concluimos dai primeiro que se verifica
a igualdade 2¢(A4,)= 2 9(A4,N 4, e depois, trocando os
» ", p

papéis dos conjuntos A, ¢ A, na dedugdo precedente, que
se verifica também a igualdade 2o (A,)= 2 ¢(A.NA}). Con-
” n,p

sequentemente, a propriedade N 9 ¢) e as propriedades dos

conjuntos 4}, admitidas na parte final do enunciado implicam

o resultado 29 (A4,)=Z¢(Ap)=9(2 4,), ficando assim comple-
#n ¥ n

tada a prova da aditividade-c da func¢io ¢ (A4).

Observacdo. Caso a funcio 9 (4) seja um conteudo-o, ela
satisfaz necessariamente a condi¢io posta no enunciado de IV,
Com efeito, escolhida qualquer sucessfio de conjuntos 4, de
acordo com o estabelecido nessa condicio, entdo a continui-
dade superior de ¢ (.4), assegurada por 11, e as relagdes ébvias
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Apt+Awpi+---=Cul e NC,=0" mostram que a hipétese

¢(C1)< +oo implica o resultado 9(C, 1) | ©(O)=0, onde a igual-
dade final vem de N XXXl ). Mais, a relacio ¢(2 4,)=2¢(4.),

assegurada pela aditividade-¢ da fung¢do o, mostra que a hipé-
tese ¢ ((y)=+oo constitui os préprios 4, em conjuntos A}
possiveis.

26. Valor que um conteddo airibui a uma unific de conjuntos
tais que qualquer deles tem valor finito. Seja A4 o conjunto
genérico dum corpo & extraido de certo espaco Q e seja ¢(A4)
um conteudo definido em &. Escolhida uma colecgdo finita
de conjuntos 4,eQ(n=1,2,...,N) tais que ¢(A4,)< +o para
cada # admissivel, entdo a alinea &) de N XXXII impde a
desigualdade ¢ (U A,) L2 ¢(A)< +oo. Aqui propomo-nos

achar igualdades que permitam calcular o valor exacto da
unifo dos 4, por adicfo algébrica dos valores de certos con-
juntos tais que cada um deles pertenca a & e esteja contido
nalguma parcela 4,.

Obtemos igualdades do tipo desejado se aplicarmos a pro-
priedade aditiva simples da funcio ¢ ou ao segundo membro
de 1) ou ao segundo membro de N 15'), tendo qualquer dos
dois processos as suas vantagens e os seus inconvenientes,
conforme vimos na discussio feita a volta de N 15'). Em
seguida vamos transformar a igualdade correspondente ao
segundo processo de modo que fique desembaracada da
presenc¢a dos complementos dos conjuntos 4,,.

A transformacio anunciada conduz a férmula seguinte:

25) o( _U A=
1=0=N
= 2 [(=1p 2 (A N Ay (V- VAm,)]-
1=<axN 1y g < -oe <{mmy 2N

() Se tivéssemos (1 C,5=0, saia, por causa de N 10 ), a rela¢do absurda
n

QU CT = CrU(CT+A)U - U(CT+ 4t 4+ AU - =
=(A!+A£+ et A+ ...)“+(A1+AQ+ R s I NI N
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Deducdo de 25). Representamos por ,C, o ntmero de
combina¢des de a objectos tomados da b e escolhemos para
ponto de partida da nossa dedugdo a igualdade

26) ¢( U NA,;)=1

1=n

2 o4y
S N-1

A

A

onde os conjuntos 4} tém o mesmo significado que em N 15).
Assim, pode estabelecer-se uma correspondéncia biunivoca,

elemento por elemento, entre os conjuntos Ay= N B,
1=m=N

admissiveis e as combinac¢6es ndo-vazias dos nimeros «,{,...,0
extraidas da combinacio 1,2,...,/V, correspondéncia essa que
se efectua atraveés da relacdo

B,=4,,Bg=Ag,...,B,=A4, e B,=A, para ma,B,...,p
ou seja, por causa de NIV, através da relagio

Ay=A,NA4N---NA4,N( rﬁ] An).®
71¢¢1, 7...79

Em particular, as combinac¢des «,f,...,p especiais com #
elementos (1£L7< V) correspondem a xC, produtos A} (for-
malmente) diferentes tais que cada um deles tem » e s6 »
conjuntos secantes do tipo A4,.

Se escrevermos o segundo membro de 25) como soma,
quando # corre de 1 a /V, dos termos

25) (-1t 3 (Nl 0 (At )]0

1=my<loe =N MMy e,

se desenvolvermos em 25") o argumento genérico da fun-
¢do ¢ pela igualdade N 14) e se aplicarmos depois a
propriedade aditiva de ¢, se fizermos tudo isso, entdo
obtemos de 25) uma soma algébrica que tem o compor-

() Caso a combinacio «,B,...,p ou m,,m,,...,m, seja a de todos os
niimeros 1,2,..., N, deve atender-se & convengdo que a intersec¢do vazia
coincide com Q.
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tamento seguinte: O modulo de cada parcela é um dos
termos do segundo membro de 26), o numero de parcelas €

2 NG, 2V-r=(142)V -2V =3N_9o¥
N

1=n=<

e as combinacdes de indices my,ms,...,m, contidas numa
certa colec¢do «,f,...,p sdo tais que cada uma delas fornece
uma parcela igual ao produto de (—1)"~! pelo valor de ¢ no
conjunto A4 caracterizado por «,f$,...,p € que a classe for-
mada por todas elas faz contribuir o valor de ¢ referido com

um numero de parcelas igual a 2 ,(,=(1+1)—1 e com
1=n=r

um coeficiente numérico igual a 2 (-1 . ,C,=1—
1I=n=r

—(1—1)=1. Posto isso, basta atender a igualdade

NNC,- (2r—D)=[(2+1)YV—1]—-[(1+1)¥N—1]=8V—2¥

v
P
1=r=

para concluirmos que os segundos membros de 26) e de 25)
assumem o mesmo valor. Fica assim completada a demons-
tragdo de 25).

Alternativa para a deducio de 25). Primeiro, a férmula 1),
a aditividade de ¢, a igualdade N 18 ), as propriedades N 9)
e a alinea 8) de N XXXII dédo a relagado

¢ (A1U Az)=9 (A1) +9(Ar N A2)=0 (A1) +¢ (Ae— (AN A2))=
=9 (A1) +o(A)—0 (41N As),

a qual prova 25) no caso particular NV =2. Em seguida, passa-se
ao caso geral, fazendo a hipétese (indutiva) que a formula 25)
¢ verdadeira quando se muda NV para N—1X2 e inferindo
dai que ela continua a ser verdadeira para /V pelo processo
que vamos descrever: A proposicdo N II, a aplicacio de 25)
ao caso da unido de dois conjuntos situados em @, a férmula
N 14), a hipétese indutiva, a proposi¢do N IV e a propriedade
N 9 4) ddo a igualdade
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(U Ad)=e( U A)+9(dn)—3( U (4«NAx)=
1=u=N 1=a=N-1 1=az=N-1

= _2 [(=1r 2 o(Am N A, N+ N Aim,)]+-
1=n=<N-1 1=y <y < -+, == N—1
+o(4dn)+

+ 2 [(—1 z 0 (Ams N+ N A, N An))y
1=u=N-1 1=my <y <or<lmp, = N~1

cujo ultimo membro pode transformar-se no segundo membro
de 25) por reagrupamento conveniente dos seus termos.
%

Seja A o conjunto genérico dum corpo & e seja 3(4) um
conteudo-¢ definido em &. Entdo, escolhida qualquer colecgio
numerzvel de conjuntos A,e@(n=1,2,3,...) tais que
U Adue@e 9(A4s)<+oo para cada n, vale a formula seguinte:
3

27) o( U Aa)=
1=now
=li 3 — 1)1, 2 0 (A NN A )
w}go ;1§n§1\7 [( ) 1=my <<ty = N ?( : n n ")J:

Demonstracdo de 27). Atendendo as duas relacbes 6bvias

U 4.=Bxy?t, quando Nt,e |y By= U A,
N

1=n= 1=V » 1=nl»

podemos afirmar que 27) é uma consequéncia imediata de 25)
e da continuidade inferior de o, esta assegurada por II.

27. Completagdo dum espago de medida. Aqui s6 inte-
ressam funcdes aferidoras que sdo (pelo menos) simplesmente
aditivas. Para que qualquer dessas fungées possa beneficiar
da maior parte das propriedades atras referidas, é preciso
que ela se encontre definida num corpo, por outras palavras,
¢ preciso que ela seja um conteudo. Todavia, o conceito de
contetdo definido num corpo, digamos @, ndo garante que
certas propriedades importantes, validas para cada colecgiio
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finita de conjuntos situados em &, se possam estender ao
caso duma infinidade numerdvel de conjuntos. Remedeia-se
o inconveniente apontado pelo lado dos conjuntos, escolhendo
para @ um corpo-s ou, equivalentemente, escolhendo uma
quase-medida, e pelo lado dos valores do conteado, supondo
que ele é aditivo-¢ ou, equivalentemente, supondo que ele é
um conteudo-a.

Em face do exposto, fica bem patente a eficiéncia notavel
que cabe ao conceito de medida definida num espa¢o men-
suravel ou, equivalentemente, que cabe ao conceito de
espaco de medida.

O assunto de que estamos a tratar pode ser encarado
doutro ponto de vista. Com efeito, é natural que o leitor
possua uma ideia intuitiva, mais ou menos precisa, acerca
do que se possa entender por uma (fun¢io) medida. Assim,
talvez valha a pena indagar se a nogdo abstracta de medida
aqui descrita apresenta as caracteristicas, as quais o mero
senso comum deseja atribuir 2 um ente matematico para lhe
reconhecer o titulo de medida. E o que vamos fazer em
seguida.

Consideremos o espago de medida [Q(w), & (4), r(4)].
Entdo, a propriedade da medida « de ser definida para qualquer
A significa que todo o conjunto a que se chama mensurével
tem efectivamente medida, As convencdes quanto aos valo-
res da fun¢do p nido sé estabelecem um campo de medidas
com infimo nulo e com supremo finito ou infinito, como
também excluem a hipétese de cada conjunto mensurdvel
ter medida infinita, a qual seria destituida de interesse.
A propriedade aditiva-s da fun¢do p assegura o seguinte:
Se um conjunto tiver um ntmero finito ou uma infinidade
numeravel de partes mensuraveis e disjuntas duas a duas,
entio a medida do todo sai igual 2 soma das medidas das
partes. A alinea a) de N XXXIII confere medida nula ao
unico conjunto destituido de pontos w. A alinea ) de N XXXIII
mostra primeiro que qualquer conjunto mensurivel tem
medida ndo inferior 2 medida de qualquer outro conjunto
mensuravel nele contido e ndo superior 2 medida do espago
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inteiro e mostra ainda que a divisio dum conjunto em duas
partes mensurdveis e disjuntas atribui a uma das partes
uma medida igual 4 diferen¢a entre as medidas do todo e da
outra parte, isso desde que nfo surja a indeterminagio co— oo,
A alinea d) de N XXXIII afirma que qualquer unifo finita
ou numerdvel de conjuntos mensurdveis tem uma medida
igual ou menor do que a soma das medidas das parcelas,
explicando-se a alternativa da medida da unifo ser menor
pela possibilidade de existirem pontos w comuns a varias
parcelas. A proposicdo N XXXIV ndo s6 garante a sobre-
ponibilidade dum numero finito ou duma infinidade numera-
vel de medidas, como também permite afectar dum factor de
escala qualquer das medidas sobrepostas.

Quanto as propriedades das medidas referidas nas pro-
posicoes N XXXV a N XXXVII' e II a IV, estas nio podem
classificar-se de intuitivas, mas devem considerar-se muito
oportunas do ponto de vista analitico-matematico. Final-
mente, as férmulas 25) e 27) tornam-se, por vezes, comodas
para o cdlculo da medida duma unido.

"
ES ®

Apesar da boa eficiéncia que reconhecemos ao conceito
de espaco de medida, este ainda ¢ susceptivel dum melhora-
mento. Pois, dado um espago de medida [Q(w),Q(4),p(4)],
pode acontecer que dois conjuntos mensuraveis 4, e 4,54
tornem u(A4;)=p(4:) e que o conjunto O sujeito a relagdo
A,cQOc A4: ndo tenha medida, isso pela razédo simples de néo
ser mensuravel. Tal possibilidade contraria o pedido natu-
ral que um conjunto compreendido entre dois conjuntos com
medida comum deve ter a mesma medida dos conjuntos que
o enquadram. Propomo-nos anular esta pequena deficiéncia
do conceito de medida através das consideragbes que seguem.

Seja @ c@ a classe formada por todos os conjuntos
mensuraveis A4' tais que p(A)=0 e seja &7 a classe formada
por todos os conjuntos /V tais que NcC.A4'e@.® Entio, se

() Evidentemente, Oe g, por causa de N XXXIII o).
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A,ed (n=1,2,3,...), a relagio 0Lu(UA)LIZu(A,)=0,
assegurada por N XXXIII &), permite concluir que Uy 4, eq.

Este facto e a proposigdio N XII mostram que a classe dos
conjuntos AUV € o corpo-¢ completivo de @ com respeito a
classe @. Como p determina inteiramente &, vamos repre-
sentar o corpo-¢ referido pelo simbolo @. e vamos dar-lhe o
nome de corpo-c completivo de @ com respeito 4 medida p.
Nesta conformidade, [Q(»),&u(4 U V)], abreviadamente (Q, %),
diz-se espaco mensurdvel completivo de (Q,Q) com respeito a
medida p. Mais, a operagdo que transforma & em @ ou
(Q,q) em (,Qs) chama-se operacdo completiva e também
completacdo de @ ou de (Q,Q) com respeito a medida .

Posto isso, consideremos a funcio u que faz corresponder
a qualquer conjunto AU/N o ntmero dado pela igualdade

2) £ (AUN)=p(A4).

A fungdo g encontra-se univocamente definida em toda
a classe Qu, pois se tivermos 4ye @, NoC Ape q' e Ay No=
=AU, entdo propriedades familiares dos conjuntos dio

AnAoc A, Asc(ANA)U (A U 4p),

donde concluimos, atendendo a 28), a N XXXIII &) e a 25),
gue sai

B (AUN)=p (A) = (AN Ap)— 2 (Ao)=5 (Ao U Vo).

Mais, a fungso » é nao-negativa, devido a ¢ (A)x0, e é tal que
#(0)=p(0+ 0)=p.(0)=0< +o. Além disso, dados os conjun-
tos 4, N,eQ(n=1,2,3,...) disjuntos dois a dois, a relacdio
N,c A, com A,e&@ para qualquer #z, implica primeiro
2N, cUd4,, com UA,ed, e implica depois a igualdade

FE (AU N =5 (S AIUE V) =4 A)=2E(4,U ),

isso devido a NIl e a 28). Em face do exposto, inferimos que
a fun¢do p € uma medida definida no espago mensuravel
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(Q,Q.), 2 qual vamos chamar medida completiva de p. Quanto
a [Q(w),a(AUN),5(AUN)], abreviadamente (Q,u,p),
vamos dar-lhe o nome de espaco de medida completivo de
(Q,&,r). Finalmente, a opera¢do que transforma g em ¢ ou
(Q,a,us) em (Q, Qu,p) vamos chamar-lhe operagdo completiva
e tambeém completacdo de p ou de (2,@,u), conforme o caso.

Vimos em N XII que a relagdo gC&u é sempre correcta
e que Q=@yu, quando e s6 quando 7Cg. Neste dltimo caso
usa dizer-se que & e (A}, Q) sdo completos com respeito d medida
u; nos demais casos & e (Q,Q) dizem-se incompletos com res-
peito a p.

Pondo N=0 em 28), tiramos a igualdade p(4)=p(4), a
qual prova que a medida completiva v respeita a medida
oviginal p. sobre a classe @. A medida p e o espago de
medida (@, &, ) coincidem com os seus completivos, quando
e s6 quando 7. Neste ultimo caso, ¢ e (€,Q,p) dizem-se
completos e, nos demais casos, eles dizem-se incompletos.

Exemplo 36. Considere-se o espaco de medida (Q,&,p),
onde L é o espag¢o formado pelos cinco nimeros 1, 2, 3, 4 e 5,
onde @ é o corpo-¢ formado pelos quatro conjuntos O, |{3,4|,
{3,4/"e Q e onde ¢ é€ a medida que toma os valores 0 e 7 nos
conjuntos |3,4] e {3,4|7, respectivamente. Evidentemente,
nio s6 sai p(0)=0 e p(Q)=1, como também a medida p €
incompleta. Aqui a classe o7 é formada pelos quatro conjuntos
O, {3}, |4} e {3,4] e o corpo-c completivo &, compreende os
quatro conjuntos situados em @ e mais os quatro conjuntos
18}, 14, 18]” e {4{~. Finalmente, a medida completiva ¢ coin-
cide com p sobre & e toma os valores 0, 0, 7 € 7 nos quatro
conjuntos de Q. exteriores a &.

*
* *

O completivo dum espago de medida fica livre da defi-
ciéncia apontada no inicio da segunda parte desta secgio se
abstrairmos dalguns casos em que os conjuntos que enqua-
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dram tém ambos medida infinita. Para reconhecermos esse
facto, consideramos, em primeiro lugar, a proposi¢io seguinte:

V) «Dados um espago de medida (Q, &, p) e o seu com-
pletivo (Q, @u, 1), suponha-se que 4, e 4:>A4, sio dois con-
juntos mensuraveis com a mesma medida ¢ e que Q é um
conjunto arbitrario, enquadrado por 4, e A4,. Entéo, sai a
relacdo

2) Oe@u e u(d)=5(0)=7 (),

quando e s6 quando existem na classe & dois conjuntos A
e Ay tais que dicAhcQcA.c 4> e que p(Ay—A3)=0. Em
particular, a condi¢do p(Ay)=p(4:)<+oo €& suficiente para
que saia a relacdo citada.»

Demonstragdo de V. Suponhamos em primeiro lugar que
existem conjuntos 4; e A, com as propriedades referidas no
enunciado. Entdo, ¢ 6bvio que sai p(4)Lp(4s) Ly (o) =p(Ay)
e que se tem Q=A3+(Q—As), com Q—AsC A;—.As, donde
Qe e p(Q)=p(ds)=p (A)=p ().

Suponhamos agora que se verifica a relagio @). Sendo
assim, existem na classe & dois conjuntos 4 e A' tais que
QO=AUN, com Ncd' e p(A)=0. Se fizermos

As=AUA: e A=Ay (4N,

as propriedades do simbolo de inclusio < dio A,CA;C
cPcA,c A, onde A4;, A, e A;—4; pertencem a ¢, isso
pelas propriedades dos corpos-o. Mas, a férmula 1) e a defi-
ni¢do de diferenca entre dois conjuntos implicam A— 45—
=[A"N(4'N4:)]— (4 N A)c A Portanto, sai a igualdade
p(Ay—As)=0.

Finalmente, a condi¢do p(4;)=p(4.)< -+ e as conven-
coes As=41 e Ay=A, forcam #(Ai—As)=p (As)—p(A)=0,
ficando assim completada a nossa demonstracio.

Observagdo. Se o conjunto Q referido em V pertencer a @,
entdo a relacdo @) sai verdadeira, conforme pode ver-se ou
directamente ou pondo 43= 0= A, no enunciado de V.
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O objectivo referido no texto introdutério de V alcanca-se
agora por meio do corolario seguinte:

V') «Dados os espagos de medida da proposigio V,
suponha-se que M; e M.DAM, sio dois conjuntos situados
enm @u e dotados da mesma medida 2 e admita-se que QO
¢ um conjunto arbitrario, enquadrado por M; e M,. Entéo,
sai a relagéo

a) Ocan e F(M)—i(Q)—i (M),

quando e s6 quando existem dois conjuntos M3 e M,, ambos
situados em &y, tais que MicMsc Qc My M: e que

v (My— Mz)=0. Em particular, a condig¢do o (M) =p (Me) <. +oo
é suficiente para que sala a relagdo citada.»

Demonstracdo de V'. Escolhido arbitrariamente um con-
junto R tal que RcMeQu € que u(M)=0, a relagio 6bvia
M=AUYN, com deg, Ncd'eq e n(A4A)=0, da RcAU A,
isso devido as propriedades do simbolo —, d4 mais (M) =
=p(A), isso por causa de 28), e da ainda u (AU .4)=0, isso
devido a 25) e a N XXXII 4). Logo sai p(R)=p(0)=0, o que
prova que o espago de medida (Q, @u,p) € completo® ou, por
outras palavras, que a medida ¢ coincide com a sua comple-
tiva, a qual vamos designar por ;:1

Posto isso, vamos aplicar V, tomando (Q,&u,pr) para
espaco de medida inicial e escrevendo ;:2 e Mi(l=1,2,3,4)
respectivamente nos lugares de p e de 4;. Nesta conformi-
dade, o nosso corolario ¢ uma consequéncia imediata de

;:[I e de é"lju?zay..

(+) Acabamos de estabelecer a proposicio seguinte:
Dado um espaco de medida, o sew completivo sai completo.

Para demonstrarmos esta proposicdo, seguimos, na esséncia, uma
exposicdo feita por J. P. CarvaLuo Dias,
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Terminamos esta secgdo com a proposicio seguinte:

VI) «Uma medida ¢ nula, significativa, finita, infinita,
normada, ndo-normada, finita-c ou infinita-s simultaneamente
com a sua medida completiva.»

Demonstracdo de V1. Considere-se um espago de medida
©,@,r) e o sen completivo (Q,&u,x). Entio, a relagdo
conhecida @C @y, a proposicdo N XXXV, a igualdade 28) e
as defini¢des de func¢fo aferidora normada e nio-normada
provam imediatamente toda a tese do enunciado, com excep-
¢do da afirmacdo que g é necessariamente uma medida
finita-c se u o for.

Suponhamos agora que pz é uma medida finita-> ou,
equivalentemente, que existem conjuntos 4,e (n=1,2,8,..),
disjuntos dois a dois e de soma igual a Q, tais que sai
#(A,) < + oo para cada » admissivel. Seja qual for #, tem-se
Ay=A.UN,, onde A,eq,N,CA, e p(A4,)=0 e onde 28)
déa p(A.)<4eo. Doutro lado, a proposi¢io N II, a formula 1)
e as propriedades dos corpos-¢ mostram que

Q=2 4)UCN,)=C A)+N, com (EA4)NEN,)=

—N=0-(34,)eq.

Dai, de N 7' @) e de N XXIII tiramos

Ncud, e 0Lp(V)LZp(A,)=0.

Portanto, a alinea ¢) de N XXXV for¢a a medida  a ser
finita-c e assim a nossa demonstragio fica terminada.

28. O problema da extensio de fungdes aferidoras a medi-
das e a sua solugdio no caso particular dum espago mensuravel
com decomposigdo irredutivel. Dados o espaco Q e as duas
classes ndo-vazias @ e @' C@, respectivamente de conjuntos
genéricos ACQ e A, consideremos as fung¢des ¢(A4) e ¢ (A
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ambas numéricas reais, a primeira definida em & e a outra
definida em &'. Caso se tenha a relagio

o(A)=4(A) para qualquer A,

diz-se que a funcdo (A4 é (obtida pela operacio de) restri-
cdo da funcdo v(4) a classe @' e que a fungio 2(4) é (obtida
pela operacao de) extensdo da funcdo Y (A" a classe Q.

Exemplo 37. Dados um espago de medida (2, @, p)eo
seu completivo (2, @u, 1), vé-se imediatamente que x é ex-
tensdo de p. ao corpo-¢ completivo Qu e que u é restrigdo de
¢ ao corpo-s designado por &.

Sao muito simples as propriedades da operagdo de res-
tricdo.™ Com efeito, qualquer fungio ¢(4) admite uma e uma
s6 restricdo a classe @', a saber a funcio 9(A4"); se 2(A4) for
uma fun¢io aferidora, o mesmo sucede a 2(A4'), desde que @’
abranja algum conjunto de valor finito; a propriedade adi-
tiva simples ou generalizada de ¢(4) transmite-se a 9(4').
O tunico inconveniente que pode surgir é que & ndo sai
necessariamente um corpo ou um corpo-¢ quando & o for.

Caso @' seja subclasse propria de @, entdo qualquer fun-
¢do ¢ (A") admite muitas extensdes a classe &. Nesta confor-
midade, oferece interesse especial supor a fun¢io J(4') adi-
tiva ou aditiva-¢ em @' e procurar extensdes suas a classe &
que sejam também aditivas ou aditivas-¢. Em particular, se
a funcgio ¥ (4') for aditiva-c em &' e se @ for um corpo-g,
convém indagar da existéncia de medidas que estendam a
fun¢do dada a @ e, no caso afirmativo, construir uma dessas
medidas, a inica se o numero delas sair igual a 1 ou alguma,
escolhida segundo um critério vantajoso, se o numero delas
sair superior a 1. E 0 que vamos fazer a seguir, em certos casos
particulares importantes.

() Nio pode haver confusdo entre esta operacio de restricdo a uma
classe ndo-vazia € a operacgdo de restricdo a um conjunto nio-vazio atras
considerada.
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*
£ *

Suponhamos que o espago mensuravel (,&) admite a
decomposi¢do irredutivel 9={4,,4:,...,4.,...| e que $ €
uma funcdo numérica real ndo-negativa definida na classe 9.
Entio, a tinica medida que estende a fungio ¢ a classe @ ¢é
a funcdo p(4) que se anula no conjunto vazio e que verifica
a igualdade
29)  p(Autdut -t At )= (Au)+ Y (Au)+ o (An )+

p

para qualquer coleccdo de indices #(,7s,...,7,,... extraida
da colecgio dos valores # possiveis. Com efeito:
A fungdo p(4) € aferidora e estende a fun¢do ¢ a classe
@, porque p(0)< +o e porque a hipotese 4 =0, a proposicio
N XIV e a igualdade 29) implicam a existéncia duma e duma
s6 colec¢do de conjuntos A, e tais que p(d)=p(24,, )=
»

=24(A4,,)x0, com p(A)=V(4) se 4 pertencer ao dominio
2

de 4. A fungio p(A) ¢ também aditiva-¢ porque, dados os
conjuntos nio-vazios A,eQ(m=1,2,8,...), disjuntos dois

a dois, pode por-se 4,,=24,,,,, onde cada conjunto 4, .
P
pertence a 9, de modo que 29) e N II' conduzem a relagéo

20 ()= 2 (5 (i p) = (3 (5 )= (3 )

Finalmente, se p*(A4) for uma medida que estenda a fungdo
¢ a classe @, tem-se p*(0)=0 e nenhum conjunto A4=0
pode tornar p*(4)=£u(A4) porque, se tal sucedesse, a igual-
dade entre conjuntos ja referida 4=24,, e a aditividade-o

, ; ?
das funcées p* e » davam Zp*(A4,,)5+ 2 p( A4, ), donde a rela-
» ? »
¢do absurda §(4,,)= ¥(4.,) para algum valor de p.
Observagdo. A medida p(A4) definida a propésito de 29)
sai finita-s, quando e s6 quando J(A4.,)<<+e para cada »

admissivel. Na realidade: Se (4,)<<-+o para cada =, sai
v (An)< +oo para cada n e a alinea ¢) de N XXXV prova que
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‘v é medida finita-o; se J(A4,)=+c para n=#', suponhamos,
entdo a irredutibilidade da decomposicio 9 impede 4, de
ser soma de conjuntos de medida finita e, portanto, mostra
que p € uma medida infinita-c. :

29. A extensdo de conteidos-c a medidas, Muitos pro-
blemas importantes implicados pela teoria da medida envol-
vem o tipo de extensio mencionado no titulo desta seccio.
Dai o interesse que oferece a proposi¢do seguinte, a qual
vamos chamar teorems fundamental sobre a extensdo de con-
teddos-5 a medidas.

VII) «Dados um espaco Q, um corpo € de conjunto
genérico GC e um conteddo-s, seja ¢(G), definido em @,
considere-se a func¢io ®(C) que se obtém fazendo corres-
ponder a cada conjunto CCQ a relagio

a) 9(C)= inf Z29(G,), onde o infimo se refere a todas
UG,DC =

as colecgOes finitas ou numerdveis de conjuntos G,e @
tais que U G,DC.
n

Entdo, € corpo-c a classe @ daqueles conjuntos ACQ que
satisfazem a relacio

b) (O (ANCY+P2 (A4 NC) para qualquer C.

Mais, a restri¢do da fun¢do ®(C) a classe @ é uma medida
completa, digamos ¢ (A4), que estende 9(G) a & e que sai nula
ou significativa, finita ou infinita, normada ou nio-normada
e finita-o ou infinita-s simultaneamente com a fun¢io ». Além
disso, qualquer medida p*(A4) que estenda ¢(G) a @ verifica
a relacgio

c) p*(A)Lp(A) para cada 4,

em particular, se a func¢io 2(G) for finita-¢, entdo p(4) sai a
tunica medida que estende ¢ a @.»
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Demonstracdo de VII. Procederemos por fases: Primeiro,
vamos deduzir certas propriedades tteis da funcio ¢ definida
por a); depois, vamos provar que a classe & € um corpo-s,
o qual contém @; em seguida, vamos concluir que a restricdo
da funcio ® a ¢ é uma medida completa, a qual estende a fun-
cdo o e tem o tipo dela; por fim, vamos demonstrar o periodo
final do enunciado.

1. fase. Dado CcQ, a relacio Qeg, vista em 17 a),
garante a existéncia de conjuntos G, que tém as proprieda-
des referidas no enunciado ou, como também se diz, que
formam uma cobertura de C extraida de @; portanto, a relacdo
a) do texto define um e um s6 nimero ®(C)>0. Mais, se C
for um conjunto G, ndo so6 ele serve de cobertura de si mesmo,
como também N 9 4) e N 14) forcam G=U(GNG,) para

n

quaisquer conjuntos G, que formem uma cobertura de G
extraida de @, donde, atendendo & relacdo a) do texto, a pro-
priedade 17 ¢) e as alineas d) e ) de N XXXII, a desigualdade

9(G)Lo(G)£ inf 29(GNG.£ inf 33(G)=2(G).
UGiDG n HG»zDG"

u

O que precede e a relagdo 2 ( O)=0<+co, esta devida a
N XXXII a), mostram que @ (C) é uma funcdo aferidora que
estende o (G) a 29.

Caso se tenha Cc DcQ, qualquer cobertura de [ extraida
de @ é também uma cobertura de . Portanto, a relacdo )
do enunciado d4 a nova relagédo

30) @(C)«® (D), sempre que se tenha (D

Escolhidos um numero ¢>0 e uma colecgio finita ou
numeravel de conjuntos C,,CQ (m=1,2,3,...), a relagio a)
faz corresponder a cada C,, conjuntos G,.,»€ @ (2=1,2,3,...)
que o cobrem e que satisfazem a 29(G,.,,)£®?(C,)+¢/27. Como
N II d4d U C..C U G, s, concluimos que (U C,)L 2 0(Gon,n)L

(72



TEORIA DA MEDIDA E DA PROBABILIDADE 125

£LZ29(C,)+¢, donde, por : ser arbitrério, a relagdo

31) O®(UC.) £ 29(C,) para qualquer colecgio finita ou

numeravel de conjuntos C,,CQ.

Se @2 for um corpo-g, entdo a igualdade ®(0)=0 mos-
tra que a restri¢do da fung¢io ®(C) a classe @' sai uma funcio
aferidora. Caso se tenha a relagio

82) ®(2C.)x29((,) para qualquer colec¢do finita de

conjuntos C, e @' disjuntos dois a dois,

a restricio mencionada ndo s6 sai uma quase-medida, isso
por causa da rela¢do 31), como até sai uma medida, isso por
causa da relagdo 381) e da alinea ¢) de N XXXII, ambas
aplicadas a uma coleccdo numerdvel arbitrdria, formada por
conjuntos C,, e €' disjuntos dois a dois.

2.2 fase. Escolhidos de qualquer modo CcQ e Geg, a
relacdo a) do enunciado, as féormulas N 9) e N 14), as pro-
priedades dos corpos, a aditividade da func¢do ¢, as proprie-
dades triviais dos infimos e a igualdade N 14) permitem
escrever

O(C)= inf 29(GNGu)+ (G NG)=
u n

n =
n

= inf [39(GNG)+3e(G NGH>  inf  2e(GNG)+

UG:oC n U(GNG)DGNC =
n Hn

i inf S3e(G NGNO(GNC)+® (G NC).

U(G™NG,)D67NC =
"

Concluimos que qualquer conjunto situado em @ satisfaz a
relagdo 4) do enunciado. Portanto, sai gC&.

() A uma funcdo aferidora definida numa classe @ que & corpo-s
chama-se medida exterior se ela atribuir valor nulo ao conjunto vazio e se
ela verificar as relagdes 30) e 31) para quaisquer conjuntos C,D>Ce C,
pertencentes a @ Portanto, a fungio ®(C) do texto é uma medida exte-
rior definida em 2.
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Caso AcQ verilique a relagio 4), entdo N 5) mostra que o
mesmo sucede a A", Por outras palavras, 4e& arrasta 4 eq.

Se escolhermos qualquer colec¢do finita de conjuntos
A,eqn=1,2,...,7) e se substituirmos, em 4) do enunciado,
primeiro C sucessivamente por C, por 4N C e por 4iNCe
depois A4 sucessivamente por A, por 4 e por 4, entdo 31),
"N 9), N 14), N 15") e N 10 @) ddo a desigualdade

P(C)n0 (AN C)+0 (AN C)nb (Ao (AN O+
+2(A:N(A:NCH+2 (AN (AN C))+
FY(AN(ANCP2O (AN A)HAN A+ (AT N 4)]N O+
+O(AiNA)NC)=2 (A UA)N )+ (AU A NC),
da qual concluimos primeiro 4,y 4:e & e depois, recorrendo

ao método da indugdo finita e a propriedade associativa da
unido, U .4, €@, de modo que @ é um corpo.

n
Se escolhermos qualquer colec¢do numeravel de conjun-
tos 4,eQ(n=1,2,8,.-.), a férmula 1) e as propriedades dos
corpos permitem estabelecer a igualdade

Ud,=2 4,, com Ai=4, e Ay=Ain--n A4, nA.eq para u>1.
n n

Pondo agora 4+ 45+ .-+ A,=B,1, qualquer » da (U4, C
CcBre@, de modo que &) e 30) conduzem 2 desigualdade

33) @(C)x9(B,NC)+2(UA)NC),

valida para C e #» arbitrarios.

Doutro lado, se escolhermos um indice #>>1, se substituirmos
os conjuntos C e 4 da relagdo 4) respectivamente por B,NC
e por A4, e se recordarmos as propriedades N 9) e a igual-
dade N 14'), entfo tiramos primeiro ®(B,N C)x®(B,.N C)+
+@(4,NnC) e depois, pelo método da inducio finita, a desi-
gualdade

84) PB,NON(ANCY+P (AN C)+---+D (4.0 C),
vélida para C e 7 arbitrérios.
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Posto isso, as desigualdades 33) e 34), a relagdo 31) e a igual-
dade N 14') ddo o resultado

P(C)=Z2e(ANnC)+2(UA) NC=ZP(UA)NC)+O (U4 nC),

0 qual prova que @ ¢ um corpo-s, ficando assim completada
a 2.2 fase da nossa demonstragio,

3.2 fase. Pondo C=Q em 34), alcan¢a-se um caso par-
ticular que reproduz a relagdo 32) na hipotese ¢'=q, a saber

®(2 4,)>2®(A4,,) para qualquer colecgdo finita de con-

juntos 4, e @ disjuntos dois a dois.

Portanto, as fases 1.2 e 2.* da nossa demonstragdo provam
que p(4), a restricio de ®(C) a @, é uma medida que es-
tende 9(G) a @.

Se A'eq anular a medida p e se N¥cQ for um subcon-
junto qualquer de A4, entdo a igualdade ®(A4')=0, as pro-
priedades N 9 @) e N 1 4) e a relagio 30) ddo primeiro
(NN C)=0 para qualquer C e ddo depois a relacio 4) do
enunciado, com /N em lugar de 4. Logo Ne@ ou, equiva-
lentemente, @=@Qu; por outras palavras, a medida p(4) €&
completa.

Porque u(G)=9(G) para qualquer G e porque, em parti-
cular, u(Q)=0(Q), tiramos de N XXXV e das definicbes de
func¢do aferidora normada e nio-normada que a medida p(A4)
sai nula, significativa, finita, infinita, normada ou nio-nor-
mada simultaneamente com a func¢io ¢(G) e que a medida
(A) sai finita-c se a func¢io 9(G) o for.

Admitamos agora que a medida ¢ (4) €é finita-c ou, equi-
valentemente, que existem conjuntos A,eQ(p=1,2,8,...)
disjuntos dois a dois, de soma igual a Q e tais que @ (A4,)< +oo
para cada p. Entdo, a rela¢do @) do enunciado faz correspon-
der a cada A, conjuntos G,,,€§(¢=1,2,8,...) que o cobrem
e que satisfazem a 2¢(G,, )<< +o. Como a proposigio N II,

q

a renumeragio dos G, 4, a férmula 1) e as propriedades dos
corpos permitem escrever
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Q=24,=UGy,,=UG,=2G;, com Gi=G, e G,=
? Piq r r

=GiN---NGaNG,e@ para r>1,

concluimos de NIV, de N9 a) e de NXXXI[d) que o(G))< + o
para cada » admissivel. Logo a funcio ¢(G) sai finita-z e fica
completada a 8.2 fase da nossa demonstragio.

4.2 fase. Seja p* uma medida definida no corpo-s desi-
gnado por &@,a qual partilha com a medida ¢ a propriedade
de estender a funcio ¢ a &.

Caso um certo conjunto A torne p*(4A)>p(4), sai
#(A)< 400 e podemos fixar um numero positivo s<p* (4)—
—u(A). Entdo, a defini¢do da funcio p, a relagdo @) do
enunciado e a alinea d) de N XXXIII provam a existéncia
de conjuntos G,e@ que cobrem A e que verificam a desi-
gualdade

p*(A)>0(A)+e>2p* (Gu)xp™ (U Ga),

a qual é absurda em face da alinea 4) de N XXXIII. Portanto,
a relagdo ¢) do enunciado ndo pode deixar de ser correcta.

Suponhamos agora que a funcio ¢(G) é finita-c ou, equi-
valentemente, que existem conjuntos G, e @ disjuntos dois a
dois, de soma igual a Q e tais que 9(G,)=p(G,)=p*(Gp)< +
para cada p. Caso um certo conjunto 4 torne p* (A)<u (A),
a propriedade N 9 4), a igualdade N 14'), a aditividade-c das
medidas e a alinea ) de N XXXIII dao a relagido

pr(d)=2p (4n Gz»)<f k(AN Gy,

com p(ANGy)<+oo para cada p,
da qual concluimos que existe um conjunto G, que satisfaz
a desigualdade p* (4N Gy)<p (AN G,) e que, portanto, conduz
a nova desigualdade
+ 00> (Gp— (AN Gp)) > p* (Gp)— (AN Gp) = (G — (AN Gy)),

um resultado absurdo em face da rela¢io ¢) do enunciado.
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Portanto, sai p* (A4)xp(4) para qualquer 4 e fica completada
a 4.2 fase da nossa demonstragio.

Acrescentamos um exemplo relativo a doutrina exposta.

FExemplo 38. Se Q for o espaco dos numeros naturais,
se @ for o corpo-c formado pelos dois conjuntos O e Q e se
o for a medida completa definida em (Q,@) pela igualdade
5(Q)= + o0, entdo sai ?(O)=72(0)=0 e ®(C)=-4-co para qual-
quer C=0, a classe & coincide com 29 e 2 medida completa
v(A) identifica-se com a funcio ®(C). Note-se que cada uma °
das funcoes o(G) e n(A4) é infinita e infinita-¢ e que qualquer
das funcées v, (4) referidas na observacio anexa a N XXXVII'
é vma medida completa, infinita e finita-c, 2 qual estende
o(G) a & e é distinta de p(A4).

E3 E3

Segue uma proposi¢do que tem o seu interesse proprio
e que vai facilitar algumas deduc¢des posteriores.

VIII) «Atribua-se a cada um dos simbolos @, @,9(G), &
e p(4) o mesmo significado que no enunciado de VII e su-
ponha-se que & € um corpo-¢ tal que gCHCa.

Nesta conformidade, seja qual for o contetudo-s designado
por o, cada conjunto .4 determina um conjunto Ked com
as propriedades ACK e p(A)=p(K). Se a fungio »(G) for
finita-c, entdo a cada A corresponde também um Ke df com
as propriedades ADK e pu(A)=p(K).»

Demonstragdo de VIII. Escolhido um conjunto 4, as
propriedades da medida p, a relacio @) de VII, a convengio
que os conjuntos K, pertencem a & e as propriedades dos
infimos dio a desigualdade

p(A)= inf Zp(G.)x inf 2p(K)> inf p(UK)>p(A),
UG, o4 =» UK, D4 = UK,od 5

n 7 7

”

da qual tiramos a igualdade u(A4)= K@nf p (UK, onde UK,
UK,D 4 7] ”n
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pertence sempre a &, isso por causa das propriedades dos cor-
pos-s. Entdo, dado um nimero ¢>0, podemos fazer correspon-
der a cada inteiro positivo ¢ um conjunto X, com as pro-
priedades

85) AcKjedt e p(d)Lup(K)Lp(4)+eq.

Dai e da relacio

Ac N Kj=Ked, com KCKj para cada g,

1=g9<=

esta devida a 18 ¢), a NIV e a N 9 a), concluimos que é
exacta a primeira afirmacgdo feita no enunciado.

Posto isso, se a funcdo ¢(G) for finita-¢, existem conjun-
tos G,e@(p=1,2,3,...) tais que fGP=£2 e 1 (Gp)<+co para

cada p. Entdo, escolhidos um conjunto 4 e um indice p, as
convengoes G,=(ANGp+A4, e p(ANGy)=¢, e as proprieda-
des das medidas ddo a relagdo p(A,)Lp(Gy)<Lp(Ay)+¢s, na
qual a hipétese ¢,=0 forca o sinal da igualdade e a hipétese
¢, >0 institui o caso particular de 85) que se obtém fazendo
g=1, A=A4,, ¢=¢, e K{=0G,; de qualquer modo, inferimos
que existe um conjunto K, e ¢ com as propriedades 4,c K,c G,
e v (Ay)=u(K,). Portanto, a relacdo 6bvia A=2(4NG,), as
#

propriedades das medidas e a convengio X(Gy—K,)=K per-
mitem escrever a igualdade ?

H(A)=§H(Aﬂ Gp)=f[# (GJ’J)*H(AP)}:-EH(GP_KP):#(K):

onde K e g, por causa das propriedades dos corpos-¢, e onde
Kc A, visto que G,—K,CGy—A,= AN G, para cada p. Fica
assim completada a demonstracido de VIIL

Passamos para um corolario de VIII, a saber:

VIII') «Seja K o conjunto genérico da classe & citada
no enunciado de VIIL. Entdo, a medida completiva de ¢ (X)
sal uma restri¢cdo da medida p(4), a qual restricdo coincide
com 1 (A) se a funcio »(G) for finita-c.»
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Demonstracdo de VIII'. Vimos em VII que a medida p(4)
é completa e admitimos as hipoteses de VIII, pelo que #C @
€ um corpo-¢ ou, equivalentemente, u(X) é uma medida res-
tritiva de u(A4). Logo pertence a & qualquer subconjunto V
dum conjunto K'e Jf com a propriedade p(K')=0 e, portanto,
é subclasse de & a classe i dos conjuntos KUV ou seja o
corpo-c completivo de & com respeito 2 medida p(K). Mas,
a igualdade 28), as propriedades dos corpos-o, as alineas 4)
e ¢) de N XXXIII e a formula 1) mostram que a func¢io x com-
pletiva da medida u(K) faz corresponder a cada conjunto
KUN o numero dado pela igualdade

FEUN)=p (K)+p (K- AN)=p (KU N).

Consequentemente, a medida completiva de p(K) € a restri-
c¢ao de pn(Ad) a classe JpC .

Suponhamos agora que a fun¢io o(G) € finita-o, de modo
que a proposicdo VII obriga a func¢io u(4) a sair também
finita-o. Entdo, escolhido um conjunto A4, existem conjuntos
A,e@n=1,2,3,...) tais que 2 4,=A4 e p(A4,)<+  para

cada ». Além disso, a proposicdo VII faz corresponder a
cada A, dois conjuntos X, e K, ambos pertencentes a 7,
com as propriedades K,cd,c K, e p(K,)=p(An)=p(Kj)<too.
Logo a parte final de V e as propriedades dos corpos-c déo
Ae 3. ou, equivalentemente, Qcdfp. Como Jpc@, vem Q=
Concluimos que a medida completiva de u (&) coincide com
¢ (A4), ficando assim terminada a demonstragio de VIIL.

Observacdo. Se fizermos @=J7 no exemplo 38, a medida
p(K) sai completa e, portanto, a sua medida completiva néo

coincide com wu(A).

*
L #®

Os resultados até agora alcancados nesta secgio permi-
tem resolver comodamente o problema da extensio dum con-
teado-¢ definido num corpo @ a uma medida definida no
corpo-s gerado por @. Com efeito, vale a proposicio seguinte:
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IX) «Atribua-se a cada um dos simbolos Q,@,9(G), &
e u(A4) o mesmo significado que no enunciado de VIIL

Entdo, se a classe 5 de conjunto genérico /7 for o corpo-
gerado por @, tem-se HCG e a funcio p(H) ndo s6 sai uma
medida que estende ¢(G) a &, como também sai nula ou
significativa, finita ou infinita, normada ou nfo-normada e
finita-¢ ou infinita-s simultaneamente com a fun¢io ¢. Mais,
qualquer medida p*(/) que estenda 9(G) a b verifica a relagio

a) p¥(H)£Lu (H) para cada H,;

em particular, se a func¢io ¢(G) for finita-s, entdo ndo pode
haver duas medidas diferentes que estendam o a 5. Final-
mente, a medida completiva de p (/) sal uma restricio da
medida ¢ (4), a qual restrigio coincide com p(A4) se a fun-
cdo o for finita-s.»

Demonstracio de 1X. Todas as dedugbes que vamos fazer
sdo consequéncias muito simples das consideragdes produzi-
das a prop6sito de VII e de VIII.

Para comecar, a 2.2 {ase da demonstracio de VII e a defi-
ni¢do que se deu para o corpo-s gerado por @ provam a rela-
¢do de inclusio goHCel. Logo a restrigdo da fungdo p(4)
a classe 5 é uma medida que estende v(G) a . Depois, o
mesmo processo usado na 3.* fase da demonstracio de VII
leva a conclusio que a medida p (/) sai nula, significativa,
finita, infinita, normada ou nfo-normada simultaneamente
com a fun¢fo v e que essa medida sai finita-c se a fungdo o
o for. Doutro lado, caso a medida (/) seja finita-o, a ali-

-nea ¢) de N XXXV forca a sua extensdo u(4) a sair finita-¢

e, consequentemente, a proposicdo VII forca a funcéo ¢(6) a
sair também {inita-o.

Mais, como a 4.* fase da demonstracio de VII se aplica,
em particular, aos conjuntos 4eH, a relacio @) do enunciado
€ certamente correcta e, no caso duma fung¢io »(G) finita-g,
a funcdo p (/) nio pode deixar de ser a tinica medida que
estende o a oA.

Finalmente, a parte do enunciado que diz respeito a com-
pletagdo da medida p. (/) reduz-se ao caso particular de VIII'
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que se obtém fazendo J=o». Estd pois terminada a demons-
tragio de IX.

Observacdo. Guardamos para mais tarde a apresentagdo
dum exemplo em que o contetdo-g, definide em @ e desi-
gnado por o, € infinito-c e admite varias extensées, diferen-

tes umas das outras, 2 uma medida definida em 5.

Fechamos esta sec¢do com uma proposicdo que permite
tratar o problema da extensio dum contetido-¢ finito-¢ e
significativo a uma medida, reduzindo-o ao problema analogo
relative a certos conteudos-g finitos especiais. Ei-la:

X) «Atribua-se a cada um dos simbolos &,8,9(G),a e
v.(A4) o mesmo significado que no enunciado de VII, supo-
nha-se que o(G) é um contetdo-o finito-o e significativo e
estabeleca-se a igualdade entre fungées

a) 9 (G)=c1- 91 (G)F ez 22 (G)+ -+ 95 (G)+ -,

onde cada simbolo ¢, representa uma constante positiva, onde
cada simbolo o, (G) significa um contetido-s normado e onde
o numerc de parcelas do segundo membro iguala 1 ou o,
conforme a fun¢io o(G) for finita ou infinita. Entdo, verifi-
ca-se a igualdade entre fungées

b)  p(A)y=cr-pi(A)+ce-pe( A+ (At

onde, dado p, o simbolo p,(4) representa a (Gnica) medida
que estende a fungio ¢,(G) a classe Q.»

Demonstracdo de X. Antes de mais nada, a proposi¢io
N XXXV' garante que existem constantes ¢, e fung¢des o,(G)
com as propriedades descritas no enunciado. Depois, esco-
lhida uma das fun¢des 2,(G), a proposicdo VII faz corres-
ponder uma e s6 uma medida p,(A4), a qual estende 0,(G) a &
(e saicompleta e normada). Em seguida, a proposi¢do N XXXIV
mostra que o segundo membro da igualdade 4) € uma medida
definida em @, a qual se reduz a o(G) para qualquer con-
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junto G, isso por causa da iguzldade @). Finalmente, a altima
parte de VII prova que a medida 2¢; - p,(4) ndo pode deixar

S g . ? . . .
de coincidir com a medida p(4), ficando assim terminada
a demonstragio de X.

Observacdo. Se a classe & de conjunto genérico K for
um corpo-¢ tal que QCHCQ, entlo basta restringir a 3 cada
uma das medidas p(4) e p,(A) da igualdade &) de X para
que saia a nova igualdade

w(K)=cr-pr (K)o po(K) 4o Hep - pp(K)+ -

Esta conclusio vale, em particular, quando se substitui K por
H, o conjunto genérico de b ou seja do corpo-¢ gerado por §.

30. Restricio dum espaco de medida a um subespacgo
mensuravel. Seja [(o), @(4), »(4)] um espaco de medida e
consideremos o conjunto mensurdvel O'==0 como subespago
de Q. Entdo, as relagbes p(ONQ)=0< +wo, ANQ'CcONQ =
e 18 g) mostram que a restricio da medida ¢ {4) a4 classe dos
conjuntos ANQ' é uma funcio aferidora aditiva-c em todos
os casos e € uma medida quando e sé quando Q'=Q.

A funcgido p|Q' ou (abreviadamente) p' determinada, para
qualquer restricdo A|Q', pela igualdade

36) p (A1) =p (4N

faz corresponder um e um sé numero nio-negativo, finito
ou infinite, a toda a restricdo dum conjunto 4 a Q'®). Esta
funcdo sai uma medida, pois a restri¢io da classe ¢ a Q' é
um corpo-o, a relacdo 36) e a alinea @) de N XXXIII dio
p (0)2N=0<+ e 5 a), 36), N 14) e N XXXIII ¢) mostram
que quaisquer conjuntos 4, |Qe@|Q' (n=1,2,8,...) disjun-
tos dois a dois satisfazem a igualdade ™

¢ (240 | Q)= (U )| )= (3(AN Q) =2 ¢! (4, | 2).

(*) Atenda-se a 4 a).
**)  As consideragdes feitas no exemplo 6 mostram que a seguir &
necessario por o simbolo U no segundo membro.
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Posto isso, representamos o espago de medida (Q[&2, Q' p')
também pelo simbolo abreviado (,&,u)|Q e chamamos-lhe
vesiricdo do espaco de medida (2,8 ,p) ao subespaco mensurd-
vel Q' ou (espaco de medida) (2,4 ,p) dado Q' ou (&,Q,p) na
hipdtese (de se verificar) Q' ou ainda (Q,&,p) sob a condicdo
(de se verificar) Q. Quanto a medida p'(4|Q’), designamo-la
por restrigdo da medida p(A) ao subespaco mensurdvel Q' ou
por (medida) n(A) dado Q' ou por p(A) na hipotese &' ou ainda
por u(A4) sob a condigdo Q. Note-se que sio bem distintos,
pelo menos em geral, os conceitos de restricio duma medida
v(A) a um subespago mensuravel Q' e de restricdo dessa
medida a uma classe de conjuntos, mesmo que esta tenha
ANL por conjunto genérico.

Ed
* Ed

A proposicdo seguinte relaciona, em certos casos, o com-
portamento duma medida com o da sua restri¢do a um sub-
espaco mensurdvel.

XI) «Dados o espago de medida (Q,@,p) e um subes-
paco mensuravel de Q, digamos (/) entdo a restricdo da me-
dida ¢ a Q' herda de p qualquer das propriedades de ser nula,
finita, finita-c ou completa.»

Demonstracdo de XI. A alinea 4) de N XXXII implica
a desigualdade p(A4NQ)Lr(A4) para qualquer 4eqQ. Dai, de
N XXXV, de 36) e do exemplo 6 resultam todas as afirma-
¢bes feitas no enunciado, salvo aquela que diz respeito a me-
didas completas.

Suponhamos agora que a medida ¢ é completa ou, equiva-
lentemente, que 97c@ (veja-se o texto anterior ao exemplo 86).
Se extrairmos do espago Q|Q' qualquer conjunto /V|Q' com
as propriedades N|Q'cCA|Qe@|Q e p'(A4[Q)=0, a rela-
¢Ao 36) e a relagio obvia V¥ NQ'cANQ dio V¥ NQ'eq, donde®
N|Qeq|Q. Concluimos que a medida p'(4|LQ) é completa
e fica assim terminada a nossa demonstrag¢éo.

Por fim, vamos veér dois exemplos.

(*) Atenda-se a 4 b).



186 PEDRO BRAUMANN

Exemplo 39. Retomemos a medida g do exemplo 36,
a qual € significativa e incompleta. A sna restricio a Q'=13,4|
sai nula e incompleta, enquanto a sua restrigio a Q'=11, 2, 5/
saj significativa e completa.

Exemplo 40. Retomemos a medida p do exemplo 35,
a qual é infinita e infinita-¢. A sua restricio a Q'=13! sai
finita-s e até finita.

Observagdo. O leitor reconhece, facilmente, que a ope-
ragdo de restri¢do a um subespacgo mensuravel escusa de con-
servar a propriedade duma medida de ser normada e a de
ser ndo-normada.

31, Marginacio dum espago de medida com espago margi-
nal de valor prefixado. Seja (Q,&,p) um espaco de medida e
suponhamos que Q ¢ o produto dum ntmero finito ou duma
infinidade numeravel de espacos Q,(»=1,2,8,...). Fixado
um nimero finito «>0 e repartida a colec¢do dos numercs #
por duas colecg¢des nio-vazias, a primeira constituida pelos
numeros /4,i>k,j>1,--. e a outra constituida pelos ntimeros
vy$>7,1>s,---), podemos considerar o espaco mensuravel
D) ,ir,..0=(Q,@)s,s,s,... que se obtém marginando (Q,&)
com respeito a O, ><Q; <Q;>... e podemos definir ai uma
funcdo ., ;i ;,...) OU 4p, s,,... através da relacio

37) abinyi g,y (Coiygy ) =0 (C)fa,

onde C representa qualquer cilindro situado em @ e de gera-
trizes paralelas a Q,,Q;,Q;,--. e onde Cu ;.. =Ci s s, .
significa a base de Cem Qi ;,..)=Q > Q> Q<. .60

A funcio definida por meio de 87) faz corresponder um
e um s6 numero nio-negativo, finito ou infinito, a cada con-

(*) Repete-se a nota™ & pagina 35.

(+n) Talvez valha a pena notar que a relacdo 37) nic consente a esco-
lha 2=0. Caso se tenha p(0)<<+oco, a escolba a=-4 oo é possivel, mas
destituida de interesse.
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junto situado na classe G, =G s,... OU seja no COrpo-g
que € a base de & em Ou,q, .., toma o valor O se pusermos
C=0 ou, equivalentemente, se igualarmos Cyu 4,..) 20 con-
junto vazic dc &,i,..y e sal aditiva-s porque, dados os con-
jun’fos C(;H-, iy C @i,y €8@n,i, ..y, disjuntos dois a dois
e formando uma colecgfo finita ou numerdvel, a propriedade
12" 4), a relagdo 87) e a aditividade-¢ da medida p implem a
igualdade

G5

1By

atin iy (Cmyey oy Clinys, oy =

=gk, i,...) \(C(/z,z',...)>“{‘:ﬁ.fj-(h,z',‘..)(C((lz,;',...ﬂ RaE

Portanto, a funcio referida é uma medida definida no
espaco mensuravel (Qu.i..y, @a.:..), com a propriedade
aliin i, S, e, . ) =1 (Q je; a essa medida corresponde o es-
pago de medida (Qp ... vy Clnysy oy s 2lin 4,..) ©ou, usando uma
notacio abreviada, ;(w,L,17V>(/:;7;',__.)=9:<Q, S Brysy .

As consideragGes que acabamos de produzir tornam plau-
sivel o costume de chamar a funcdo .pu,s,...) medida margi-
nal de p e de chamar ao ente representado pelo simbolo
AR, Q, e, e, ..y espaco de medida marginal de (&, & ,p), sendo
qualquer deles marginal no espago Qg ;.. de valor prefixado
igual @ 1(Q)/«. Nesta conformidade, a operag8o que trans-
forma pem ,pp s, yo0u (Q,8,p) em A2, Q1) e, . recebe ©
nome de marginacdo de pn ow de (Q,@,p) com respeito ao espago
Qp><Q; <+ ¢ ao factor de escala «.

Se tomarmos numeros positivos ag,0;, -+ tals que o pro-
duto ape o; .- sai absolutamente convergente e de valor igual
a «, entdo as propriedades dos produtos absolutamente con-
vergentes e as da marginagio de espagos mensuraveis nio
s6 mostram que a marginacfo de (,&,p) com respeito ao
espago Oy ><Q;><. .- e 2o factor « € equivalente a uma sucessio
de operagdes simples do mesmo género tais que a primeira
elimina o espago-factor Q, e faz dividir por «;, a segunda
elimina o espago-factor Q; e faz dividir por «;, etc.,, como
mostram também que as operagdes simples mencionadas
gozam das propriedades comutativa e associativa.
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Observacdo. Se mudarmos p para » em 37), entfo consi-
deragbes muito semelhantes as acima feitas permitem esta-
belecer que a func¢do »(C) sai uma medida, sob a condicio
de se fixar « e de se escolher uma medida para a funcio do
primeiro membro. Nesta conformidade, a correspondéncia
biunivoca estabelecida na observacio final da sec¢do n.° 9
(desprovida de qualquer interferéncia nas bases dos cilindros
envolvidos) permite igualar u(C) a expressio

@ aptn,i, . (Cliyi, ) =7 (Caiy >} (R Qi<+ ),

a qual se afigura, de certo modo, andloga 4 regra elementar
que identifica o volume dum cilindro recto vulgar com o
produto da altura pela area da base. Veremos mais tarde
(digamos no exemplo 72) que tal analogia passa a ser, prati-
camente, uma identidade se partirmos do espaco de Borel
a 3 dimensdes, dotado da medida de Lebesgue, se (Q,&, )
for a restrigdo desse espaco de medida ao subespago Q con-
tundido com o produto de duas rectas reals multiplicado por
um intervalo linear fechado Q;, se escolhermos para C um
cilindro recto vulgar de geratrizes paralelas a O3 e se « for
o valor que a medida de Lebesgue linear atribui a Q.

A proposicdo seguinte relaciona, em muitos casos, o
comportamento duma medida com o da sua marginal.

XII) «Sio dados o numero finito e positivo « e 0 espago
de medida (Q,4,p), onde Q coincide com o produto dos espa-
cos Q,(n=1,2,3,...). Se a medida ¢ for nula, significativa,
finita, infinita, infinita-c ou completa, o mesmo sucede a sua
marginal no espago Qi ;....) de valor prefixado igual a p(Q)/a.»

Demonstracdo de XII. Para obter a parte da tese que
diz respeito a medidas nulas, significativas, finitas ou infi-
nitas, basta fazer C=Q em 37) e atender as alineas a) e &)
de N XXXV,
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Se a fun¢do 4wy, s, .. for finita-c, a alinea ¢) de N XXXV
€ a propriedade aditiva-s das medidas permitem escrever a
igualdade

1H(Iz,i,...)(§2(lz,x‘,..4))=1H(h,z‘,...)(C(lz,z',...))—’r‘oc!i(h,z',...)(C'(h,i,...)>+ Ty

onde as parcelas do segundo membro sfo todas finitas e
onde Qu 4.y =Cu,i,..)+ Clh,:,..)+ . Portanto, a relagio 37)
e a propriedade 12' ) ddo a igualdade

p)=p(C)+p(C+ -y

onde as parcelas do segundo membro sdo todas finitas e
onde Q=C+C'+ ..., ficando assim provado que a func¢ido p
sai finita-o. Consequentemente, se a medida p for infinita-o,
o mesmo sucede & medida 4pp, s, .-

Suponhamos, finalmente, que a medida ¢ é completa.
Entdo, as hipéteses

Naiy. s CTCh,i,.. )€ Ch 4y € apn,i,..)(Can,iy . ) =0,

juntamente com 12' @) e com 37), impdem as relagdes NcC
e Ne@, donde Ny ;.. y€Cn,s,..,. Quer dizer, se a medida ¢
for completa, o mesmo sucede 4 medida .4 ,;,...). Fica assim
terminada a nossa demonstracgio.

Seguem dois exemplos.

Exemplo 41. Tomemos para Q o produto de Q;=]1,2|
por {,=0,, para & o corpo-¢ formado pelos quatro conjuntos
0,Q,4={(1,1)} e 47 e para p a medida definida em (Q,Q)
pelas igualdades p(A4)=1/2 e p(A47)=0. Sai Q=0 @ =0, A1},
Y21 (01)=0 e qpp1 (21)=1. Note-se que a medida p é incom-
pleta e ndo-normada, enquanto a medida pp; resulta com-
pleta e normada.

Exemplo 42. Tomemos para espago Q o produto de
Q={1,2,...,m,...{ por Q=0 consideremos o espago men-
suravel (Q, Q) provido da decomposic¢io irredutivel infinita 9
cujo conjunto numero m (m=1,2,3,...) € formado por todos
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os pontos de & que tém uma ou duas coordenadas iguais a
#w e ndo tém nenhuma coordenada superior a m e institua-
mos em (Q,&) a unica medida p que estende a & a funglo |
dotada do valor 1 em qualquer conjunto extraido de 9. Sai
Quy=Q, C=10,, 8} ,102(0:)=0 ¢ 10 (£5)= +oo. Neste caso, a

medida v é finita-c e a medida ,p» sai infinita-o.

g

Fechamos esta seccfo tratando dum caso especial da
marginacio de medidas que foi o primeiro a ser abordado
e que pode resolver-se por uma técnica elementar, a qual
torna plausivel o nome atribuido a operagfo em estudo.

Seja (2,&,u) um espago de medida finita ¢ significativa,
suponhamos que Q é o produto dos dois espagos Oy e (& e
designemos por & e @ os corpos-¢ constituidos pelos cilindros
que pertencem 2 classe & e que tém geratrizes paralelas a
Q. e a £, respectivamente. EntZo, dadas duas decomposicdes
de (Q,Q), a primeira formada por conjuntos B, B, B",..., situa-
dos em &8, e a outra formada por conjuntos C,C",(",..., situa-
dos em @, qualquer delas finita ou infinita, dadas essas decom-
posicoes, a propriedade 18 ¢), a definicio de decomposicdo e
a igualdade N 14') mostram que a classe

2=1BnC,BnC.BnC,...,.BnC,BnC, BN, ..
...;B”ﬂC,B”HC',B"DC”,...§(“),

uma classe de intersecctes obviamente n&o-vazias, é também
uma decomposicdo de (&, @),

Posto isso, passamos a trabalhar com a restrigio da
medida g a classe § das somas extraidas de 9. Nesta confor-
midade, a aditividade-¢ da funcZo p, a igualdade N 14'), a
propriedade N 9 4) e a relagdo 37) lazem corresponder a

( A formula 10) permite por a igualdade do texto sob a forma
equivalente
D= ;Bi ><Cﬂ7Bl><C(_>;B1><C!z/7"')Bj ><C27B/1 XC!J:BiXC%
- Bl Coy B Cly B> Cllee- .
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todo o numero finito e positivo { as igualdades

e (BAC)+5(BAC)+u(BNCT)+- =Bgpi (By),
e (BNCO)+pBNC)+p (B N+ =0 gm(Bl),

.....................

Semelhantemente, a todo o nimero finito e positivo 7 corres-
*
pondem as igualdades

e(BNO)+pBNO)+pB'NO+ - =7y (Ca),
(BﬂC)JrMB'ﬂC)JrH(B NCY+ =752 (CH)

......................

Além disso, verifica-se a igualdade
Bopit (BY+E-pea (B)+ - =p(Q =772 (C)H77p2(CH+

a qual pode servir para controlar os calculos anteriores.
Segue um quadro sinéptico do estudo que acabamos
de fazer.

] ; 1
R : ! : s0-

B |\ B | B i . Q

C MBHQEMEHC)<BﬂCﬁ 2 (G
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1 H ma
H 1

i i
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A linha inferior ou «marginal> do quadro contém os
produtos do factor de escala § pelas medidas marginais
g1 (B1), gua (BL) , gpa (BY),... e a coluna direita ou «marginal»
contém os produtos do factor de escala y pelas medidas
marginais ypz (Cy), 192 (C8),yu2 (CY), - .

A proposi¢do N XXII esclarece que 9,=|B;, B}, B, --| é
uma decomposi¢io do espaco mensuravel marginal (&,Q) e
que Dp={C3,C4,(Y,---! é uma decomposicio do espaco men-
surdvel marginal (Q,@). Em particular, se 9, [ou 9] for uma
decomposi¢io irredutivel, as consideracées feitas a volta da
igualdade 29) provam que o conhecimento de f{ou 7] e dos
numeros da linha [ou coluna] marginal do quadro é inteira-
mente suficiente para definir 2 medida marginal de u no
espa¢o Q[ou Q] de valor prefixado igual a p(Q)/f [ou x(Q)/y].
Claro que o caso particular referido pode alcancar-se todas
as vezes que (Q, Q) admitir uma decomposi¢do irredutivel.t)

Observacdo. Se tomarmos a convengio p (Q):Byl(ﬂl)-
- qu2 (), sugerida pelas reflexdes feitas na observacio que
precede a proposicio XII, entdo a igualdade p(Q)=0 g (@)=
=7 42 (&), imposta por 37), mostra que Q, fica com o valor
prefixado y e que Q, fica com o valor prefixado .

32, A multiplicagio de espagos de medida. Dada uma
colecgdo finita ou numeravel composta dos espagos de medida
(L4 (@n)y G (An)y pn(A2)] (n=1,2,8,...), pde-se, muitas vezes, o
problema de construir uma medida p, que deve ficar definida
no espaco mensuravel [Q (o), @(A4)]=0[Q, (v.), 2. (4,)] e que,

escolhido qualquer conjunto 4 com a forma dum produto de
conjuntos 4,, deve atribuir-lhe um valor igual ao produto
das medidas p, dos conjuntos-factores. Depois levantam-se
as questdes suplementares de averiguar se y, é a tinica me-

() Tudo quanto se disse da pagina 138 para ca é extensivo ao caso
em que (2,&,w) sai um espa¢o de medida infinita. Outro tanto ja ndo
sucede com a observacio seguinte.
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dida nas condi¢bes referidas e de relacionar as propriedades
mais relevantes de p, com as das medidas p,.

Quando uma medida p,(4) resolve o problema posto,
diz-se que ela se obtém por multiplicagdo dos factores p,(Ax)
ou que ela ¢ igual a um produto das medidas p,(A.) € escre-
ve-se a igualdade simbédlica

88) g (A)= o1 ()< (A< - < (A<,

a qual pode abreviar-se para
38 po(A) =Ty, (As) ou go=p><Xpa><r oo X py>< oo

ou ainda p,=0p,.

Nesta conformidade, o espago de medida [Q(w), @(A4), ¢, (A)],
abreviadamente (Q,Q,y,), interpreta-se como o resultado duma
multiplicacdo dos factores (Qu, Gy, ps) O como um produto dos
espacos de medida (Qu,Clu,py) € escreve-se a nova igualdade
simbdlica
39) (Q,Q,p)=E, y )< Qe Gy p)>< -
"'X(Qn,any#n)x"'zn(gn)an}[‘l’O'

Vistos esses preliminares, vamos apresentar uma pro-
posicio que contém os esclarecimentos essenciais relativos
a multiplicacio dum numero finito de espagos de medida.

XIII) «Escolhidos quaisquer espacos de medida (%, &, ptn),
com o indice # a correr de 1 até um ndmero natural N, é
sempre possivel multiplica-los, desde que se isente a multi-
plicagdo (ordinaria) dos valores das fun¢Ges p, de indeter-
minac¢bes eventuais mediante a convengio 0:.oco=co.0=0.

Além disso, se A4 for o conjunto genérico da classe I @,
I==a=N

e se, dado #, todo o simbolo A4, , de primeiro indice (natural)
m representar um conjunto situado em &,, entdo a fungéo p
determinada pela relacdo

@) p(d)= o inf 20 0 (Al

11 NAm'n)DA m 1=Zn=N
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onde o infimo se refere a todas as colecgdes finitas
ou numerdveis de produtos do tipo indicado tais que
a sua uniio contém A,
sai um produto das medidas p,, caracterizado pelo facto que
qualquer outro produto p* das mesmas medidas satisfaz a
relacdo

b) b (A)Lp(A);

em particular, se a fungfio p for finita-s, entdo ela sai a unica
medida que pode obter-se por multiplicacdo dos factores p,.
A medida ¢ supracitada resulta nula se algum factor g,

for nulo. Nos demais casos, a medida p. sai sempre significa-
tiva, sai finita se cada um dos factores p, for finito, sai infi-
nita se houver um factor p, infinito, sai normada se e s6 se
O p,.(Q,)=1 e sai finita-c na hipdtese de cada uma das

1==n=N
medidas p, ser finita-c e s6 nessa hipotese.

Finalmente, 2 medida p resulta incompleta se existir um
factor p, incompleto.»

Demonstracdo de XIII. Representemos o conjunto gené-
rico de @, pelo simbolo 4, ou, caso haja necessidade de fazer
distin¢do, pelo mesmo simbolo acrescentado de quaisquer
sinais que se afigurem convenientes. Entdo, podemos definir
uma func¢io aferidora © pela igualdade

40) O (A<} Ay)=p1(Ar) - po () - - - puv (Ay),

onde a convengdo feita no enunciado evita indeterminacdes

eventuais do segundo membro. Doutro lado, vimos, em

N XXVII, que a classe @ constituida pelas somas dum ntimero

finito de conjuntos da forma 4;>< Ay><-.->< 4y € um corpo

gerador do corpo-s igual a N &,=@. Portanto, qualquer
n

medida que estenda a funcdo ® a @, quer dizer, que seja um
produto das medidas u,, deve admitir uma restricdo a g,a
qual sal um contetddo-s definido em @ e sai também uma
extensdo de @ a @.
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Posto isso, dividiremos a nossa demonstracdo em quatro
fases: Primeiro, vamos construir o unico conteudo, seja ¢, que
estende © a @; depois, vamos provar que a fungédo ¢ € um con-
tetido-o; em seguida, vamos usar 0 processo referido na pro-
posicio IX para estender v a medida ¢ que verifica a rela-
cdo a); finalmente, vamos deduzir as propriedades que os
altimos periodos do enunciado atribuem a essa medida p.

1.2 fase. Designemos por a1 a classe dos produtos em que
se encontra definida a funcio aferidora © da igualdade 40), con-
sideremos um ntmero natural arbitrario P e escolhamos quais-
quer conjuntos Ay, < As, p><- -} Ay, =M, 6 9l (p=0,1,2,...,F)
tais que Mo=M,+ M+ ---+Mp. Entdo, a proposi¢ao N VI, a fér-
mula N 15") (devidamente adaptada), a convengio 2P—1=0, as
propriedades dos corpos-c e a igualdade 8') conduzem 2 relagdo

S M= T (U A= T (3 A=

1=p=P 1=w<N 1=p=P 1=9=0
< 0
= b ( 0 Aug)=
1§q1,qe>~--7qj\-§_9 1=n=N
0
= E [ o 2 o ( H A”y?n)}7
1=p=sP A} o Cdipy 43,0, C s, .., AV g © AN,y 1=n=N

onde a igualdade final resulta do facto que, dado p, os corres-
pondentes produtos do tltimo membro saem disjuntos dois
a dois, estdo todos contidos em M, {veja-se N VI] e tém uma
soma que nio deixa de fora nenhum ponto de M, [compare-se
com as consideracbes feitas nas linhas 9 a 14 da pagina 23].
Portanto, a igualdade 40), a aditividade-c de cada uma das
medidas p,, as propriedades elementares dos produtos e das
somas de numeros e a circunstancia que qualquer factor 4,
vazio tem medida g, nula®, tudo isso permite escrever(®s)

() Esta circunstancia implica que o dltimo membro da dltima igual-
dade do texto faz corresponder um produto (ordinario) de medidas p.,, nulo
a qualquer produto de conjuntos repetido.

() Aqui usaremos o simbolo 1 para referir a multiplicagdo ordina-
ria de valores das func¢des p,, salvo no caso em que pode haver confuséo
com 38/} ou seja em que cada factor tem por argumento o conjunto men-
suravel genérico.
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=Y

I
b

ton (A, .)]=
1=94,9s,. ~~:9N§Q 1=n=N

0 Q -
1=p=P 4i,4C4,n Ag,r/:CAﬂ,v AN, g C Ay, p 1=n=N

-----

= 2 0w 2 4,0l= I 0w,

I=p=P 1=a=N AR g, C Ay 1=p=P

Em face do exposto, concluimos que a fun¢do aferidora © ¢
Sinitamente aditiva na classe 977 .

Tomemos agora um conjunto qualquer Ge@ [veja-se o
texto a seguir a 40)] e suponhamos que se tem a férmula

41) Mt s Myt s Mp=G=Mi4 - s Myt o+ My,

onde os conjuntos My=Ay, << A,y € My=A} y<--5< Ay
se situam todos em &7%. Ora, como 10) e 18 ¢) impSem a relacio
MyN M} eon para cada par de indices p e p/, reconhecemos
que N 14), N 9 4) e ¢) e a aditividade finita da funcdo O dio

20 (M) =20 E(MN M)~ 3 O (M, My)=
¥4 ? ? F 25
=30 (3 (MyNM}) =20 (M),
2 ? 4

Em conclusgo, se considerarmos varidaveis o numero natural
P e os conjuntos M, e (p=1,2,...,P), entdo a igualdade
(de definicdo)

42) o(Mi+Me+ -+ Mp)=0 (M) +O (Mo)+-- - +© (Mp)

faz corresponder a cada conjunto Ge @ um ¢ um s6 niimero
020, 0 qual coincide com O (G) na hipotese G e .

Posto isso, escolhamos um ntmero natural arbitrario /&
e quaisquer conjuntos Ge @ (k=1,2,..., H) que sejam dis-
juntos dois a dois. Entdo, pode estabelecer-se a férmula

41') Gh:Mh,1+“'+Mh,ph+"'+Mh,P/, (hzl,z,...,H),

onde os conjuntos M, se situam todos em a7 Portanto, a
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proposi¢io N 1I' e a igualdade 42) mostram que se tem

2 GR=3( 2 M) =2[20 (M p)]=22(Gw).
h Iy ph ko pi h

Concluimos que a funcdo ¢, definida por 42), é um conteido que

estende a funcdo © ao corpo Q.

Admitamos agora que ¢* é também um conteudo que
estende © a @ Seja qual for G, tiramos de 41) e de 42) que
0*(G)=Z20* (M,)=20(M,)=0(G). Consequentemente, a fun¢do

? »

o 6 o unico conterido que estende ©® a @ e esta terminada a
primeira fase da nossa demonstragio.

2.4 fase. O nosso objectivo & mostrar que qualquer
coleccio numerdvel de conjuntos Ghe @(h=1,2,8,...), dis-
juntos dois a dois e de soma & situada em @, verifica neces-

sariamente a igualdade ¢(G)= 2 ¢ (Gu), onde o primeiro
1=h<+ o
membro vale 2 o(M,), isso em virtude de 41), e onde a
1=p=P

parcela genérica do segundo membro vale . Z<P o (M, p1)s
==L

isso em virtude da férmula 41'), suposta valida para qualquer
s natural. Atendendo a proposi¢io IV, a prova que desejamos
fazer compreenderd duas partes bem distintas, uma corres-
pondente & hipotese ¢(G)=-+co e a outra correspondente 2
hipétese o(G)<+oo.

1. parte da 2% fase. Partimos da hipotese ¢(G)=-+oo,
com 5 (Gz)< +oo para cada k. De acordo com a proposigéo IV
e com as consideracdes feitas na introdu¢do a esta fase, €
suficiente mostrar que qualquer conjunto M, ou, com omissio
do indice p, qualquer conjunto M sujeito a 9(M)=+oo pode
decompor-se na soma duma infinidade numerdvel de con-
juntos J,;edn (£=1,2,8,...) tais que ¢ (M)=2¢ (Ji) e o (J)<+e
para cada f. !

Ora bem, fixado o conjunto 3/ de valor infinito, ele esta
certamente contido em G e, portanto, sai a igualdade

M=MnNEG)= 2 (MNMy,,), onde cada conjunto M N M, =
R By P
=1, fica situado em 97 e satisfaz a desigualdade ¢ (/i,5,)<L

£9(My, )29 (Gr)< +oo. Por outras palavras, M serd a soma
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duma infinidade numeravel de conjuntos /,= 4, ,><--- <Ay ,®
(r=1,2,8,...) tais que 9(/,)<<+o para cada . Apesar desta
conclusio, ndo podemos dar por terminada a parte da demons-
tra¢do que estd correndo, pois nio sabemos, presentemente,
se a igualdade ¢ (M)=Z¢(/,) é correcta ou falsa.

Mas, a proposigﬁoyN VII, a férmula 1), as propriedades
dos corpos-c e a igualdade 8') ddo a relagdo

) M= 0 ( U A4,)= T ( 3 A,)=

1=u=N 1=r+w 1=nsN  1=rltw

- 2 (AL < Ab p><- - <Al 1), com ALy =
1=, 7000 N

= A, para qualquer 7 e com Au=As1) -+
N A, i NV A, Aa,y, para quaisquer valores
de n e de 7,>1.

Doutro lado, as igualdades 40) e 42), a propriedade aditiva-¢
de cada uma das medidas p,, a proposi¢cdo N VIe a alinea 4)
de N XXXII permitem deduzir de 48) a nova relacio
48) o(M)= T [ 2 u(d,)]=
1=nEN 1=r+tw

= 2 qo (A/ly"x > Aéﬂ’a > X< A}\Tﬂﬁ\')’ com

1=#, 7oy ey #n+0
0 (AL, r <A, 1<+ X A, ) <9 (A, 7 >< Az 1<+ - <A, 1)
para quaisquer valores de 7y, 7:,...,7y.

Se o conteudo ¢ atribuir o valor e a uma das parcelas do
ultimo somatorio de 438/), entdo haverd valores particulares
dos indices n e 7,, suponhamos » e ¢ (respectivamente), tais
que pq(Aqp)=+oo, facto este que obrigard o valor finito
(/) a sair nulo. Consequentemente, se o(/,)>0 para cada 7,
as relagbes 43) e 48') e a proposicdo N II' mostram que os
conjuntos J:(t=1,2,3,...), 0btidos por renumeracdo conveniente
dos conjuntos Jy, n,....ry= Al <45, ;<< Al 1y sd0 tais que

Jiedll e v(J)<+oo para cada t, M- 2 Jieo(M)=

. <+
= 2 9/
1=t to

i

(). Como se suprimin o indice p de M, ndo pode haver confusio
entre os nossos conjuntos 4, , (#=1,2,...,N) e os conjuntos 4, , consi-
derados no principio da 1.2 fase.
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Vamos agora provar que existem conjuntos J; com as pro-

priedades indicadas, mesmo que se tenha v»([,)=0 para algum r.

Seja qual for 2, representemos por # (%) o elemento gené-

rico do conjunto formado por aqueles valores de » que tornam

v (A,,,)=0, donde, atendendo as alineas a) e d) de N XXXIII,

a igualdade p,( %J)A,z,,.)zo, valida quer a unifio saia vazia quer
yin

nio saia. Pondo agora a férmula

44) U An,a': B} U An,;'zUn,l

1=rl+t y=y(5)

e U, —U,1=Unpz,comn=1,2,..., 1V

a primeira igualdade da relacdo 43) e a igualdade §') permi-
tem escrever a relagfo

44y M= 1 (Uu1+U.)=

I=nl{4»

= 2 (Uh,p< Uz p>< -+ < Un, px)
1=p1spey PN

onde o contetdo ¢ atribui o valor zero a qualquer parcela do
ultimo somatério que tenha (pelo menos) um factor com se-
gundo indice igual a 1. Logo a aditividade finita da fun¢io o da

o (M)= 2 @(Ul,p1><---><va,m->=<p(l<ﬂ<N Us,2)

LS Py, pyE2

e a parte da demonstragio que estd correndo ficard concluida
se conseguirmos decompor o produto I1 U, . (de valor infi-

nito) numa soma de conjuntos pertencentes a 97 e tais que
¢ atribui um valor finito e positivo a cada um deles. Pois,
tal decomposi¢do permitira tratar 1, ; do mesmo modo que

tratamos M na hipétese o (/,)>0 pgra cada 7.

Se # for um dos ntimeros #(1),7(2),---,#(V), a férmula 44)
faz corresponder (pelo menos) um indice » tal que A4,,, fica
disjunto de U,,., donde concluimos que /, sai disjunto de
M U,,s. Este facto e a relagdo 44') envolvem a nova relagéo

2 1, D1 U, s; portanto, as propriedades N 9), a igual-
rEr(1),e. (V) 7
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dade N 14), a igualdade 10), a férmula 44) e a propriedade
N 18 §) permitem escrever a sucessdoc de igualdades

44" OU,.= = [(OU,)NL]=
# rr(l),. (V) m
= 2 (U= Ua, )N Aa,r ] =
reEr(), .o r(N) »
= 2 Ay —(Ua N A, D,
(D007 (N) u

onde as propriedades dos conjuntos /,, dos corpos-¢ e da
fungio ¢, juntamente com a alinea 8) de N XXXIII, sujeitam
cada parcela do ultimo somatério a desigualdade

+oo>0 (L)oo (T [dn,, — (Ui, N4y, )] =1 pn (Au,,)>0.

Consequentemente, encontra-se realizada uma decomposi¢io
de 1 U,,. do tipo que desejavamos alcancgar.
n

2.2 parte da 2. fase. Como nio ha nada para deduzir
no caso ¢(G)=0, partimos da hipotese 0<g(G) <<+ e
pretendemos mostrar, de acordo com IV, que a sucessio
decrescente formada pelos numeros finitos o(Gr+Gpp+---)
tem limite nulo quando /4%e. Se atendermos a relacio
N (Gut Ghr+---)=0, vista na observagiio anexa a IV,

1=h<+®
torna-se suficiente provar o seguinte: Escolhida qualquer
sucessdo (infinita) descendente formada por conjuntos nio-
-vazios F;e@(i=1,2,8,...) tais que F1CG, entdo a hipotese
F= Q F;=0 implica que a sucessio decrescente formada
1=i<+4x

pelos ntumeros finitos ¢ (#7) tem limite nulo quando 71 4o ou,
seguindo uma ideia de ANDERSEN € JEsSEN, a hip6tese ¢ (F))13>0
implica a desigualdade entre conjuntos F=£O.

Vamos dedusziv a dltima implicacdo no caso da funcdo o
atribuir a cada um dos conjuntos M, da formula 41) um valor
0 (M;)>0, valor esse que a igualdade 42) obriga a ser finsto.
Neste caso, a relagio G MO (U A, ,), imposta por 8),

1=as=N 1=p=P
juntamente com as propriedades da func¢io ¢ e com a alinea
d) de N XXXIII, justifica as desigualdades
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0 pu An,p)é1 2 P{'L”<A”z}’><+w (n=1,2,...,V),

U
1=p=P ==

das quais tiramos a relagdo

45) 0< sup p( U Ay py=a +oo,
! 1= =P

=n=N

esta destinada a definir o numero « e a enquadré-lo conve-
nientemente,

Dado um numero natural m tal que 1Lm £V, represen-
temos pelo simbolo ,,@ a classe dos conjuntos que podem
obter-se, somando um numero finito de produtos da forma
A< A< < Ay, e Tepresentemos por 2 o contetido defi-
nido sobre o corpo @ do mesmo modo que se definiu o con-
tetido ¢ sobre o corpo @. Nestas condigdes, s€ »G €@ for um

conjunto sujeito a relagdo de inclusio .G T (U A,,)
m=n=N 1=p=P

as propriedades da funcdo .¢ e a relacdo 45) conduzem a
desigualdade

46) (G O w.( U A, p)Lal—mt1,

m=nN 1=p=P

Escolhamos agora, de qualquer modo, um numero natu-
ral 7. Entdo, a definicio da classe @ permite igualar o con-
junto F;, mencionado no principio desta parte, 4 soma dum

ntmero finito /; de produtos ndo-vazios da forma 11 A%,
1=n=N

(ji=1,2,...,J3). Doutro lado, a férmula N 15) e as conside-
racbes anexas, juntamente com as propriedades dos corpos-g,
mostram que toda a unido U 4., € decomponivel numa
Ji

soma de K;(1 £K;< 2/ —1) conjuntos ndo-vazios A iz
(ki=1,2,...,K) tais que cada um deles pertence a &, e que
qualquer conjunto da unifio ao longo dos j; pode obter-se
pela adigdo de certos elementos da decomposi¢do. Portanto,
se substituirmos cada conjunto A4,; : ; pela soma dos conjun-
tos A% % a que ele é igual, se usarmos depois a igualdade 8
e se aplicarmos ainda a proposigio N II', logo reconhecemos
que existe um numero natural L;>./; o qual permite escrever
a relacdo
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47) F;= 2 (I A4,..), com parcelas todas nio-
1L =L; 10N

-vazias, saindo disjuntos ou coincidentes quaisquer
dois conjuntos 4,,,;,;, que so difiram pelos valores /;.

Ora bem, escolhamos m por forma que 1ZmsN-—1,
consideremos 7 arbitrario, facamos a convencio Fi=F; e
designemos por ,,.1F; o corte feito em F; por um ponto
fixo (wy,m2,...,0.) e I Q,0. Como vale a relacdo

1=n=im

47/) I Anjz',liCF;'C Goc 1 ( U An,ﬁ)y

1=n=N 1=n=N 1<p=P
seja qual for o indice /;, resulta A4, :,C U A, , para
1=p=P
cada /;, isso por causa da proposicio N VI, e resulta mais
maly;c I (U A,,), isso por causa da propriedade

mA1Sn=N  iSp=p
15 a) e da observacdo posterior a 14'). Doutro lado, o texto
intercalado entre 14) e NIX, a relacdo 47), a propriedade 15 4)
e a observagdo citada mostram que ,,;1/; sai igual a ,.F; /o,
e também sai igual & soma (eventualmente vazia) daque-

les produtos I 4, cujos indices /; sdo tais que
myi=n=N .

(01, 02,. . .,w,,,)el<ﬂ< Au,iyn; portanto, ndo s6 ,..1F; pertence
=u=m

a »+1§ e ndo varia quando w,,, suposto varidvel, percorre
um qualquer dos conjuntos 4, ;;, como também, fazendo
9=0; e considerando w,, variavel, o conjunto dos pontos v, que
tornam 4,419 (ulifonm) 20 (27 4+ 1)/(e” - 2741)=3,,.,, seja o con-
junto f,,,;, resulta igual 4 soma de determinados conjuntos
Am,i,1,, SOma essa que tem uma medida u,, (H,., ;). Se designar-
mOSs agora por ,.f;/ A, i, o corte feito em ,./; por um ponto
qualquer o, € 4,, ;,;,, tiramos primeiro, com o auxilio de NI, de

NII' e de NIX e tomando em conta que (wmywmir,. - .,0n)€mF;
implica w,, € 4,,,;,;, para algum valor de /;, a igualdade
48)  wli={ 2 [} (wF | Ay, 1)])
A, i, ,CHy s
T 2 A1}l Ay,
Am,i,liCH;t,i
() O simbolo 4, F; do texto encurta o simbolo F;/(o,,e,,. . .y0,) defi-

nido na sec¢fo n.o 10.
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e tiramos em seguida, atendendo a igualdade 48), as proprie-
dades das fungées ¢, m+19 € v, as f6rmulas 46) e 45) e as
consideracBes feitas a volta de 47%), o resultado

48') mCP (mFi)z 2 [,U-m (Am,i,li) . m»{—l?(sz’/Am,i,l,-)] _i‘
Am,i,liCH)n,i
2 [Hm (Aﬂz,i,l,) . m—i—lcp (sz'/ Am, i,li)]é
A i, CH

éym (Hm, i) - ofVm =+ o - 61n+1 .

Posto isso, caso m=1, sabemos que, escrevendo Ji=1F}
(i=1,2,8,...), a fungGo 9=19 atribui a cada conjunto F; um
valor pelo menos igual a o1 e, caso m>1, vamos admiliv que
existe um ponto (v],03,. .. 001)€ Q< Qa>< o< Qg tal que
a fungdo 9 atribui a cada corte Fi[(o},08,. .. 0 )=uF{ um
valor pelo menos igual @ 3... Entdo, se aplicarmos 48') ao
caso ,F;=,F?{ se representarmos por /1), ; o conjunto f, .
correspondente a ,./; e se tomarmos em conta a igualdade
St - Oy =01/ (27F1 . 1), se fizermos isso tudo, reconhece-
mos que ndo pode ter-se u, (H5,:)=0 e que se verifica a desi-
gualdade &, =d;/(2" . o) L, (H4, ) La, isso seja qual
for . Doutro lado, fizemos a hipétese F;! (quando it 4o0), a
qual implica, sucessivamente, &/ w. b € Hy it Logo a pro-
posicdo Il e a convenc¢do o= ( H,; dio p, (Hu)>en,

1=i< 4

donde HJ=+0,.cQ, . Portanto, existe um ponto w;, e, si-
tuado em todos os conjuntos /;, ; ou, por outras palavras, o
ponto (o, 03,. . .,w5) € tal que a funcdo .49 atribui a cada corte
Fif (0,08, oy b)) =mirFY um valor pelo menos igual @ Opi.

Do que precede, inferimos, por via indutiva, que existe
um ponto (uf,6%,. ..,wN-1) que torna snLne (nf7)=pn (nF?P)Lay
isso para cada 7. Logo a relagdo nF}! e a convengdo nF'=
= N nF? arrastam py (nF20y, donde nF°==OnCQy.

1=i<+w

Consequentemente, existe um ponto wyeQy tal que oye nFY,
seja qual for 7, ou, por causa de NIX, tal que (o], 0},...,0k)e F7,
seja qual for 7. Em suma, sai F'3=0, con forme desejavamos provar.

Para terminar esta 2.° parte da 2.° fase da nossa demonsira-

¢Go, s falta dedusiv que as hipotesesG= 2 Gy e 0<o(G)<+oo
1=sh<4w
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implicam hlim 9 (Gr+ Grpr+--)=0, mesmo que o atribua o
1+
valor zero a alguns conjuntos M, da formula 41)(). Nesta
conformidade, designemos por G, 2 soma de todos os con-
juntos M, tais que 9(M,)=0 e ponhamos G=G,+G,. Entio,
ndo s6 a aditividade finita do contetido ¢ da a igualdade
numérica 9(G)=0(G,), como também as propriedades N 9)
e a férmula N 14') ddo as igualdades entre conjuntos
G.= 2 (G+ﬂGh)eGh-l-GhH-l—'--=[Goﬂ(Gh+Gh+1+'--)H’

1=hl+4w0

+[(G.NGu)+(G, N Gpy1)+---]. Portanto, obtemos a relacio
pretendida se tomarmos em conta que a demonstracio feita
para o caso Go= O garante a igualdade

lim 5((G. 1 G+(G. N Gr)+)=0
+ o

e que a alinea 4) de N XXXII e, mais uma vez, a aditividade
finita de ¢ arrastam a igualdade

2(Gat Gyt ) =2 (G NG +(G, N Grp)+ ).

3.¢ fase. Vimos, nas duas fases anteriores, que a funcio
¢, definida em 42), € o unico conteido-¢ que estende a funcio
©, definida em 40), ao corpo @ de conjunto genérico G, corpo
esse que € gerador da classe §(A)= I Nan (4.). Doutro

1=n=
lado, a proposicdo IX (com a letra @ em lugar de ) esclarece
que ¢ extensdo de 9(G) 2 @ a medida ;:(4) definida pela
relagio

49) p(A)= inf 2 ¢(G,), onde o infimo se refere a
UGro4 m

m

todas as colec¢des finitas ou numerdveis de conjun-
tos G,.e@ tais que UG,,D4,
w

ou, equivalentemente, definida pela relacio @) do enunciado.
Além disso, a proposi¢do IX mostra que qualquer medida @*(A)
extensiva de ¢(G) a & verifica a relagio 6) do enunciado, na

) Ou seja mesmo que a desigualdade final de 45) tenha possibili-
dade de falhar.
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qual ndo pode aparecer o sinal < se a fun¢do p(4) for finita-o.
Portanto, tiramos as duas conclusbes seguinies:

A medida p(A) referida em 49) é um produto das medi-
das p,(4.) (n=1,2,...,V) e qualquer outro produto dessas
medidas nfio pode exceder u(4) em nenhum conjunto 4.
Mais, se a medida u(4) for finita-o, entédo ela sai o tnico pro-
duto das medidas p, (4.).

4.4 fase. Se pusermos II 2,=0, a primeira das con-
1=tn=N

clusdes alcangadas na fase anteriorda [ p,(Q,)=p(Q). Este
1=n=N

resultado, as duas primeiras alineas de N XXXV e a defini¢do
de medida normada provam que a medida p(A4), definida
por 49), sai nula, significativa, finita, infinita ou normada
nas condi¢des referidas no enunciado.

Posto isso, suponhamos que as medidas-factores p, (A4.)
(n=1,2,...,V) sdo todas significativas e fagcamos correspon-
der a cada # certos conjuntos Ay, € du(us=1,2,3,...) tais
que 2 A u=A, e p.(4.)=0. Entdo, a igualdade 8'), a defini-

¢io da funcio ¢ e a propriedade aditiva-c de cada uma das
medidas p,, conduzem a relagio

50) I Ay= 2 (Abu<dbu>< o < Avw), onde

1=u=N gy Unyeeny UN

o( 0 non)= 1 pn(dpw.) Ppara quaisquer
1=nN 1=<n=N

valores de u;,us,...,uy € onde, dado », existe (pelo

menos) um valor de u, que torna u,(4;,.,)>0.

Pois bem, das duas uma: Ou cada uma das medidas g,
¢ finita-o, a hipotese A4,=Q, para cada # e a alinea ¢) de
N XXXV permitem escolher os conjuntos A, ., por forma tal
que pn (A4n.)<+o para todo o par de indices # e #a, cada
um dos valores da fun¢do ¢ referidos em 50) sai finito e, por-
tanto, o conteudo o resulta finito-o; ou uma certa medida p,
¢ infinita-c e a alinea ¢) de N XXXV faz corresponder a qual-
quer escolha dos conjuntos A, (pelo menos) uma igualdade
v (Abyuen)= o0, saindo infinito um ou mais dos valores da fun-
¢io o referidos em 50). Doutro lado, caso alguma medida g,
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fosse infinita-s e, simultaneamente, a funcéo » fosse finita-s,
bastava por Q=G=4M na primeira parte da segunda fase da
nossa demonstragdo para que saisse 9 (M )=+ co, isso por
causa de p,(Q,)=+oco para certo n, e para que pudéssemos
escolher ¢(G)< 4o para cada %, isso por causa da alinea ¢)
de N XXXV nesta conformidade, se tivéssemos ¢(/,)>0 para
cada 7, a hipdtese Il 4,=Q fazia colidir 50) com a finititude
n

de todas as parcelas do ultimo somatério de 43') e, se tivés-
semos ¢(/,)=0 para algam 7, a hipétese 1 4,=110,, [veja-se
k3 n

44)] conduzia a uma incompatibilidade semelhante, desde que
substituissemos os conjuntos /, pelas parcelas do tltimo
somatoério de 44"). Os factos expostos e o segundo periodo
de IX provam que a medida v sai finita-s, quando e s6 quando
cada uma das medidas p, for finita-o.

Suponhamos agora que uma certa medida p, é incom-
pleta; por outras palavras, existe um conjunto (ndo-vazio)
C.edy tal que C,C A4 e p,(A4))=0. Ora bem, se a medida @
fosse completa, a igualdade

Q< > A< Q1< < Q) = 0
e a proposi¢do N VI davam
91>< .. '><Qn——1 > Cnxgn+l><' . XQNG é,

quer dizer, davam uma conclusio incompativel com a propo-
sicdo N XXVII'. Portanto, 2 medida u sai incompleta e esta
terminada a quarta e ultima fase da nossa demonstracio.

Exemplo 43. Sao dados os espacos de medida (Q, @, p1)
e (Q?;@?lf"?)l onde 91=§1’2§=92;¢%=301; 31}7 ;2E)QI§;€[2=
= {0z, Q2,11 (2)=0 e p2(Qs)= +co. Neste caso, as duas medi-
das completas p; e py tém um produto p nulo, o qual resulta
incompleto, pois ha conjuntos contidos em Q,><(, que ndo
pertencem ao corpo-¢ designado por @;><&s. Mas, se substi-
tuirmos a medida p, por outra uf, definida pelas igualdades
#(J1h)=1/2 e pf(Q)=1, o unico produto das duas medidas
completas uf e pg sai infinito, infinito-o e completo.
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Observacdo. Dado o produto [X (x), $(5)] das duas rectas
de Borer [X,.(#,),Ba(By)] (n=1,2), tomem-se as medidas g, (B,)
iguais a +c ou a 0, conforme B, for ou deixar de ser um
conjunto infinito nfZo-numerdvel, e considere-se a medida
v*(B)igual a 4+ ou a 0, conforme B for ou deixar de ser
um conjunto de pontos x={w(,xs) tais que apresentam uma
infinidade ndo-numeravel de coordenadas x; diferentes a cada
uma das quais corresponde uma infinidade ndo-numeravel de
coordenadas x, diferentes. Entdo, p* é um produto u;><p. e sai
diferente do produto ¢ definido pela relacdio homologa de a)
do enunciado de XIII, pois, se escolhermos B igual a recta
de equagio x=ux» [veja-se o exemplo 32], resulta u*(B)=
=0< +oo=u(B) [é impossivel cobrir B com, quanto muito,
uma infinidade numerdvel de conjuntos contidos em rectas
com equacgdes onde se anula ou o coeficiente de x; ou o de x].
Evidentemente, ambas as medidas p* e p estendem a & o
mesmo contetido-¢ definido no corpo formado pelas somas
dum ndmero finito de parcelas do tipo Bi></B5; [compare-se
com a observagdo posta a seguir 2 demonstracio de I1X].

A proposigdo XIII e o texto que a precede permitem-nos
afirmar o seguinte: Dados quaisquer espacos de medida, em
numero finito, existe sempre um produto maximal®™ desses
espagos ou das medidas correspondentes, quer dizer, um pro-
duto que atribui 2o conjunto mensurdvel genérico uma me-
dida pelo menos igual a cada uma das medidas atribuidas
pelos produtos restantes (se os houver). Nesta conformidade,
¢ natural chamar-se multiplicacdo maximal® a multiplicacdo
especial de medidas ou de espacos de medida que conduz ao
produto maximal respectivo.

As duas proposi¢cées seguintes referem propriedades
complementares interessantes da multiplicacdo maximal que
acabamos de definir.

(*) A designagio maximal foi-nos sugerida pelo Prof. Doutor J. Tiago
de Oliveira.
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XIV) «Quando se trabalha com um numero finito de
factores, a propriedade associativa da multiplica¢do de con-
juntos transmite-se & multiplicacdo maximal de medidas e
de espacos de medida.»

Demonstracdo de XIV. Se tomarmos em conta N XXV],
podemos limitar-nos a deduzir a associatividade da multipli-
ca¢do maximal das medidas p, do segundo membro de 40).

Admitamos que 1La<{BLN, facamos @'= 0 @, e

a=n=j

@= 11 @Q,, designemos por g e ¢' os produtos maximais
1=a=N

de todas as medidas p, e das medidas p., patr,...,pg, TeS-
pectivamente, e representemos por p' o produto maximal
das medidas pi,..., a1, gy q,-- -, 2. Nesta conformidade,
a igualdade @i><- - <Xy 1>}XQ <G, 1>< - XAy = mostra que
¢ é uma medida definida em @, a qual sai produto de todas
as medidas p, e, portanto, satisfaz a relacio

51) u"(4)Lu(A4) para qualquer AeQ.

Doutro lado, se 4' for o conjunto genérico de @' e se
fizermos corresponder a A4' um conjunto 4'"=_4;><... >4, ;<
< A< Apy1><--->< Ay, onde supomos fixados arbitrariamente
os factores sem plicas, entdo a definicdo de g, a hipotese da
associatividade da multiplicag¢do de conjuntos, a igualdade 8),
a proposicio N VI as propriedades dos infimos e da funcao
1 e a definicdo de p' ddo a desigualdade

w(A")= int e (o) - v (Aomm)] <
U (Am,lX"'XAm,N)DA” e

é inf 2 [”1 (Al) et thog (Ax-—l) o (continua)
U (Am,"ltx"'XAm’B):)A/ w

i (Am) - “g (Am,ﬁ) AT (AB+1) - pn (Aw)]=
={p1 (Ar) - po1 (Aaa)] - 2 (A) - [opya (Aga) - v (Aw)]=p"" (A",

a qual prova, juntamente com 51), que as fun¢des p e p' tém
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a mesma restricdo a classe dos conjuntos 4" possiveis. Con-
cluimos que p ¢ um produto das medidas wy,..., a1,
Pgi1s-« -y o, donde a relagio u(A)Lpy"(A4) para qualquer A.
Dai e de 51) inferimos a nova relagdo p(A)=p"(A) para qual-
quer 4, ficando assim completada a nossa demonstragéo.

XV) «Dado um numero finito /V de espacos de medida
(Quy @ ypn)(m=1,2,...,N), considerem-se quaisquer N'<<NV
indices 4,i>h, j>1,..., extraidos da colecc¢do dos valores #
possiveis, e admita-se a desigualdade

0<ptn (@) - v () - () -+ =2 oo

Entdo, a marginagdo do produto maximal de todas as medi-
das p, [de todos os espacos de medida (2, ,&,,¢s)] com res-
peito ao espago ;<0 ><Q;><-.- e ao factor de escala « da o
produto maximal daquelas medidas ¢, [daqueles espagos de
medida (Q,,@.,v,)] para as [os] quais n==4,4,7,... »

Demonstracdo de XV. Seja (&,&@,p) o produto maximal
dos V espagos de medida dados e seja (Q',@',p') o produto
maximal dos V—/' espacos de medida referidos no fim do
enunciado. Como a proposi¢io N XXVII” faz coincidir o
espa¢o mensuravel (produto) (2',&') com o espago mensura-
vel marginal (Q,&@)u,s,...), reconhecemos que s6 falta provar
a identidade entre o produto maximal p' e a medida margi-
nal op,s,...), esta introduzida através da relagdo 37).

Para comecar, suponhamos que os indices %,7,... sdo
os /N' primeiros numeros naturais. Nesta conformidade, se
A' for o conjunto genérico de @', a relagdo 37), a proposigéo
XIV e a definigdo da grandeza « ddo a igualdade

- apq,.., v (A)=p Qo< <X Qi Ay =a - p' (A),

a qual prova a identidade desejada.

Finalmente, o caso de indices %,7,... quaisquer pode
reduzir-se ao caso particular que acabamos de analisar, isso
porque a observagio final da sec¢do n.° 9 permite estabelecer
uma correspondéncia biunivoca entre os pontos (w;,ws,ws,. ..)
e 05 pontos ((©n,®iy...),®,i....)) 2 qual se estende a conjun-
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tos, a conjuntos disjuntos, a cilindros, a bases de cilindros,
a classes de conjuntos, a corpos-s e a geragio de corpos-¢
a partir de classes e a qual resolve o assunto, desde que se
atribuam medidas numeéricamente iguais a conjuntos mensu-
raveis transformados um do outro®.

£ =

Por motivos varios, vamos limitar o estudo da multipli-
ca¢do duma infinidade numeravel de espagos de medida ao
caso especial em que os factores sdo todos mormados. Para
comecar, temos a proposi¢io seguinte, semelhante a XIII.

XVI) «Dada uma infinidade numeravel de espagos de
medida normados, estes admitem um e um sé produto, o qual
¢ também normado. O produto referido sai incompleto se
algum dos seus factores for imcompleto.»

Demonstracdo de XVI. Consideremos os espagos de me-
dida normados (Q,, &y, ,p.) (2=1,2,8,...), em namero infinito,
e representemos o conjunto genérico de @, pelo simbolo A4,
ou, caso haja necessidade de fazer distingGes, pelo mesmo
simbolo acrescentado de quaisquer sinais que se afigurem
convenientes. Entdo, podemos definir uma func¢io aferidora
0 pela igualdade

52) ®( H A72>:[J'1(A1)[J“2(A2)Hn(l4n),
1=n+x

onde cada factor do segundo membro é limitado pelo ntmero
1 e onde qualquer das duas multiplica¢gdes goza da proprie-
dade associativa. Doutro lado, vimos em N XXIX o seguinte:
Se considerarmos os conjuntos que podem obter-se, formando

as somas dum numero finito de produtos I 4, tais que
1=n<+w
cada parcela tem quando muito um nimero finito de factores

A, +Q,, esses conjuntos constituem uma classe, digamos

*) Assim, corresponder-se-o medidas marginais e produtos maxi-
mais, conforme se reconhece através das defini¢des respectivas.
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@, a qual é corpo gerador de @= [1I  @,. Portanto, qual-

1=t

quer produto de todas as medidas p, deve ter uma restricdo
a @ que sai um contetdo-¢ definido em @ e que também sai
uma extensio a @ de certa restri¢io de ©.

Posto isso, usaremos um método decalcado do usado em
X1, isto €, dividiremos a nossa demonstragio em gquatro
fases: Primeiro, vamos construir o unicoe conteudo, seja o,
que estende a @ certa restrigdo de ©; depois, vamos provar
que a fun¢do ¢ € um contetdo-s; em seguida, vamos estender
» 2 unica medida ¢ igual a um produto das medidas p,, a qual
sai normada; finalmente, vamos mostrar que essa medida p
satisfaz ao periode final do enunciado.

1.2 fase. Representemos por oI a classe formada pelos

produtos [ A4, que contém quando muito um ntmero
1=nl4»

finito de factores 4, =£Q,, consideremos um numero natu-
ral arbitrério P e escolhamos quaisquer conjuntos M, e a7
(p=0,1,2,...,P) tais que My=M+ Mo+ --- + Mp. Como
vimos, no decurso da demonstracio de N XXIX, a existéncia

dum numero N que torna M,=Ay, ;< <Ay p><( 1T Q)
N=unl+tw
para qualquer p, podemos retomar o cilculo feito no princi-

pio da 1. fase da demonstracdo de XIIl, com M Q, em
N=<nl+to
lugar de cada um dos Ay,, e do unico Ay, ndo-vazio e com

I p.(Q,)=1em lugar do inico nimero uy(AYy,,) ndo-nulo,
N=nl+w ) . .
para concluirmos, como anteriormente, que a fung¢io aferi-

dora ©, definida em 52), é finitamente aditiva na classe 977.
Depois, aplica-se a parte restante da 1.* fase da demonstracdo
de XIII, isso porque subsiste a propriedade que afirma perten-
cer a o a intersec¢do de dois quaisquer conjuntos situados
em o Portanto, a funcio ¢, definida pela igualdade 42), é o
tnico contetido que estende a @ a fun¢do O, quando tomada
em 7. Este contetido sai normado, visto que atribui o valor 1t
ao conjunto Q= I Q,.
I=nltw
2.« fase. Pretendemos deduzir a igualdade o (G)=

= 2 o(Gy), onde G é qualquer soma dum ndmero finito
1=h<ltow
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de conjuntos M,edn(p=1,2,...,P) e onde os G; sdo quais-
quer conjuntos situados em @, disjuntos dois a dois e de
soma igual a G. Como a igualdade 9(G)=+co estd fora de
causa, podemos limitar-nos a adaptar a 2. parte da 2.2 fase
da demonstragio de XIII, quer dizer, basta provar o seguinte:
Escolhida qualquer sucessido descendente formada por con-
juntos F;e @(7=1,2,8,...), a hipétese o (£;) | ¢>0 obriga a ser
nio-vazia a intersec¢io / de todos os F;. A prova a fazer
nao tem necessidade de distinguir entre o caso 2 (M;)>0,
seja qual for p, e o caso contraditério e tornar-se-4 mais
coémoda, se fizermos corresponder a cada ntimero natural m

o corpo ,,@, definido no espago [T (), do mesmo modo que
m=n< -+ »

definimos @ em (, e se representarmos por ,¢ 0 contetdo,
definido no corpo ,,@ do mesmo modo que definimos » em @.

Posto isso, retomemos o texto entre 46) e 48') e introdu-
zamos nele as adaptacdes ligeiras seguintes: O numero
supfe-se arbitrariamente escolhido na sucessdo dos numeros
naturais, admite-se a desigualdade N>, substitui-se cada

um dos conjuntos A%,;; por I Q,, suprimem-se (por
N=nl+w

serem desnecessdrias) as relagées de inclusido que enquadram
os conjuntos F; e ,.4.1F;, pbe-se o nimero 1 em lugar de «
e omite-se a referéncia (supérflua) as formulas 46) e 45).
Se procedermos do modo indicado, o resultado 48') ficara
com o aspecto simplificado @ (wf3) Lpm (Hom,))+0 - (274 1)/2m+,
donde tiramos, pela repeticdo do raciocinio feito a seguir
a 48", que existe uma sucessio de pontos wj e, tal que,
seja qual for m, o conteddo ,,.19 atribui a cada um dos infi-
nitos cortes £7/(»},ws,...,%,,) um valor pelo menos igual a
0-(2m41)/ 2t >4/ 2.

Escolhido, de qualquer modo, o valor do indice 7, ¢ pos-
sivel, por causa de N VIII, tomar um N que faca de F; um
cilindro com base situada em Q;><Qs><...><Qpy_; € com gera-
trizes paralelas a cada um dos factores restantes de Q. Sabe-
mos que a funcio y¢ correspondente a esse N dd um valor
superior a J/2 quando se iguala o seu argumento ao corte
F;|(0},0%,...,054). Portanto, o corte referido nio pode ser
vazio, a proposicio NIX impde a existéncia de pontos
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(«1y. . o1, 0n,...)eF; e a definicdo de cilindro obriga o
ponto o’=(w},w,ws,...)eQ a situar-se em F;. Concluimos
que o'e F e fica terminada a 2.2 fase da nossa demonstracio.

3. fase. Vimos, nas duas fases anteriores, que a funcio
¢ ai considerada é um contetido-c normado e é o tunico con-
teddo-c que estende a fun¢io ©, tomada em a7, ao corpo 9
gerador do corpo-¢ designado por Q. Entdo, se 4 for o con-
junto genérico de @, os factos aqui apontados e a proposi-
¢do IX ndo s6 fazem da fungio u(A), definida pela relagio 49),
a unica medida que estende a & a funcio O, tomada em o7,
como também obrigam essa medida a sair normada.

Escolhamos agora um conjunto qualquer 0O A, e
1=nltw»
consideremos a sucessdo (infinita) formada pelos cilindros

Co=Adi<- <4< T Qedl(m=1,2,3,...).
mt1=n<+n
Ora, a proposicdo N VI mostra que C,,} a i;1. ldade 10)

mostra que N C.= I A,. Portanto, se tomarmos a
1=nme<l4w 1=n+ow
medida ¢ acima referida, a proposi¢do Il e a igualdade 52)

dio a relagio

(I A= lim O(Cu)= Hm [ () - () - o ()] =
w400 mt Lo

1=n+»
=0( I 4,),
1=n+w
a qual prova que u» € a unica medida que estende a & a fun-
¢do 0O, quando tomada no seu campo pleno. Logo a medida
normada p € o tnico produto de todas as medidas , .

4. fase. Finalmente, se existir uma medida p, incom-
pleta, o produto p sai também incompleto, conforme mostra
o ultimo trecho da demonstragio de XIII, desde que nele

substituamos o factor Oy por 1I Q,. Fica assim concluida
N=plto
a demonstragio de XVI.

Posto isso, duas proposi¢des complementares, concebidas
no estilo de XIV e de XV, vio fechar o estudo presente.
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XVII) «Quando se trabalha com uma infinidade nume-
ravel de factores, a propriedade associativa da multiplica¢éo
de conjuntos transmite-se a multiplicagdo de medidas nor-
madas e de espagos de medida normados.»

Demonstracdo de XVII. Em aten¢do a N XXVI, & sufi-
ciente deduzir a associatividade da multiplicacdo das medi-
das normadas p,(4,) do segundo membro de 52). Para este
efeito, acompanhamos a demonstracio de X1V até a relagio 51)
exclusive, fazendo, porém, as pequenas adaptacbes seguintes:
Primeiro, % € finito ou infinito e os indices para além de £
podem formar vma sucessio sem fim; depois, os produtos
maximais u, ¢’ e ¢/ passam a ser os unicos produtos possi-
veis. Concluimos, como anteriormente, que p'' é um produto
de todas as medidas p,. Consequentemente, a medida p"
coincide com p e estd terminada a nossa demonstragdo.

XVII) «Dada uma infinidade numerdvel de espagos de
medida normados (Q.,@.,u.) (#=1,2,3,...), considere-se
qualquer coleccdo de numeros naturais 4,i>%4,7>7,... que
seja distinta da coleccdo de todos os valores n possiveis.
Entdo, 2 marginagdo do (unico) produto de todas as medidas
¢, [de todos os espagos de medida (Q,,Q,,u.)] com respeito
a0 espago Q,><Q><Q;><... e ao factor de escala 1 dd o (unico)
produto daquelas medidas p, [daqueles espagos de medida
(., €y 2w)] Para as [0S] quais wa=h,i,7,... »

Demonstracdo de XVIII. Seja (&,&,p) o (inico) produto
dos infinitos espacos de medida dados e seja (Q/,@',p') o
(inico) produto dos espacos de medida referidos no fim do
enunciado, Nesta conformidade, podemos aproveitar os ele-
mentos da demonstragido de XV, desde que facamos as adap-
tacbes ligeiras seguintes: Deve admitir-se a eventualidade
de ser infinito o numero dos indices %,7,..., deve atribuir-se
o valor 1 a grandeza « e deve ler-se XVII em lugar de XIV.
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d) Medidas definidas em espacos de Borel com um
nUmero finito de dimensdes

33, Funcdes de intervalo e medidas definidas num espago
de Borel com um ndmero finito de dimensdes. Dado um numero
finito V1 de rectas de Borel [ X, (x,), Bu (B)](n=1,2,..., V),
consideremos o seu produto [X(x), $B(B)] ou seja o espaco
de Borel a NN dimensdes e chamemos subclasse principal
de # a classe @ formada por todos os intervalos da forma

oI la,ZLx.<b.|, onde, escolhido #, os numeros a, e 6,24,
1=n=N

podem tomar-se reais finitos arbitrarios®). Entdo, fixada
uma funcio aferidora © definida em @, ela diz-se gquase-

-continua no intervalo vasio se existir lim ©( I a,ZLx,<b.])
amtbn 1=n=N

para m=1,2,...,/V e se este limite vier a tomar apenas 0s
valores ©(0) ou +oco. A mesma fungio O diz-se parcialmente
aditiva-c em @ se ai for finitamente aditiva e se, além disso,
gozar da propriedade seguinte: Escolhida qualquer colecg¢do
numeravel de conjuntos C, e @(p=1,2,3,...), disjuntos dois
a dois, de soma igual a Ce@ e tais que O(C)=+x e
O(Cy) <+ oo para cada p, escolhida uma colec¢do nessas
condi¢cbes (se a houver), correspondem sempre conjuntos
Cje@(g=1,2,3,...), disjuntos dois a dois, de soma também
igual a C e tais que 20 ((,)=+ e O ((;)< +oo para cada ¢.
q

Posto isso, vejamos uma proposi¢io que nos oferece o
primeiro ensejo de usar as defini¢des acima dadas.

XIX) «Se p for uma medida definida no espago de BoreL
(X, ) com um namero finito de dimensées, entdo a restri¢éo
de 1 a classe @ coincidente com a subclasse principal de &
sai uma fung¢do aferidora parcialmente aditiva-c em @e quase-
-continua no intervalo vazio.»

Demonstracdo de XIX. Servimo-nos da notacio introdu-
zida no comeco desta secgio.

() O caso a,=b,, para algum #, corresponde a um intervalo vazio.
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Ora bem, se ® for a restri¢do referida no enunciado, a
igualdade © (O)=u(O)=0 e a propriedade aditiva-c das me-
didas provam todas as propriedades de O afirmadas no enun-
ciado, com excep¢io da quase-continuidade no intervalo vazio.
Mas, seja qual for o inteiro m entre 1 e NV, extremos inclui-
dos, se escolhermos arbitrariamente uma sucessido crescente
de numeros reais finitos @,.,,(p=1,2,3,...) com limite finito
b, e tais que a,.,,<b, para cada p, a continuidade superior
de ¢, afirmada em II, assegura que existe

Hm O (- <@t L8 1 << bt | >} W, p L X0 < By | < (continua)
Pt

XN 1 L X1 < by} < - -)

e que este limite € igual a ®(0)=0 ou a + o, conforme hou-
ver ou deixar de haver um nuimero positivo ¢ que torne

0] ( X 3am_1éxm_1<bm_1f > §6m—eéxm<bm§ > (continua)

Xgam+léxm+l<bm+1s > )< -+ oo,

Concluimos, do exposto, que a fungdo ® sai quase-conti-
nua no intervalo vazio e fica assim terminada a demons-
tragdo de XIX.

A proposi¢io XIX prova a ocorréncia de casos em que
uma fun¢io aferidora ® definida na classe @, parcialmente
aditiva-o nesta classe e quase-continua no intervalo vazio
pode estender-se a uma medida definida em . Convém
agora indagar se tal extensdo é praticdvel em todos os casos
e, na hipotese duma resposta afirmativa, se entre as medidas
p* possiveis existe uma medida maximal 1, por outras pala-
vras, uma medida u tal que u* (B)Lp(B) para qualquer B e
para qualquer p*. Além disso, se a medida maximal p existir,
interessa saber relacionar as suas propriedades relevantes
com as da fungido ©.

As questdes aqui postas sdo resolvidas pela proposigio
que passamos a enunciar.
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XX) «Dado um espac¢o de BoreL [X (x),8(B)] com um
numero finito de dimensdes, designe-se por @ a subclasse
principal de &3 e considere-se uma fun¢fo aferidora ® definida
e parcialmente aditiva-c em @ e quase-continua no intervalo
vazio. Entdo, existe uma medida maximal u que estende © a
& e que é determinada, para qualquer B, pela relagio

a) p(B)= inf 20((,), onde o infimo se refere a
UGB m

todas as colecc¢bes finitas ou numeraveis de conjun-
tos C,. e @ tais que UG, D B.
e

Esta medida p ndo s6 resulta nula ou significativa e finita-s
ou infinita-¢ simultineamente com ©®, como também atribui
ao espaco X um valor igual ao supremo de ©. Em comple-
mento, p € a unica medida definida em 8 que estende a fun-
¢do O, se esta for finita-o.»

Demonstracdo de XX. Conservemos a notagdo apresen-
tada no principio desta sec¢fio e vamos repartir a nossa
demonstragdo por quatro fases: Primeiro, vamos construir a
unica funcio aferidora finitamente aditiva { que estende © a
classe 9 formada por todos os conjuntos que podem obter-se
somando um numero finito de intervalos situados em @ ou
seja na subclasse principal de ; depois, vamos provar que
a funcio ¢ é aditiva-c em 9; em seguida, vamos definir o
tnico contetido-g, seja ¢, que estende £ ao corpo @ formado
por todos os conjuntos que podem obter-se somando um
numero finito de intervalos especiais a /N dimensdes tais
que cada factor linear de qualquer um deles é diferente do
seu espaco e igual a um intervalo aberto do lado direito e
fechado ou infinito do lado esquerdo (se /N=1, veja-se 5. no
fim da seccdo n.° 15 e, se V>>1, veja-se 4.° quase no fim da
seccio n.° 20); em ultimo lugar, vamos passar para a medida
maximal ¢ que estende ® a @*=# e vamos verificar as pro-
priedades que o enunciado atribui a funcéo p.

1. fase. Serve a parte da 1.* fase da demonstragdo
de XIII que vai de 41), incluido, até ao fim, se mudarmos as
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letras G, @, M, oI e ¢ respectivamente para D9, C,eete
se substituirmos o recurso a 18¢) pela afirmacdo que a inter-
seccio dum factor dum conjunto C, com o factor homélogo
(que tem o mesmo primeiro indice) dum conjunto (j € um
conjunto da mesma natureza que a de qualquer dos conjun-
tos secantes. Nesta conformidade, podemos tirar as conclu-
sdes seguintes:

Caso consideremos varidveis o numero natural P e os
conjuntos C,e@(p=1,2,...,P), a igualdade (de defini¢do)

53) L(Ci+Cot -+ Cp)=0(C)+0(Co)+---+0(Cp)

faz corresponder a cada conjunto De um e s6 #m nimero
£ 0, o qual coincide com ®(D) na hipétese De@. Mais,
a fungdo t, definida por 53), é a vinica fungdo aferidora finita-
mente aditiva que estende © a 9.

2.5 fase. Para comecar, dados os conjuntos De9 e D'e,
a relacdo 9C@ e as propriedades dos corpos mostram que
se verificam as trés relagdes DUD'e@, DND'eg e D—D'eg.
Como ndo pode haver subconjuntos de DU D' que contenham
intervalos infinitos, concluimos que as trés relagbes citadas
admitem o reforco DUD'e®d, DND'eD e D—D'e¢9D. Nesta
conformidade, escolhida qualquer coleccéo finita de conjuntos
D,ed (h=1,2,...,H), a sua unido U pertence a 9, de modo
que a férmula 1), a relagdo ébvia D= U+ (U—D,) e a for-
mula N 14) permitem escrever a igualdade entre conjuntos

DiUD:U - -UDg=D+-[(U-D)NDs] +---+
+(U-D)N - - N(U~Dus)N Dxl,

onde cada parcela do segundo membro € um conjunto situado
em 9. Mais, escolhida qualquer colecgio numerdvel de con-
juntos D, e 9(h=1,2,8,...), disjuntos dois a dois e de soma
igual a D, tem-se D—(Di+Ds+---+Dpg)e D para qualquer /.

Em face do exposto, a alinea §) de N XXXI prova, pri-
meiro, a relagio

54) §(D)£t(D'), se DeD e se DcD'e9,
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e prova, em seguida, a relacio

55) t( U D« 2 ©(Dp), secada D,e?.
1<h<H 1=h=H

Além disso, a alinea ¢) de N XXXI, com as letras 4, D, 9 e ¢
respectivamente em lugar de »#, 4, & e ¢, d4 a relacio

56) 3 C(Dh)é?;(l/§< D;), se cada D,e9D

1=h<w

e se 2 Dye9.
1=h<lm

Posto isso, consideremos qualquer conjunto nfo-vazio
C=TN{a, £x,<b,{e@ tal que 0<L(C)<+o e conside-

remos ainda qualquer colecgdo numerdvel de conjuntos
C.=Ma,nLx, < bu,pnlech=1,2,8,...), disjuntos dois a
n

dois e de soma igual a C. Entdo, se ¢ for um numero arbitra-
rio, contanto que 0<¢< inf (6,—a,), vamos definir os conjuntos
"

C=Dla,L£x,<b,—c¢} e F={a,Lx,2b,—¢|, donde, aten-

dendo a N VI, as relages C'cFcC e C=C"4(C—C"). Mais,
escolhido qualquer %, fagamos corresponder uma grandeza
9z>>0, a determinar oportunamente em funcgdo de ¢, ponhamos
Cr=11{aun—0nLXn<bunl e Ci=C; N C e igualemos aj» a a, ou

a a@,»—0s, conforme a, exceder ou deixar de exceder a, ,—0x.
Entdo, tiramos, por causa de N9 a), de 10) e de N VI, a relagdo
Co(Cj=1 {a;’,héxn<bmh§ 2 Ch ’ donde C;ﬁ/a CH—(C”— Ch)

Ora bem, qualquer ponto do intervalo fechado F per-
tence a um dos conjuntos C; e, portanto, é inferior ao inter-
valo Cj, correspondente. Sendo assim, o lema de Heing-Borst,
também conhecido pelo nome de lema de Borer-Lesescuk,
assegura a existéncia dum ndmero natural A tal que
FcCiy---UCxh Logo aigualdade N 14) e a propriedade N9 4)
ddo a relagdo C'c C{'J---U Ck ou seja, por causa de NII, a
relagdo

CcGU---UCaU(CI—CYU - U(ChH—Cr)U(C—C").
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Consequentemente, 54) e 55) conduzem a desigualdade

* 7. ! !
57) UO£_2 G+ 2 L(Ci—Ci+E(C—C).

<h

A

Ora, a férmula 9) mostra que, seja qual for %, sai

Ci—Cic U (<@ p L Emy < b p} X (continua)

1=m=N

XA £ X < W} X< Wsa,n £ Xmgr < b} <Y Cf c C.

Portanto, ndo so a relagio 54), a hipétese da continuidade de
O no vazio e a alinea @) de N XXXI permitem fazer corres-
ponder a cada % um J, tal que a fungio ® fique com um valor
inferior a (¢//V)- 2% em qualquer das parcelas da ultima
unido, como também as relagdes 54) e 55) levam a desigualdade

S HOI—C)<e. 2 277,

1<h<H 1<h=H

a qual, juntamente com 57), arrasta

57) £(C)L 3 4(Ctitt(C—C).
A<+

Por outro lado, a relagio

C— C’C U ( e X ; Aot £ X1 < bm——l % > (eontinua)
1

=m=N

XV b — ¢ L X < b} XV Wni1 £ Hngs < bpupa} <--4)

e, mais uma vez, as propriedades da fun¢fo { mostram que

t(C—C')—0 quando ¢} 0. Nestas condi¢des, concluimos pri-

meiro, de 57'), que se verifica a desigualdade £(C)< 2 4 (Cy)
=hlw

e concluimos depois, de 56), que se verifica a igualdade
L(CYy= 2 ¢(Cy), a qual se aplica, obviamente, também ao
1=kl

caso £ (C)=0. Este resultado permite-nos acompanhar o caso
8.° da demonstracdo de 1V, com os conjuntos 4, e A4} substi-
tuidos pelos conjuntos C, e (} que aparecem na defini¢do
da aditividade-o¢ parcial, com a fun¢io ¢ alterada para ¢ e
com supressdo da passagem £((Cy N Cp)+(Ch N Cpp2)+---)4 0,
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por ser desnecessdria. Logo fica provada a aditividade-c da
Suncdo ¢, quando tomada na classe @.

Consideremos agora um conjunto D=Ci+---+Cy+---
-+ Cp, com (,e@ para qualquer p, e suponhamos que
D= 2 D,, onde, escolhido %, se tem Dp=0Cpi+ ---

1=h< o
coit Chypy+ -+ Cipy,y com Cy € @ para cada p, . Entdo, seja
qual for p, as propriedades N9), a formula N14') e a propo-
sicdo NII' ddo a igualdade C, = 2 (CpNChyp), 2 qual im-
hypn

plica 4(Cp)= 2 %4(CpNChy,), isso por causa da aditividade-o
k. pr

de 7 em @. Portanto, a aditividade {inita de { em 9 permite
escrever

LD)=2L(Cp)= 2 LGN Chp))= 2 L(Chp)=25(Dn).
» Bapn Biph u
Concluimos assim que a funcdo aferidora ¢ é aditiva-c em D.

3.2 fase. Vimos, nas duas fases precedentes, que a fun-
¢do ¢, definida por 58), é a tunica fun¢do aferidora aditiva-o
que estende © a 9.

Seja agora § a classe dos conjuntos £ que podem obter-
-se somando um numero finito ou uma infinidade numeravel
de conjuntos situados em 9. Nesta conformidade, vamos
retomar a parte da 1.* fase da demonstragio de XIII que vai
de 41), incluido, até ao fim e vamos introduzir nela as alte-
racdes seguintes: Mudamos G, @, M, o%, © e ¢ respectiva-
mente para E, §, D, 9, { e n, consentimos que qualquer dos
indices p, p'y, & e pn possa correr desde 1 até um ntmero
natural arbitrario ou até 4o, substituimos o recurso a 10) e
a 18¢) pela propriedade (vista na 2.* fase desta demonstragéo),
segundo a qual a intersec¢do de dois conjuntos situados em
9 ainda é um conjunto situado em 9, e ampliamos a aditivi-
dade simples da fungdo ¢ para a sua aditividade-s. Se proce-
dermos do modo indicado, tiramos as conclusdes que passa-
mos a referir.

Seja qual for a colecgdo finita ou numeravel de conjun-
tos D,e 9 (p=1,2,8,...), disjuntos dois a dois, a igualdade
(de definigdo)
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58) n(Di+Dat o+ Dyt ) =L (D) +L (Do) 4+ +E(Dp)+ -+
faz corresponder a cada conjunto Ke§ um e s6 wm ntimero
10, 0 qual coincide com ¢(£) na hipotese Ee D. Mais, a fun-
¢do n, definida por 58), € a tinica funcio aferidora aditiva-c que
estende § (e 0 O do nosso enunciado) a classe §.

Posto isso, podemos terminar a 3. fase da nossa demons-
tragdo como segue:

Escolhida, de qualquer modo, uma recta-factor (X, B.),
designemos por %, o termo genérico da coleccio de todos os
numeros inteiros, dispostos por ordem, e representemos por
1, 0 maior inteiro contido no numero finito (arbitrario) 5,.
Entdo, valem as igualdades

""m<kn——_<—in

[

as quais, juntamente com 8'), provam a rela¢do de inclusio
gcé. Claro que ec@. Consequentemente, se pusermos

59) ¢ (G)=n(G), para qualquer Ge @,

a restricdo ¢ (G) de n a @ sai um conterido-o que estende a fun-
¢do © do nosso enunciado ao corpo @ e sai ainda o unico con-
teddo-c nessas condicbes.

4.2 fase. Vejamos como as propriedades da funcio © se
refletem no comportamento da sua extensfo designada por ¢
e definida através de 59).

Primeiro, se ©® tomar um valor positivo nalgum con-
junto Ce@, o conjunto C~ pertence ao corpo @ e, portanto,
¢(X)=0(C)+9¢(C7)>0. Mais, se a fun¢do O for nula, a pro-
posicio N I e a alinea d) de N XXXII obrigam os infinitos
conjuntos | —kZLx,<h|=C,(h=1,2,8,...) a serem tais que

X=UC; e que 0L9(X)£20O(C,)=0. Dai e da alinea @) de
3 3

N XXXV concluimos que a fun¢dio ¢ sai nula ou significa-
tiva simultineamente com a funcio ©.
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Ora bem, a proposicio N VI mostra que os conjuntos
C, ultimamente mencionados formam uma sucessio ascen-
dente e mostra ainda que, seja qual for Ce@, resulta C,DC
para todo o % suficientemente grande. Logo a proposi¢io II
da ©(Cu)te(X) e, se designarmos por S o supremo da fun-
¢do O, a relagio 54) da ©(C,)1.S. Concluimos que S coincide
com o valor atribuido a X pela fun¢io ¢ ou por qualquer
das suas extensdes.

A relacdo de inclusio @C§, apresentada no texto ante-
rior a 59), permite-nos afirmar que X pode ser igualado a
soma duma infinidade numerdvel de conjuntos Cie @ Entio,
se a fun¢io O for finita-s, sai, seja qual for %, a relacio Cj—
_—_f Ci,puy com Cf 5,6 @CQ € com O (CY,5,)=9(C) 4,)<+oo para

h
cada p;, e, portanto, a igualdade X= 2 (j ,, e a alinea ¢) de

3%
N XXXV provam que a funcio o resulta finita-c.

Suponhamos agora que a funcfo ¢ é finita-c. Nesta conior-
midade, escolhido qualquer Ce@, ha conjuntos G,e @ tais que
C=32G, e 0(G,)<<+ oo para cada p. Mas, seja qual for p, tem-se

»

G, C, donde G, € D ou, equivalentemente, G, é a soma dum
nimero finito de conjuntos situados em @ Portanto, N II' e
a alinea ) de N XXXII provam que a fun¢do © resulta finita-s.

Em face do exposto, as proposi¢des VII e IX permitem
terminar a 4.2 e ultima fase da nossa demonstracso, se tomar-
mos para a funcfo p referida no enunciado a fung¢io definida
pela relacido

60) p(B)= inf 29(G,), onde o infimo se refere a todas
UGnDB m

as colecgdes finitas ou numeraveis de conjuntos
G € @ tais que UG.DB,
kel

ou, equivalentemente, definida pela relagio a) do enunciado.

Observacdo. Podemos substituir, de acordo com VII, os
simbolos B e ¢ de 60) e de @) respectivamente pelos simbo-
los O e ®, onde Q significa um subconjunto arbitrario de X
e onde ® significa uma func¢do aferidora definida em 2%, cuja
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restrigdo a & coincide com p. Entido, se @ for a classe dos con-
juntos AcX que tornam ¢(Q)=0 (4N O)+P(A N Q) para qual-
quer O, a restricdo da fungio ®(Q) a classe @ sai uma medida
completa. Além disso, a proposicio IX ensina que & contém o
corpo-a completivo de 3 com respeito a medida p e ensina mais
que & coincide com esse corpo-¢ completivo se a funcio o for
finita-¢ ou, dito doutra maneira, se a funcio ® for finita-c.

Segue um exemplo destinado a ilustrar que a medida
maximal ¢ do enunciado de XX nfo é necessariamente a tnica
extensdo da fun¢do ® a uma medida definida em &.

Exemplo 44. Seja O o subconjunto genérico de X e con-
sideremos as duas funcdes aferidoras ®(Q) e ¥*(0), a primeira
nula para Q=0 e infinita para Q=0 e a outra tal que atri-
bui a qualquer Q um valor igual ao namero de pontos situa-
dos em (. Como as duas func¢bes ¢ e ®* sdo ambas medidas
definidas em 2%, saiem também medidas as suas restri¢bes a
8B, restricbes essas que vamos representar por p e p*, res-
pectivamente. Embora g e u* sejam funcdes distintas, elas
admitem a mesma restricdo © a subclasse principal de &.
O leitor facilmente se convence que a medida p do texto
coincide com a medida maximal p definida por @) de XX.

&
ES *
Vejamos agora uma proposi¢do inspirada no estilo de
X da sec¢io n.° 29.

XXI) «Sio dados um espago de Borer (X (x),B (B)] com
um numero finito de dimensdes, a classe @ de conjunto gené-
rico C que é a subclasse principal de 8 e uma func¢io aferi-
dora ©®(C) que tem supremo S>>0 e que é finita-o, parcial-
mente aditiva-s em @ e quase-continua no intervalo vazio.
Nestas condigdes, € possivel determinar constantes ¢,>0 e
funcées aferidoras ©,(C) finitamente aditivas, quase-conti-
nuas no intervalo vazio e de supremos todos iguais a 1, por
forma tal que tenha lugar a igualdade entre fungées

al O(C)=c-0;(C)+c:2-0:(C)t--465-0,(C)+ -,
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onde o segundo membro apresenta um numero de parcelas
igual a 1 ou a +oo, conforme S for finito ou infinito. Além
disso, uma vez escolhidas as grandezas ¢; e 0,(C), verifica-se
a igualdade entre fungdes

b)  w(B)=c1-pi(B)+e-pa(B)+ 46 pp(B) 4y

onde o simbolo u(B) representa a unica medida que estende a
funcdo © a classe & e onde, fixado p, o simbolo p,(5) repre-
senta a unica medida que estende a func¢ido ©, a classe $.»

Demonstracdo de XXI. A proposicio XX nfo s6 assegura
que existe uma tnica medida p(B) que estende O(C) a &,
como também obriga essa medida a ser significativa e finita-c
em todos os casos e a tomar em X um valor que ¢ finito ou
infinito simultaneamente com .S. Logo a proposi¢do N XXXV’
e a alinea 4) de N XXXV provam que se verifica a igual-
dade &) com certas constantes positivas ¢,, com certas medi-
das normadas u,(B) e com p a tomar o unico valor 1 ou a
correr de 1 a +c, conforme S for finito ou infinito. Por outro
lado, fixado p, primeiro a proposi¢do XIX mostra que a res-
tricdo ©,(C) da medida finita p,(B) 4 classe € é uma fungéo
aferidora finita, finitamente aditiva e quase-continua no inter-
valo vazio e depois a proposicdio XX esclarece que a tUnica
extensio de ©, a uma medida definida em & coincide com
i, € que o supremo S, da funcdo ©, vale p,(X)=1. Esta pois
completada a nossa demonstragéo.

*
% ®

Vamos acrescentar um teorema destinado a esclarecer
como pode fazer-se a multiplicagdo de medidas definidas em
corpos de Borel com o auxilio das suas restri¢des as subclas-
ses principais respectivas.

XXII) «Dado o produto [X(#),8(B)] das /V>1 rectas de
BoreL [ X, (#4), B (Bs)](n=1, 2,..., N), tomem-se arbitraria-
mente numeros naturais N, N'">N',..., N, formem-se os cor-
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pos de BoreL ' (B')= 1 N B, (Br), B (B"y= I By (Ba),
1=n N/

=n= Nise=N"
etc.,, representem-se por ¢, @, @”, etc. as subclasses principais
de &, &', B, etc., respectivamente, e admita-se que 0/, 0", etc.
sdo fungbes aferidoras, parcialmente aditivas-s e quase-conti-
nuas no intervalo vazio, a primeira em relacio a @, a segunda
em relagdo a @', etc. Entdo, a fun¢do O determinada, para
quaisquer 2 N grandezas reais finitas a, e 4,2 a,, pela relacao
a) O( O ja.Lx,<b,))=

1I=n=N

=0 (I {ayz2,<bul) - O"( T |anLaon<bnl)-...
1==n=<N' N 1=n=<N"

sai uma fung¢do aferidora parcialmente aditiva-s em @ e quase-
-continua no intervalo vazio e sai também igual a restri¢do a
@ de todo o produto de medidas ¢/, p', etc. tais que y' estende
©' a &, que p" estende 0" a B, etc.

Em particular, se as fungées ©', 0", etc. forem finitas-¢, ha
uma e s6 uma medida que estende O a B, a qual resulta finita-c
e idéntica ao (unico) produto das (unicas) medidas p/, p", etc.»

Demonstracdo de XXII. Sejam quais forem as medidas
W, ¢y ete. tais que p' estende @' a B, que p'' estende O a
&', etc,, a proposicdo XIII e (eventualmente) a propriedade
associativa da multiplicagdo de conjuntos provam que existem
sempre produtos p'><p”><... e que, escolhido um qualquer
desses produtos, a sua restri¢do a @ coincide com a funcdo 0.
Logo a proposi¢do XIX institui ©® em fungdo aferidora parcial-
mente aditiva-¢ em @ e quase-continua no intervalo vazio.
Fica assim demonstrada a primeira parte da nossa proposicio.

Suponhamos agora que as fungdes ©, @' etc. sdo fini-
tas-o. Entéo, qualquer intervalo de @' (de @, etc.) é uma soma
quando muito numerdvel de intervalos de @'(de @", etc.) tais
que ©'(®", etc.) atribui um valor finito a cada um deles. Logo
a igualdade 8') e a relagio @) do enunciado provam a finitude-o
de @ e, portanto, a proposi¢do XX imp6e uma s6 extensio
de ©® a uma medida definida em &, a qual sai finita-c. Este
facto, a proposi¢do XIII e a unicidade das extensdes p/, 2y
etc. terminam a demonstracio de XXIL
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Observacdo. A proposicdo XXII pode adaptar-se ao caso
em que os factores de &, &', etc. nfo se sucedem pela ordem
natural recorrendo, para o efeito, 4 correspondéncia biuni-
voca existente entre X e o espaco que resulta de X por uma
permutacio das coordenadas (do ponto genérico) convenien-
temente escolhida,

Por fim, vamos apresentar dois exemplos destinados a
ilustrar algumas das situacdes que podem surgir quando o
segundo membro de @) de XXII compreender factores infi-
nitos-o.

Exemplo 45. Fagamos N=2 e suponhamos que qualquer
das duas funcbes aferidoras ©; e ©,, definidas a primeira na
subclasse principal de &; e a outra na subclasse principal
de ., atribui o valor 0 ao intervalo vazio e o valor 4o a
todo o intervalo ndo-vazio. Neste caso, a funcdo © determi-
nada por ¢) de XXII sai também infinita em todo o intervalo
nido-vazio e pode estender-se 2 medida p definida em & como
segue: p(J(1,1))=p(1(2,2)])=1 e p(B)=+cc para cada B a
que pertencam pontos distintos de (1,1) e de (2,2). A medida p
considerada encontra-se impossibilitada de ficar igual a um
produto duma medida p; definida em &; por uma medida pe
definida em s, porque a isso se opde a incompatibilidade
das igualdades w({1]) p2(11))=p1(l2)-p2(j2D=1 e pa({1})-
cpe(}2)=-+oo. Quer dizer, uma extensdo de © a uma medida
definida em B escusa de sev um produto duma medida definida
em By por uma medida definida em Po.

Exemplo 46. Fagamos N=3, suponhamos que as fun¢des
0O, e O, sdo as mesmas do exemplo anterior, consideremos a
funcdo O; que atribui o valor &} — @} a qualquer intervalo da
forma }asLx3<<bs} e representemos, para cada #, por p, a
medida maximal que estende O, a 8,. Neste caso, a fungio ©
determinada por a) de XXII sai infinita em qualquer intervalo
nio-vazio e, portanto, a medida maximal que estende ©® a &
atribui o valor +oo 20 conjunto elementar {(0,0,0)|, ao qual o
produto maximal das medidas p, confere o valor zero. Quer
dizer, existem comjuntos de BOREL em que a medida maximal
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obtida por extensdo da funcdo © ao corpo B resulta maior do
que o produto maximal das medidas maximais obtidas por
extensdo das fungbes ©, aos corpos By.

34. Novas propriedades das funcdes aferidoras especiais
tratadas na seccgdo anterior. Seja [X(x), B(B)] o produto das N
rectas de Borer (X, (%n),8B.(B4)] (n=1,2,...,N< +), indi-
quemos por Il |a,£x,<b,| o conjunto genérico da classe @

que € a subclasse principal de 3, tomemos em @ uma funcao
aferidora ® parcialmente aditiva-¢ que seja quase-continua no
intervalo vazio, consideremos o contetido-o designado por o
na fase 3.* da demonstragio de XX, fixemos arbitrariamente N
numeros ¢,,qualquer deles finito ouigual a -+ ou iguala —co,
e representemos por ¢ a restri¢cio de o a classe @(c1,6s,...,¢xn)
formada pelos produtos Il Z,, onde cada factor 7, significa um
n

intervalo linear arbitrario, contanto que tenha uma das trés
formas | —oco<<x,<b,l, |€.Lx,<by}| OU |@,Lx,<c,], 2 primeira
no caso ¢,=—co e a segunda ou a terceira no caso ¢,>—co.
Notemos, de passagem, que @(¢i,¢s,...,cn)C@, quando e s6
quando todos os N numeros ¢, forem finitos.

Sejam quais forem os 2 N numeros a, e b4,, designe-
mos por «, f>a, y>B,... os valores de #» tais que a,<Z¢,<é,
e designemos por ¢,0>p,7>>5,... 0s restantes valores de #.
Nesta conformidade, propomo-nos deduzir a igualdade

61) 8(1<£I<1v @ L2, < b,])=
= z [(_ 1)P?+P“+PT+.“ : "p ( H gany,?n é Xn < &”)pn ;)]’
1 pus Barer o P2 1<n=N

onde valem as regras seguintes: Caso a colec¢do «,8,y,... seja
nio-vazia e # lhe pertenca, pbe-se @, 1=a,,8,,0="0,,1=¢, €
b,,2 = b,; caso a colecgdo p,0,7,... seja ndo-vazia e » lhe per-
tenca, ple-se a,,1=@ay,0=Cy,bn1=a, € b,2=0, OU Gu1=
=buyQu,2=ay, € b,,1=0, 3=c,, conforme for ¢c,<a, ou c,.26b,;
caso seja ¢,=—oo, substitui-se a desigualdade ¢, <Lx, por
—oo<%y,; Ccaso a colecgdo ¢,q,7,... seja vazia, toma-se a con-
vengdo po -+ ps+ p-+---=0,; caso a colecgdo p,0,7,... seja




TEORIA DA MEDIDA E DA PROBABILIDADE 179

nio-vazia, admite-se a finitude de ¢ em todo o produto de
intervalos lineares para o qual pelo menos um dos indices

Doy Pay pry.-. seja igual a 1.

Dedugdo de 61). Como |a, £ %, < by} ={an L%, <cnl+
H+{n L Xy < bn| para n=a,B,..., a férmula 8') e a aditividade
de ¢ ddo a igualdade

62) ®<H %(,l,, é Xn < bn D:
= 2 q’J(H;a”:Pnéx” <6”;1’ns)’
1§?15?g’---§2;P9;PG;-.-=I n

onde valem as regras seguintes: Caso a colecgdo «,8,... seja
nido-vazia e » lhe pertenca, pde-se a,,1=au,dn,2=0,,1=¢C, €
bu,2=0,; caso a colec¢do p,a,... seja ndo-vazia e # lhe per-
tenca, pée-se @,,1=4a, e b,,1==0b,. Este resultado confunde-se
com 61) se a colec¢do complementar de «,f3,... for uma
colecgdo vazia.

Suponhamos agora que a coleccdio complementar de

«,,... compreende pelo menos um ntmero. Nesta hipotese,
sal @ Lxp<<bp| igual a |—oco<ap<Cbpl—|—c0o<H<as| ou
igual a oo Lap<<bp|—|cp Lxp<<az| ou igual a {a; L, <<cpl—
— by L2y <o}, conforme for g=—o ou —oco<l<a ou

cebp. Portanto, a propriedade associativa da multiplicag¢do
de conjuntos, as féormulas 7), a proposi¢do N VI e a alinea &)
de N XXXI transformam 62) na nova igualdade

62 OMla, L%, < by l)=

= 2 [(“1)?9 : q)(]';'[ g“"’l’n éx” <b":Pn %)J)

LS pgityrbgr e S2idg =1

onde valem as regras seguintes: Caso seja #=~p, 0s nime-
FOS @u,,, € ba,,, Obedecem as regras explicadas a propésito de
62); caso seja #w=p, pOe-se @y 1=ap 2=0cp, bp 1=0ap € bp,3=0y ou
@p,1=bo, a5 5=0ap € by, 1=0p,5=0c;, conforme for ¢, <ap ou ¢, bp;
caso seja ¢, = —oco, substitui-se a desigualdade ¢, Lx, por
—oo<xp; admite-se a finitude de ¢ em todo o produto de
intervalos lineares para o qual o indice p, seja igual a 1.
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Este resultado confunde-se com 61) se a colec¢fo comple-
mentar de «,83,... compreender o Ginico nimero g.

Passemos a supor que a coleccdo complementar de «,(,...
compreende pelo menos dois numeros. Nesta hipétese, pode-
mos imitar a transforma¢io que nos levou de 62) para 62),
procedendo com respeito a ¢ do mesmo modo que acabamos
de proceder com respeito a p. Sai a igualdade

62" O a, Lx, < byl)=
- u LDt () iy L < B

LE=T Y NS SRR S

onde valem as regras seguintes: Caso seja #n=~0¢, 0s numeros
@y, € ba, s, obedecem as regras explicadas a propdsito de 62');
caso seja n=c, pbe-se a, 1=a, =0,y b, 1=a, € b, 2=0, ou
a,1=b,a,.=a;,e b, 1—=b s—c,, conforme for ¢;<<a, ou ¢, 26 ;
caso seja ¢;=—co, substitui-se a desigualdade ¢ <L x5 por
—oco<lxs; admite-se a finitude de ¢ em todo o produto de
intervalos lineares para o qual pelo menos um dos dois indi-
ces p, e p, seja igual a 1. Este resultado confunde-se com 61)
se a colecgdo complementar de «,f3,... compreender sdomente
os dois numeros p € o.

Claro que a colec¢do complementar de «,5,... pode com-
preender mais do que dois nimeros. Neste caso itera-se o
processo de deducdo que viemos seguindo, até alcancar.a
igualdade 61). Fica assim completada a nossa demonstragio.

Observacdo. Fagamos N=1 em 61) e simplifiquemos ai
a escrita, suprimindo o indice #=1. Entdo, sai 0 (laLx<b})
igual a ¢ (jaLax<e}l)+d (jeLx<<bdl) se aLec< b, igual a
V(J—e<ax<<b})—Y (| —o<x<<a]) se c=—o0 e o termo
subtractivo for finito, igual a ¢ (jeLax< b)) —¢ (jcLx<al)
se —co<¢<a e o termo subtractivo for finito e igual a
YaLx<el)—y({6Lx<c]) se ¢xb e o termo subtractivo for
finito.

&
% £

Sejam quais forem os 2 N ntumeros reais «, (z=1,2,...,N)

e v,, qualquer deles finito arbitrdrio ou infinito com sinal
qualificado, vamos por, para cada », as relagdes 7,=inf (#,,v,)
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e S,=sup(u,,v,). Entdo, podemos retomar a fun¢io aferidora
aditiva ¢, considerada no principio desta secgdo, e podemos
introduzir uma funcio 7 das 2 /V variaveis «, e v,, simétrica
em cada par de varidveis #, e v,, através da igualdade de
definicio

63) T (ur,ttay..  un, 01,02, yon)=2( I }i,£Lx,<s4l),
1<n<N

onde deve substituir-se a desigualdade 7,2x, por —o <x,,
caso se tenha 7,= —oco. Se atribuirmos agora as /N varidveis
v, 0$ valores numéricos c¢,, estes determinam uma funcio
T., c.,..cy das IV varidveis u,, a qual é definida pela igualdade

63') TC:;Cz,---,tN(ul)“‘b’:"-7uN)=‘?( II %z.néxn<3n%),
1=n=N

onde vale a convencio explicada a propésito de 63) e onde,
dado #, uma das grandezas i, e s, sai necessariamente
igual a ¢,.

Ora bem, escolhidos arbitrariamente os nimeros reais
finitos a, e 6,2 a,, as igualdades 63) e 63') permitem dar a 61)
o aspecto

61") T(a;,ae,...,aN,b,,bg,...,bN)=
== 2 [(—I)PP—'_PG-*_' Tcl: ...,c‘\'(ul,p, LA ] u}V:PN)]
1=pi .., =2

ou ainda o aspecto

61”) T((ll,QQ,...,aN,bl,bz,...,bN)z
= Z [(—1)?P+?G+.”'Tul!Pl)"'y“N)PN(cl" "’CN)J!

1=y pN=2
em relagio a ambos os quais valem as regras seguintes:
Caso a colecgdo «,f3,7,... seja ndo-vazia e n lhe pertenga,
pOe-Se #,,1=a, € U,,2=0,; caso a colec¢do p,s,7,... seja nio-
-vazia e » lhe pertenca, pde-se #,,1=a, € t,,3=>0, ou u,,1=6,
e u,:=a,, conforme for ¢,<a, ou ¢,2b,; caso a colecgdo
py,7y... S€Ja vazia, toma-se a convengao p,+p,+ p.+---=0;
caso a colecgdo p,0,7,... seja ndo-vazia, admite-se a fini-
tude de todo o termo da soma do segundo membro para o
qual pelo menos um dos indices p,, p,, . y... Seja igual a 1.
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Posto isso, se fixarmos arbitrariamente as grandezas ¢, ,
entdo, sejam quais forem os argumentos @, e b, que puser-
mos na funcdo 7, o segundo membro da igualdade 61,
suposto valido, constitui-se em combinacfio linear e homo-
génea de certos valores (em numero de 2%) da funcgio
7. c.,....c.c de N variaveis. Por outro lado, se fixarmos arbi-
trariamente os argumentos a, e 6, da funcio 7, entdo, sejam
quais forem as grandezas ¢,, o segundo membro de 61"),
suposto valido, constitui-se em combinac¢io linear e homo-
génea das 2% funcbes 7wy p.us 4, ux, 4, , todas elas tomadas
nas grandezas ¢, consideradas.

Observacdo. TFagamos V=1 em 61') e em 61") e simpli-
fiquemos ai a escrita, suprimindo o indice #=1. Entéo, sai
T(a,b) igual a T.(a)+71,(6)=Ta(c)+ Ts(c) se aLc<b, igual
a —T.(@)+T.(b)=—Ta(c)+T5(¢) se c<a e o termo subtrac-
tivo for finito e igual a —7,(0)4+ 7c(a)=—T,(c)+ Ta(c) se
exb e o termo subtractivo for finito. '

Vejamos agora dois exemplos.

Exemplo 47. Se pusermos ¢;=..-=cy=—oco, entdo 61')
e 63') dao
’ T(al,...,aN,bl,...,bN):
- 3 [(=1)2 25 T e (U1, pe g v oy 8, 50)]
15]’17-'~:ﬁ\7§2

com
T—x;-uv“f(ulxﬁx)‘ - "Zt}\rypi\l)=+( H ;—w<xﬂ<u”71>n2)!
_ 1=n=N

onde #,,1=a, € #,,3=25,, para qualquer », e onde se admite a
finitude de todos os termos do somatorio, com excepgdo
possivel do termo para o qual py=..-=py=2. Semelhante-
mente, se pusermos ¢;=-..=¢y=+4oo, entdo sai

Tla,yo.,an,b1y...,06n)=

= 2 ‘ [(_—1)1)1—,_—)_?\ . T+°°)"'1+°° (Z‘IJ?H--'!uN’PM)}’

1500, --7}?\&5.2

com
Tpoo,opo (t1,p05 oyt p ) =4 (T Yot p, £ 50 < oo}),

1=n<
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onde #,,1=0;, € u,:=a,, para qualquer 2, e onde se faz a
mesma hipétese de finitude acima explicada.

Exemplo 48. Suponhamos que ¢, € infinito para n=g,
onde ¢ percorre os valores 7,s>7,>s,..., e que ¢, ¢ finito
ou infinito para os restantes valores de 7 que houver. Entdo,
se substituirmos cada um dos ntimeros ¢, por uma grandeza
vn, igual a ¢, para n=~q e finita e do mesmo sinal que ¢, para
n=gq, se fizermos isso, quaisquer valores das variaveis #, tais
que #,5c¢,, para todo o ¢ admissivel, verificam a relagio

lim Tv',vg,...,q\: (ul,u2y-')u1\')=

Up > Cpy Vs —> Cs yeuny | Or == | 05| =--

= c,,ﬂa,,,”q\,(ul,ug,...,uN).

Com efeito, basta fazer tender uma das grandezas v, para ¢,
ao longo duma sucessio monoétona arbitrdria, formada por
nimeros ¢,,;(/=1,2,8,...), para que a igualdade 63"), a pro-
priedade da funcido ¢ de ser um conteudo-r e a parte de 11
respeitante a continuidade inferior forcem 7, ..., a tender
para 7., ..,...,c,, qQuando /1 +4co.

35. Relagdes entre medidas definidas em espacos de Borel
com um namero finito &V de dimensdes e funcgbes medidoras
associadas a uma coleccdo de &V numeros ordenados. Conside-
rem-se JV varidveis reais finitas u, (n=1,2,...,V), fixem-se
arbitrariamente /N numeros reais ¢,, qualquer deles finito
ou igual a 4o ou ainda igual a —, e faca-se correspon-
der a esses numeros uma funcio real finita 7, ., . .,, abre-
viadamente £, das varidveis #,. Tal funcio pode depender
das grandezas ¢, e u, de muitos modos, dos quais s6 indica-
remos os que mais interessam ao estudo subsequente.

A funco F.(uyus,...,uy) diz-se ndo-decrescente com res-
peito a cada um dos niimeros ¢, se (e s6 se), escolhidos arbi-
trariamente um numero natural m < /N e valores u, das
varidveis u, de indices #=~m (caso haja tais indices), a desi-
gualdade :

Fc<. ‘ey 'nm_l,uﬁ,,,n,,,+1,. . .)é Fp(. ‘ey ‘f),,,_x,u;/,/,,ﬂ,,,_i.],. B .)
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tiver lugar todas as vezes que u,, e uj, forem quaisquer
valores de u,, sujeitos a uma das duas desigualdades #), <
L Wy £ Cpy OU Gy < Uy L 24,

Ampliando agora ligeiramente um conceito referido no
tratado de RicuTER, dizemos que a fun¢io 7., associada aos
numeros ¢i,c:,...,cxn, € privilegiada com respeito ao ponto
n=(n,"2,...,7y) do espago X a /N dimensdes se (e sb se) ela
possuir a propriedade seguinte: Seja qual for o numero
natural K< /N e sejam quais forem os inteiros n.(£=1,2,...,K)
sujeitos a relagio 1. Zm<ne<< - - <uxg LN, 0 segundo membro
de 61'), adaptado ao caso dos K indices p, tais que #=n; com
algum 4, passa a tomar um valor nio-negativo para qualquer
escolha dos 2 K numeros reais finitos a,, e b,,Na,,, isto se
nele substituirmos a fun¢o Te,, ,. .., cuy(#n, 4.+, t#s,) pela fungdo
Fayeu,yooyong(Mn,ye oo tay) que se obtém a partir da fungio
Fe,.. ,ex(th1,...,uy) quando se iguala a w, cada uma das
(eventuais) grandezas u, de indices w==,,...,nx. Talvez
valha a pena notar que a hipotese K=/ faz coincidir a
(tnica) fungdo Fi c,,...,cuy com a funcio F,. Mais, sa:s ndo-
-decrescente com rvespeito a cada c, uma funcgo F, dotada das
condigoes de privilégio correspondentes ao caso K=1, isto com
vespeito a todo o ponto do espago X, porque, para tal fungio,
qualquer escolha de », de m<£/NV e do par de numeros reais
finitos a,, € d,,>a,,, ndo sujeito a relagido a,, L6, <b,,, permite
escrever 32 (—1)#n-F, . (tm,4,) > 0, onde podemos por

1éﬁm§;2
um,lzam:uin e M,,,7g=b,n:ui,/, ou um,lzbmzu;n € Uy o=
= a,, = t,,, conforme for ¢, < @, ou ¢, b,,.

Finalmente, diz-se que F, ..y (#1,%2,...,45) é uma
Sung¢do medidora associada aos niimeros ¢1,cs,...,cx se (e so
se) ela possuir as quatro propriedades seguintes: 1.* A fun-
cdo existe e é finita para quaisquer valores das variaveis «,,.
2.» Em qualquer ponto do seu campo de existéncia a funcio
sai semicontinua do lado esquerdo com respeito a cada uma
das suas varidveis. 8.2 Seja qual for o numero natural m~2N
e sejam quais forem os valores atribuidos as varidveis u,
de indices #=~m (se os houver), a fun¢io tem valor nulo
quando #,,=¢, = e tem limite nulo quando #, ! cy=—oco
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ou quando #,,1¢,=-+oco. 4.2 Se substituirmos 7  por F no
segundo membro de 61'), este fica com valor ndo-negativo para
qualquer escolha dos 2.V nimeros reais finitos a, e 6,2a,.

Observacdo. Facamos N=1 na definicdo de funcdo medi-
dora associada aos ntumeros ¢, e simplifiquemos a notacéo,
suprimindo o (tnico) indice #=1. Entdo, a observacdo posta
a seguir a 61") mostra que /7 (u) € uma fungdo medidora asso-
clada ao mimero ¢ se (e sO se) ela possuir as quatro proprie-
dades seguintes: 1.> A funcio existe e ¢ finita para qualquer
valor de u#. 2.2 A funcfo sai semicontinua do lado esquerdo
em qualquer ponto do seu campo de existéncia. 8.>2 A fungio
tem valor nulo quando #=c=Fc e tem limite nulo quando
#wlc=—oco ou quando #tc=+4co. 4* Sejam quais forem os
ntmeros reais finitos @ e 6>, a funcio torna nio-negativa
uma das expressbes F.(a@)+£F.(0), —F.(a)+F.(0) e —F.(0)+F.(a),
a primeira se a£c<b, a segunda se c<a e a terceira se ¢X\b.

£ *

As duas primeiras defini¢6es acima dadas encontram.se,
de certo modo, subordinadas a ultima. Com efeito, vale a
proposicio seguinte:

XXII) «Dados /N numeros reais ¢, (n=1,2,...,/V), qual-
quer deles finito ou igual a +o ou ainda igual a —co, uma
funcio medidora associada a ¢, ¢,...,cx sO pode assumir valo-
res ndo-negativos, sai ndo-decrescente com respeito a cada
¢, e fica privilegiada com respeito a todo o ponto do espago
real a /V dimensdes.»

Demonstracdo de XXIlI. Consideremos NV variaveis reais
finitas #, e uma funcdo £y, ., .. o (#1,%s2,...,2%y), abreviada-
mente 7, que seja medidora associada a ¢;,¢,...,cpn.

Comecemos por supor que ¢, o para cada #, fixemos
arbitrariamente um ponto n=(n,...,ny) no espaco real a ¥
dimensdes, tomemos qualquer namero natural /£ N, escolha-
mos quaisquer /indices #», diferentes uns dos outros, designe-
mos por # o elemento genérico dos indices escolhidos e intro-
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duzamos no segundo membro de 61'), com / em lugar de 7,
as 3 /igualdades u,=v,, a,=inf(c,,%,) e b,=sup (¢, ). Entio,
por um lado, a terceira propriedade das funcdes medidoras
impoe valor nulo a toda a parcela & Fo, . . (%1, 0 8w, p,) tal
que #,,,=¢,, para algum #, e, por outro lado, cada relacio
%, , =1, permite por p,=2, isto seja qual for a posicdo de »,.
Dai e da quarta propriedade das func¢fes medidoras inferimos
primeiro, fazendo /=X, que a fun¢do F, nio pode assumir
valores negativos, inferimos depois, atendendo a todos os
casos em que J<</V (se houver tais casos), que 7, é uma fun-
¢do privilegiada com respeito a todo o ponto n e inferimos
ainda, tomando em conta o comentario feito ao conceito de
funcdo privilegiada, que #, sai ndo-decrescente com respeito
a cada ¢, .

Em face do exposto, a nossa tese estd demonstrada, no
caso de ser ¢, = oo para cada #. O caso ¢,=co, para algum #,
obtém-se a partir do anterior, substituindo em £, qualquer
grandeza inf(c,,,) infinita negativa [sup(¢,,n,) infinita posi-
tiva] por outra finita menor [maior] do que #,, fazendo tender
consecutivamente cada grandeza substituinte para —oo[+oo],
ao longo duma sucessio mondétona, € lendo «impbe limite
nulo» na parte do texto em que se lia «impde valor nulo».

A proposicio XXIII torna oportuno que apresentemos
um exemplo destinado a ilustrar o facto seguinte: Dados o
numero natural V>>1 e os /N ntimeros reais ¢,, qualquer deles
finito ou igual a 4o ou ainda igual a —o, e dada a funcdo
F.,.. e das /N varidveis reais finitas u,, esta escusa de satis-
fazer a quarta propriedade duma func¢io medidora associada
a0s NUMEeros ¢€i,6,...,¢y, Mmesmo que ela se sujeite as trés
primeiras propriedades respectivas, s6 tenha valores nfo-
-negativos e seja ndo-decrescente com respeito a cada ¢,.

Exemplo 49. Suponha-se N=2, tome-se ¢;=c:=0 e esco-
lha-se a funcfo Fy o(u1,us2), igual a 1 se %0, >1<1+u, € igual
a 0 nos demais casos. Entdo, a funcio escolhida tem todas
as propriedades consentidas no preambulo a este exemplo,
mas atribui um valor negativo ao segundo membro de 61'),
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quando se substitui ai 7 por F e se faz ay=a:=1 e by=0,=2.
Com efeito, sai Fo,0(1,1)—Fy,0(1,2)—F0,0(2,1)+£0,0(2,2)=
=0—1—14+1=—1<0.

Observacdo. Considere-se um ntmero real ¢, finito ou
igual a +oo ou ainda igual a —oo, e uma fungdo 7, da varidavel
real finita « que satisfaca as propriedades primeira, segunda e
terceira duma fun¢io medidora associada ao numero ¢, tenha
apenas valores ndo-negativos e seja ndo-decrescente com
respeito ao numero ¢. Neste caso, correspondente a hipétese
N=1, os numeros reais finitos @ e b>a dio F.(a)+F.(6)>0
ou —F(a)+F.(6)>0 ou —F.(8)+ F.(a)>x0, conforme for
aZLc<b ou ¢<a ou ¢xb. Portanto, a observagio posta antes
de XXIII mostra que a fungio /, considerada satisfaz também
a quarta propriedade duma fun¢io medidora associada a .

Continuemos esta sec¢io com duas proposi¢des destina-
das a mostrar que n#o foi mal escolhida a designacio atri-
buida as funcbes medidoras atrds definidas. Em primeiro
lugar, temos a proposicdo seguinte:

XX1V) «Dados os /V numeros reais ¢, (n=1,2,...,V),
qualquer deles finito ou igual a + ou ainda jgual a —, e
definida uma medida p. no produto das /V rectas de BoreL
[Xu (%), Ba (B,)], suponha-se finita a funcdo das /N varidveis
reais finitas #, determinada pela relacio

@) uw( I }Vinf(c,,u.) L2, <sup(cu,u.)l)=
1=n=N
:Fc,,cg,...,;\, (%1 y Uz, . .,uN),

onde deve substituir-se a desigualdade inf(c., #.) L%, por
—oo< Xy, caso se tenha ¢,= —oco. Entio, a funcio determinada
sai uma fungio medidora associada aos numeros c,¢s,...,cn.»

Demonstracdo de XXIV. E mister provar que o segundo
membro de @) satisfaz as quatro propriedades que aparecem
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na definicio de funcio medidora associada aos numeros
dados ¢1,¢2,...,6p.

Para comecar, quaisquer valores finitos das varidveis
#. transformam o argumento de p do primeiro membro de a)
num conjunto de Borel a NV dimensdes e, portanto, conferem
um valor bem determinado ao segundo membro de a).

Mais, se pusermos i,=inf(c.,u,) e s,=sup(cs, u,), para
cada 7, se fixarmos de qualquer modo um inteiro » entre
1 e /V, extremos incluidos, se tomarmos uma sucessio de nt-
meros arbitrdrios ¢, ,10(p=1,2,5,...) e se estabelecermos
a convencio S=i1, ~+ MO €asS0 %, >C, € — NO CASO U, LCps
se fizermos tudo isso, entdo, sejam quais forem os valores
atribuidos as varidveis u,, a alinea 4) da proposi¢io NXXXIII,
a propriedade associativa da multiplicacdo de conjuntos, as
féormulas 7) e a parte da proposi¢io I relativa a continuidade
superior duma medida permitem escrever

S - [Fc,,...,q\; ("')1‘171—1)um)um+1,"'>—
_‘Fc,,...,q\y ("'yum—lyum_Em,pyumely‘")];:

= ( EEP gim—léxm—-l<sm-—1€ > ]‘”m—'sm,p éxm<%m€ >
(continue)

=< g im—i—léxm-{-—l < Sm—}—l% > ) ‘L Oy

onde, dado # == m, deve substituir-se 7,2x, por —oo<lx,, , CA80
se tenha ¢,=—c0, Consequentemente, o segundo membro
de a) resulta semicontinuo do lado esquerdo na varidvel
numero #e.

Depois, provamos a terceira propriedade, raciocinando
como segue: Sejam quais forem os valores das varidveis u,
de indices #==m, nio s6 a relagdo u,=c, oo torna vazio
o argumento de ¢ em a) e, portanto, confere valor nulo a g,
como também Zoda a colec¢do de nimeros #,, , (p=1,2,3,...)
tals que #,,; 4 €= —co [OU #,,,, 1 ¢,,=+oo] confere limite
nulo a funcio p de a), isto por causa da parte de II relativa
4 continuidade superior.

Finalmente, se a fun¢do O considerada no principio da
sec¢do n.° 34 for a restricio de p 4 classe @ coisa esta pos-
sivel por causa de XIX, entdo a fun¢ido ¢ correspondente sai,
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atendendo a 59), também uma restricio de ¢ e, portanto,
a funcdo do segundo membro de @) do enunciado identifica-se
com a do primeiro membro de 63"), para argumentos finitos.
Nesta conformidade, sejam quais forem os numeros reais fini-
tos a, e b,>a,, a funcdo (finita) do segundo membro de a)
atribui ao segundo membro da igualdade 61') um valor igual
ao do seu primeiro membro, quer dizer, por causa de 63),
igual a (I |@,Lx,<0,})>0. Fica assim completada a demons-
n

tracdo de XXIV.

Segue uma proposi¢io que pode considerar-se a inversa
de XXIV. Ei-la:

XXV) «Dadas /V rectas reais X, (x,)(n=1,2,...,V) e
dados N numeros reais ¢,, qualquer deles finito ou igual a
+oo ou ainda igual a —oo, considerem-se as /Vvariaveis reais

finitas «, e suponha-se que £, .. ...cy (141, %2,. .., %y) € uma fun-
cio medidora associada aos numeros ¢i,¢,...,cy. Entdo, a
relacio

a) FC:,cw-um(ul y U ye ey uN>=

=4 ( T inf(ca, ) ZL%<<sUp (€n,204) )
1=n<N

(onde deve substituir-se a desigualdade inf(c.,#.)<Lx, por
—oco< %,, €as0 se tenha ¢,= —oo) dd uma func¢do de conjunto ¢,
a qual admite uma e s6 uma extensfo a uma medida p defi-
nida no espago de BoreL (X, 5) a /V dimensdes, medida esta
que sali finita-c em B e finita na subclasse principal de .»

Demonstracdo de XXV. Antes de mais nada, recorde-
mos a notacdo introduzida no principio da sec¢do n.° 34 e
observemos que a fun¢do finita ¢ da nossa relacio a) se
encontra definida na classe @(¢1,¢2,...,¢x) € tem possibili-
dade de estender-se a uma medida definida em (X, &), porque
ela ¢ uma funcdo aferidora, isto em virtude de XXIII asse-
gurar a sua nio-negatividade.

Ora bem, as propriedades primeira e quarta das fun¢Ges
medidoras permitem igualar o segundo membro de 61'), com
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F em lugar de 7, a uma funcdo aferidora finits, digamos O,
que sai definida na classe @. Esta fungio O resulta quase-
-continua no intervalo vazio, porque a segunda propriedade
das fun¢des medidoras e a existéncia dum inteiro m tal que
1£msN e @t bm[@m=0,) conferem limite [valor] nulo ao
segundo membro de 61'), sempre com # em lugar de 7, con-
forme pode ver-se considerando que, uma vez escolhidos
valores admissiveis das grandezas ..., %1, poyy Uit pors s -
a hipétese ¢,,0,, implica ¢,,>a,, e a hipotese ¢,,< b, implica
cm<am, para a,, suficientemente proximo de 4,, [o Unico a,],
donde — 7%, o (o oy Bty o) F 0, ey (oo oy lhm, 2y )—>0[=0],
em qualquer dos casos.

Posto isso, vamos provar que as propriedades supostas
para a fungdo Fi,,.. forcam a funcio O a ser finitamente
aditiva na classe @. Para este efeito, consideramos quaisquer
dois pontos situados em X, o primeiro a de coordenadas a,
e o outro & de coordenadas &,>.a,, escolhemos arbitraria-
mente um inteiro » entre 1 e N, extremos incluidos, supo-
mos a,,<b,,, fazemos corresponder a esse s algum niumero
d, tal que @,,<d,,<b, e designamos por @' o ponto de coor-
denadas ...,@u_1,@u, @ui1,... € por &' o ponto de coordena-
das ...,bu-1,@m, buyi1,... . Mais, tomamos a colecgdo «,8,. ..
e as duas modalidades da colec¢do o,5,... que o par de pon-
tos @ e 4 introduz no segundo membro de 61'), notamos que
as colec¢bes e modalidades analogas correspondentes ao par
de pontos a € &' e ao par de pontos a' e 4 s6 podem diferir
das primeiras para n=m e @,,2£¢,<b,., introduzimos as
CONVENGOES %y, 1=y Uin,o=C=1p 1 € 4l 5=b,, conser-
vamos as regras explicadas a propésito de 61') para quaisquer
simbolos #,,,, que ndo levem plicas e formamos a soma do
valor da funcfio ® no intervalo a N dimensdes correspon-
dente ao par de pontos @ e 4’ com o valor da mesma funcio
no intervalo correspondente ao par de pontos o' e 4. Entio,
se a colecgdo ¢,a,... for a que se refere ao par de pontos
a e b, qualquer das hipéteses a,, <L, <d, ou d,LCp< by
torna a soma mencionada igual ao somatério, quando
l_é. . .,pm_l,Pm;H gr o .é?, de



TEORIA DA MEDIDA E DA PROBABILIDADE 191

(=) pot2at (B e (oo oy nt, gy Gomy Yontt, propyy e+ o)+
L ag (o oy Mt poys @y Uomtd sty e o 2 )—
"—En---: o ( sy Uit pry @ y a8 pagy 9o o ~>+

+F€a yess O (’ s oy Yanat, piy b y Bt 1, iy g o o )]

e qualquer das hipéteses restantes torna a dita soma igual ao
somatorio, quando 1Zp,...,pnL2, de

/
i(—l)??+?c+ ) [Fci;-": oy (' . ’u’"—laﬁm-—l 3 um:?m ’ um+1:Pm+1 LA ')+
+ F‘n"': N (' A § u”"lypm—-1 ! %{”/1;17/'1 b u”"ﬁ'l:Pm-H 1 .)]z(_. 1)?@+?G+ .
: Fcl yeens O (' vy u”"'-lypm—»l y u”’; Pm? um'l“l sPmt19° * '))
onde vale o sinal + na hipotese ¢,,<a., e o sinal — na hipo-
tese ¢, bu .

Do que precede concluimos que qualquer das quatro
hipoteses possiveis conduz a igualdade

64) O(- <@t L Xt < Oput {3} Wi £ X1 <A X (continuay

S Wy s £ X 1< b1 {5+ )+ O (- X< Wit LK1 < b1} >} (eontinua)
SNy £ Xy < b} X} W1 £ K1 < bpupr| >< -+ ) =

=0 (- < |1 £ K1 <bpey | X} £ 200 < b} X (eontinuay

X;am—}—l éxm—i—l <bm1—1: > ')y

a qual subsiste se for a,,=d,,<b., @u<dp="0m0u @=d,,=0b,,.

Suponhamos agora que a cada #» correspondem um
numero natural O, e nameros d,,,, (¢.=1,2,...,0,+1) tais
que dy,1=Qu,dn,0,+1=">0s € du g +1>dy 4 Para qualquer
g»Z Q.. Nesta conformidade, a igualdade 64) implica a nova
igualdade

64’) ®( "><3am~1éxm—1<bm—lsX%améxm<bms>< (continua)
X gt £ it < bpr | <o00) =
= 2 6 ( - ‘am—l £ X1 <bm—1$ > (continua)

1=gm=0u

=

> z dnz,qméxm<d;u’ g1 } > Eam+1éxm+1 < 6m+1§ > .. .),
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a qual reproduz 64) no caso (),,=2 e resulta de aplicacdes
repetidas de 64) no caso 0,,>2, caso este em que se inter-
cala primeiro 4, , entre a, e 0., depois d,, s entre d,. . e
b, etc., e, por fim, 4, o, entre d, g,1 € b, . Ora bem, se
utilizarmos 64'), sucessivamente para m=1, m=2,..., m=J1V,
e se tomarmos em conta a igualdade 8'), somos conduzidos a
relacio

65) @( 2 Ddl,g,éx1<d1, g:+1 E >X e (coniinua)

1IEH=0 1= =04
v < {dN:‘A‘éx:\'<dN:7x+1”) =
= Z O(jdy, g, L21<<d1, g1} (ontinnay

1= = Qi l=ge= Oy

Xy, gy L X8 < dy g +1)-

Vamos passar a admitir que o conjunto nio-vazio
C=0}a,£x,<b,}eC ¢ a soma dos K conjuntos
n

C‘k:‘—‘ngan,kéxn< bn,kze@ (k=1)2)"'![{)'

Entdo, seja qual for #, podemos designar por d. i, z,...

.,a’n,q”,. .. 08 2K=(0 numeros Au, i € bn,k, dispostos por
ordem nao-decrescente, para concluirmos primeiro que qual-
quer # d4 a igualdade

)'an,k&—-/_xn<bn,k§:: 2 gdn,qnéxn<dn,%+127

an i =dn, g, <0n, bk

depois, por causa de NVII, que se verifica também a igual-
dade

;anéxn<bn= = U gan,héxn<én,kf ==
1=k=K
= ‘2 {d":qnéx”<d"7%z+1}
19, =01

e finalmente, por causa da férmula 8'), que se verifica a relacio

2 (;d1;91éx1<d17%+1s><"'

15¢:=0-1,.,1=g,= 0-1 (continua)

p=1

'.'X‘deq_\Jéx1V<dN,q,\r—}»l}):C: 2 Ck,

1=k=K
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Ci= 2 (Jdv, g L2 < Ay, g1} <0+

A, = d ’ 9!<b11k""’a1va r=dn, gn<BN & (continua)

o< {dy, g £ 23 < divgeial)], para cada k.

O que precede e a relagdo 65) mostram que 0 (2 C) =20 (Cy),
k k

ficando assim provada a aditividade finita da funcio ©.

Em face do exposto, a proposi¢do XX prova que a fungio
O pode estender-se, dum e dum sé modo, a uma medida v defi-
nida em B, medida esta que sai finita-c em B e finita em C.
Entdo, a restricdo de p. @ classe @(c1,¢a,...,cN) coincide com a
Sfuncdo |, conforme pode ver-se através das consideragoes
seguintes: Se ¢, for sempre finito, basta fazer corresponder a
quaisquer valores das varidveis #, as relagbes a,=inf(c¢,, «,
e b,=sup (¢., #,), validas com cada », para que a ferceira pro-
priedade da fungdo I, ... .. e a relagio a) do nosso enun-
ciado reduzam o segundo membro de 61') a Y (Il {a,ZLx,<ba.})

n

e para que, simultaneamente, a defini¢io das fungdes O e u
torne o mesmo segundo membro igual a p(ll{a,Lx,<b.}); se
n

¢» for infinito, para algum #, basta tomar as grandezas a, e
b, apresentadas, substituir qualquer grandeza a, infinita
negativa [4, infinita positiva] por outra finita menor [maior]
do que #, e fazer tender consecutivamente cada uma das
grandezas substituintes para —co[4-co], a0 longo duma suces-
sio monoétona, basta fazer isso, para que a terceira proprie-
dade da fungdo 7, ,..,.,. € a relagio a) do nosso enunciado
confiram ao segundo membro da igualdade 61') o limite
(O {inf (¢, , #,) L X, <<sup(¢., #,)|) € para que, simultanea-
n

mente, a definicdo das fungbes ® e v e a continuidade infe-
rior de p confiram ao mesmo segundo membro o limite
e (Uinf (6u , ta) LXu<sUP (Cn #:)}).

Finalmente, se p* for uma medida que estenda § a B e
se O* for a restricio de p* a classe @ entdo primeiro o estudo
feito na sec¢do n.° 34 mostra que 61) vale com ©*, em lugar
de O, depois a relagdo a) do enunciado e a defini¢io da
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funcdo ©® mostram que ©* se identifica com © e, por fim
a proposi¢io XX mostra que u* se identifica com p. Con-
cluimos que @ medida designada por u é a vunica medida que

estende b a B, ficando assim completada a demonstracgio
de XXV. "

Observagdo. A construcio efectiva da medida » de XXV
a partir da funcio ¢ faz-se, igualando primeiro o segundo
membro de 61') (com /" em lugar de 7°) a funcido O e identi-
ficando depois o segundo membro de @) do enunciado de XX
com a medida p.

Fechamos esta sec¢io com uma proposi¢do que estabe-
lece o nexo entre produtos (ordindrios) de fun¢bes medidoras
e produtos de medidas definidos em corpos de Borel com
um ntumero finito de dimensdes.

XXVI) «Fagam-se corresponder a cada numero natural
nLN, com N>1, uma varidvel real finita #, e um ndamero
real ¢, finito ouigual a + oo ou ainda igual a —o, escolham-se
arbitrariamente nimeros naturais N, N'">N',...,N e supo-
nha-se que F, . ., i, cniye . 830 fungdes medidoras, a
primeira associada aos numeros ¢,...,cn, a segunda asso-
ciada aos ntmeros ¢y.y1,...,cn7, etc. Entdo, a funcido 7, . .,
definida, para quaisquer valores das variaveis #,, pela relagdo

@) Fopyoy W1y .y un) =

= F€/| yeaeg €N (ul IRIRS) ul\”) ’ Fc{(’/-x»-x yreny ENIY (”N’—H)' ey ”N”)- o

sai uma fung¢io medidora associada aos numeros ci,...,cn.
Além disso, as (unicas) medidas u,u,u", etc. determinadas
pelo primeiro membro de @) e por cada um dos factores do
segundo membro de a) resultam todas finitas-c e sdo tais que
¢ se identifica com o (unico) produto de g/, p", etc.»

 , 'Demonsz‘ragdo de XXVI. Escrevamos a relagio a) do
enunciado sob a forma
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@) 4( 0 Hnl(e., un)Laon<sup (6, un)l)=

~0' (T {ind (6n , 20) 8w <SUP (G 12)]) -

1=n=<N'

S( 3| inf (6., ty) L2, <<SUD (€0 y t4u)]) - -y
N'41=n=N" v

onde deve substituir-se a desigualdade inf(c,., #.)Lx, por
—oo< %y, caso se tenha c¢,=—oo. Nesta conformidade: Pri-
meiro, a proposi¢io XXV esclarece .que o primeiro (segundo,
etc.) factor do segundo membro de &), por hipétese finito,
admite uma e s6 uma extensio a uma medida p' (¢, etc.) defi-
nida no corpo de Borel correspondente &' (5", etc.), a qual sai
finita-o; depois, a proposi¢do XIII e (eventualmente) a associa-
tividade da multiplicagio de corpos de Borel, esta assegurada
por N XXVI, mostram que existe um e s6 um produto p das
medidas ¢, ¢, etc,, o qual sai também finito-c € se encontra
definido no corpo de Borel a /Vdimensdes, seja &; em seguida,
a proposi¢io XXIV prova que o primeiro membro de a)
resulta uma funcio medidora associada aos nimeros ¢i,...,6x;
por fim, a proposi¢io XXV identifica p. com a tinica extensido
do primeiro membro de ') a uma medida definida em &.
Estd pois terminada a nossa demonstracio.

Observacdo. A proposicdo XX VI pode adaptar-se ao-caso
em que as variaveis de F', F', etc. ndo se sucedem pela
ordem natural, recorrendo-se, para o efeito, a4 correspondéncia
biunivoca existente entre o espaco real X a NV dimensdes e
o espago que resulta de X por uma permutagio das coorde-
nadas (do ponto genérico) convenientemente escolhida.

36. A marginacio de medidas definidas em espacos de Borel
com um namero finito de dimensdes. Consideremos o espago
de medida [ X (x),8(8),r(B)], onde [X(x),&B(B)] significa o
produto das /V rectas de Borel [ X, (#,),B,(5,)] (#=1,2,...,N),
tomemos uma colec¢do nio-vazia formada por inteiros posi-
tivos #,s>7,#>s,..., tais que o seu numero seja inferior a V
e o valor de qualquer um deles ndo exceda /V, e designemos
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por [X'(¥),& (B')] o produto dos factores [X, (x.), B,(By)]
para os quais o indice » assume um dos valores »,s,?,....
Entdo, seja qual for o numero finito P >0, a proposi¢io
N XXVII" e a relagdo 87) mostram que a medida marginal de
u no espago X' de valor prefixado igual a p(X)/P é uma
fun¢do pp'(B') definida pela formula

66) ru'(B)=p(B)/P,

na qual, dado B', o simbolo B representa o conjunto B
especial que é o cilindro de base B' e de geratrizes paralelas
as rectas reais X,, com indices # diferentes de cada um dos
inteiros »,s,4,....

*
* *

A féormula 66) estabelece a passagem directa da medida
inicial p para a medida marginal pp'. Todavia, pode pensar-se
numa ligagdo indirecta, a instituir entre a restri¢io de 1 a
subclasse principal de 8 e a restri¢cio de py’' a subclasse
principal de $'. Eis o motivo porque enunciamos a proposi¢io
seguinte.

XXVIH) «Considere-se o espa¢o de Borer [X(x), B (B)]
igual ao produto das N>1 rectas de Borer [X, (x,), 8B, (B,)]
(n=1,2,...,N), represente-se por 1 la,£x,<b,} o con-

1=n=N
junto genérico da classe @ igual a subclasse principal de &,
suponha-se que © € uma funcdo aferidora definida em e,
parcialmente aditiva-c e quase-continua no intervalo vazio,
escolha-se um numero finito >0, reparta-se a colec¢io dos
valores # possiveis por duas colec¢bes parciais ndo-vazias,

a primeira de elementos %,i>%,7>7,... e a outra de ele-
mentos #,s>7,f>s,... € faca-se X'"=X;<X;<X;><... e
8B =8B, X PBs>< 5By >< -+ - . Entlo, a funcio »© definida na classe

@, igual a subclasse principal de &, pela relacgio

@) P-p@( 0 la,La,<b,))=

H=r,5,1,..
= lim O( O lauLx,<bul)
Ay @i 5 B youny =Dy, —b; y =i i ) — 1=n=N
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Nota—A ultima linha da pagina anterior deve ler-se

- lim O( I la,Lx,<bul),
N

Ay @i grer y—Ohy=bi yoo =k ap=aj= - =—by=—b;=-- 1=a=<

sai aferidora parcialmente aditiva-¢ em € e quase-continua
no intervalo vazio e sai também a restricdo a @ de toda a
medida que possa obter-se marginando, com respeito ao espago
X" e ao factor de escala P, qualquer extensio de ©® a uma
medida definida em &.

Em complemento, se a fun¢do O se apresentar finita-s,
existe uma tGnica medida que estende p®' a $B', a qual resulta
finita-c e é dada pelarelagido ¢)de XX (devidamente adaptada).
Finalmente, para que a fun¢do p0O' saia finita-¢, é necessdrio
[suficiente] que seja finita-c [finita] alguma extensdo de © a
uma medida definida em &.»

Demonstracdo de XXVII. Seja qual for a extensio de O
a uma medida ¢ definida em & e sejam quais forem os nime-
ros a, e b,>a, de indices 7,s,4,..., a féormula 66) e a parte
de II relativa a continuidade inferior ddo a igualdade

P Pfj"( i1 %aﬂéxn<bn{)=

n=1,8,8y.0.

— lim e( I angxa<bal),

Ahs @y greey =Bl y— By yoee§ =03 @ =@, = ==y == by =1t 1=n=<N

a qual prova, juntamente com a rela¢do @) do enunciado, que
a funcio pO' é a restrigdo da medida marginal ,u' a classe @'.
Este facto e a proposi¢do XIX forcam @' a ser uma fungio
aferidora parcialmente aditiva-¢ em @' e quase-continua no
intervalo vazio. Portanto, esta demonstrada a parte principal
de XXVII e so falta tratar da parte complementar.
Representemos por ,# a medida maximal que estende 0
a &', a qual ¢ comparativamente facil de construir pelo pro-
cesso indicado em XX, Também a proposi¢io XX mostra que
nenhuma das duas fun¢des p®' e 7' pode ser {inita-o sem
que a outra o seja e mostra ainda que a hipdtese da finiti-
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tude-oc de .7 obriga esta medida a coincidir com pit'+ Final-
mente, o Gltimo periodo de XXVII resulta dos factos expos-
tos e da proposigio XIL

Vimos, na parte complementar de XXVII, que as medi-
das pu' e 7' coincidem se a fun¢do O for finita-c e vamos
ver agora, através de exemplos, que as relagdes entre pit' & o7

se tornam um tanto imprevisiveis se a funcdo @' for infi-
nita-o.

Exemplo 50. Consideremos o espaco de Borel a duas
dimensbes, designemos por B, o conjunto de Borel formado
pelos pontos (#1, x2) tais que x,=x: e 4, tem valor racional e
tomemos a medida ¢(B) que atribui a qualquer conjunto
de BoreL plano B um valor igual ao numero de pontos situa-
dos em BNDB,. Embora a medida y seja finita-c [veja-se a
alinea ¢) de N XXXV}, a sua restri¢do a subclasse principal
@ do corpo de Borel plano & sai uma fun¢io © infinita-o,
a qual toma o valor +oc ou 0 num conjunto de @, conforme
este abranger ou deixar de abranger pontos tais que % =x,.
Se escolhermos agora =2, A=2 e =1, entdo, por um lado,
a medida marginal o' resulta finita-o, porque ela atribui a
qualquer B'e ' um valor igual 2 metade do numero dos seus
elementos racionais, e, por outro lado, a funcio ,0' torna-se
infinita para qualquer argumento nio-vazio, quer dizer, infi-
nita-c dum imodo especial, sucedendo o mesmo a medida
maximal ¢#'. A diferenca entre as duas medidas o’ € 97" desa-
parece, porém, se passarmos a interpretar a letra g como
representativa da medida maximal que estende a funcio ©
do texto ao corpo B, pois neste caso sai u(B)= + oo para qual-
quer B que compreenda pontos sujeitos a igualdade a;=ux,.®

Exemplo 51. Designemos por p a medida maximal que
estende ao corpo de Borel plano $ a funcio ® definida em @

) Talvez valha a pena notar que a nova medida w atribui o valor
zero ao conjunto de Borel caracterizado pela relacio x,—x,%0 (que é o
conjunto R'+ R’ do exemplo 32), isto por causa da relagio @) do enun-
ciado de XX e das propriedades da funcdo 6.
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(subclasse principal de 8) como segue: Dado Ce@, sai 0(C)
igual a2 400 ou a 0, conforme C compreender ou deixar de
compreender algum ponto de coordenadas x; e xp tais que
[x122|> 1. Entdo, a medida u considerada ndo s6 sai infinita-o
(veja-se XX), como também atribui o valor 0 ao conjunto
{4,=0]>| —oc<#<{ +oo|, conforme pode ver-se escolhendo,
em a) do enunciado de XX, os conjuntos C,,=| —1/mLx,<1/m|><
x| =m[2Lxs<mj2| (m=1, 2, 8,...). Se fizermos agora P=1,
h=2 e r=1, entdo, por um lado, a medida marginal ;' resulta
infinita-c (veja-se XII) e atribui o valor zero ao conjunto
{2,=0{ e, por outro lado, a fun¢do 0 resulta infinita para
qualquer argumento ndo-vazio, quer dizer, infinita-c dum
modo especial, sucedendo o mesmo a4 medida maximal ;7.
Logo temos ' (J#1=0})=0 3 oo =1#'(}#;=0}{), donde conclui-
mos que a medida maximal que estende p0' a &' escusa de
coincidir com a medida marginal .p/, mesmo que a medida
marginada ¢ seja a medida maximal que estende © a &.

&
* &

Menciondmos, na ultima parte da demonstragio de XXVII,
que a hipétese duma fungdo O’ finita-o permite estabelecer
a ligacdo entre as medidas p e ,p', com certa facilidade, por
intermédio da relagdo a) de XXVIL, como quem diz, por
intermédio das restri¢ées de cada uma dessas medidas a
subclasse principal do seu corpo de Borel. Obviamente, a
ligacdo referida simplificar-se-ia ainda mais se pudesse ser
introduzida através do par das func¢des medidoras que a rela-
¢do a) de XXIV faz corresponder ao par de medidas consi-
derado. Dai o interesse que oferece a proposigdo seguinte.

XXVIID) «Tomem-se um numero finito £>0, as rectas
de Borer (X, ,8B.) (n=1, 2,..., V) e IV ntmeros reais ¢,, qual-
quer deles finito ou igual a +< ouigual a —oo, considere-se
uma funcdo F,,,...,., das NV variaveis reais finitas «, que
seja medidora associada aos ntmeros ¢, e reparta-se a
colec¢do dos valores # possiveis por duas colecg¢bes parciais
nio-vazias, a primeira de elementos g iguais a 4,7>4%, 7 >1,...
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e a outra de elementos ¢ iguais a »,s>7,7>s5,.... Além disso,
facam-se corresponder a cada g oS nuUmMeros ng 1= —oco €
ng,2= oo € uma varidvel natural p, e escreva-se a igualdade
entre funcdes

a) P'PFf/rst,c[,... (%r,'”s,u/,--.):

= 3 lim Fo oo (01, v oy uy),

1= oy iy =2 "It“)nlnphﬂ‘i”"‘i;piy-'-?I"I«|=|“il="'

onde vale a seguinte convengio relativa ao simbolo de soma-
téorio 3': Caso haja parcelas tais que cyz=mn, ,,, para certos
valores de g, cada uma dessas parcelas deve substituir-se
pelo numero zero.

Nestes termos, se p for a (unica) medida compativel,
no produto dos corpos ., com a fun¢do medidora conside-
rada, entfo a fun¢do pF) ., ., ..., definida por @), ndo sé pode
igualar-se a uma certa restricdo da medida pu' que resulta da
margina¢do de p com respeito ao produto dos espagos X, e
ao factor de escala P, como também essa fungfo sai infinita,
no caso de py' deixar de determinar uma fun¢io medidora
associada aos numeros ¢,, e sai finita e igual a fun¢fo medi-
dora associada aos numeros ¢; e determinada por pg', no caso
oposto, no qual pp' é uma medida finita-s e a tnica medida
compativel, no produto dos corpos $,, com a fun¢do definida
por a).»

Demonstracdo de XXVIII. Claro que a (unica) medida u
referida no enunciado existe (e é finita-¢), isto em virtude
de XXV. Entdo, sejam quais forem os valores atribuidos as
varidveis #,, basta ter em vista a parte de Il relativa 4 con-
tinuidade inferior ou, eventualmente, a propriedade p(0)=0
para reconhecer que a parcela genérica do segundo membro
da relacio a) supracitada sai igual a p(¥Yi><¥ex<.- < ¥y),
onde, dado ¢, o simbolo Y, tem um significado independente
dos indices p., a saber o intervalo linear | —co<<x,<2,} ou
leg Lay<<ugl ou lu,Lx,<c,{, conforme for ¢;,= — o ou
—oo<Cg< g OU %,L6,4, € onde, dado g, a hipdtese p,=1 iden-
tifica Y, com |—co<x,<6,| € a hipétese p,—2 identifica Y,
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com }—oo<lx,<+co| ou com |¢,Lxy<<+ cof, conforme for
€g= —o0 OU €g>—oo. Logo a propriedade aditiva das medidas,
a igualdade 8') (adaptada) e a relacdo 66) mostram que o pri-
meiro membro de @) vale P vezes a restricdo da medida pp'
aos produtos de conjuntos Y, do tipo mencionado. Portanto,
a proposicdio XXIV prova que o segundo factor de a) sai
infinito, no caso de pp' deixar de determinar uma funcgio
medidora associada aos numeros ¢,, e sai finito e igual a
fung¢do medidora associada aos numeros ¢, e determinada
por pp', no caso oposto. Finalmente, se a fungdo definida
por a) for medidora, a proposi¢do XXV esclarece que a fun-
¢do nio pode provir duma medida diferente de pp' e que py'
nio pode deixar de ser uma medida finita-¢. Fica assim com-
pletada a nossa demonstragéo.

Observacdo. Caso cada um dos nimeros ¢, seja infinito
com sinal gualificado, a relacio @) do enunciado de XXVIII
simplifica-se para

/
P' PFcr,cs,c[,..‘ (ur,us,uh- . -)=
= lim Fc,,cﬁ,...,c‘\l (ulyu21"')u1\[)'
U W=l U > =L gy g Vg = g =

A demonstragio de XXVIII pode adaptar-se por forma
que dé& a proposi¢do seguinte.

XXVII') «Seja p a (dnica) medida, definida no produto
das NV rectas de BoreL (X,, 8,) (v=1, 2,...,/NV), da qual pro-
vém a funcfo medidora 7, .., ... .o (#1,%2,...,u,) associada aos
numeros ¢,. Entdo, se fizermos corresponder a cada # os
NUMEeros 7,,1=—o € 7, s=-+oc0 € uma varidvel natural p,,
obtemos a igualdade

o) p( I X)—

1=n=<N
= 2! lim Fo e, (tt1 ey uty),
1= by =2 “'1"’7‘171",1~--)u,\7">"‘/\',p’\3””1]="'=}”‘NI

onde vale a seguinte convencdo relativa ao simbolo de soma-
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torio 2': Caso haja parcelas tais que ¢,=1%.,,,, para certos
valores de », devemos substituir cada uma dessas parcelas
pelo ntimero zero.»

Demonstracdo de XXVIII'. A parte de I relativa a con-
tinuidade inferior ou, eventualmente, a propriedade u(0)=0
permite reconhecer que a parcela genérica do segundo mem-
bro de @) sai igual a p(¥Y1><Ys>< ... < Yy), onde se diz para
cada # o mesmo que se dizia para cada g na demonstracio
de XXVIIL Logo a propriedade aditiva das medidas e a igual-
dade 8') provam que o segundo membro de ) coincide com
u (Il X,,), ficando assim demonstrada a nossa tese.

n

Observacdo. Caso cada um dos numeros ¢, seja infinito
com sinal qualificado, a relagdo ) do enunciado de XXVIII
simplifica-se para

w( D X)- lim Foppoooeg (te oy ).

1I=n= Uy >y, Uy >—Cy % = =]y |
Terminamos esta sec¢fio com um exemplo.

Exemplo 52. Suponha-se P=N=2 e c,=c=—2 ¢
tome-se a funcido medidora Fls (w1, us) que é igual a s se
#, e us forem ambos positivos e que € igual a 0 nos demais
casos. Entdo, a funcdo oF.; (#;) ndo € medidora, porque

lim Fls,_s(#1,u2)=+oo para qualquer #,>0. Existe, porém,

%o —> 4 ®

a funcio medidora /s (us), a qual sai igual a 0 ou a us, con-
forme for #e0 ou u,>0. Finalmente, o valor de p(X1<X5)
calcula-se em -fco.

37. Limites e continuidade das funcdss medidoras. A defi-
nicdo de funcio medidora associada a certos niumeros declara
que tal funcio &, em toda a parte, semicontinua do lado
esquerdo com respeito a cada uma das suas varidveis. Esta
‘seccdo destina-se a resolver outros problemas de limite e de
continuidade relacionados com func¢ées medidoras.

Para comecgar, apresentamos a proposi¢io seguinte.
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XXIX) «Considerem-se as /V varidveis reais {finitas
u,(n=1, 2,..., V), suponha-se que F,, ., ... o5 (@1, 8, ...,0y) €
uma funcio medidora associada aos NUMEros €1,62,...,0,
qualquer deles finito ou igual a 4o ou ainda igual a —o, e
designe-se por g a (inica) medida definida, no produto das V
rectas de Borer [ X, (%,), 8. (B,)], pela relagio

CZ) F017€:7~-~;CN (ul,uz""yuN):{U'( H ;Znéxn<sn2);

1=n<N

onde, dado n, vale Z,=inf(c.,#,) e s,=sup(c,,u,) e onde
deve substituir-se a desigualdade 7,2%, por —oo<(x,, caso
se tenha ¢,=—co. Entdo, seja qual for o inteiro = tal que
1£Lm~<N e sejam quais forem os valores atribuidos as varia-
veis u,, a hipotese de a grandeza positiva ¢, tender para
zero implica que o médulo da diferenga

Fm 302 yunes Oy (..., U1, Usp+ Eom ’ ”1;z+1 ,---)—Fc”ci,..., ¢y ('-'y U1y Uirs y U1 y---)
tenda para

I (- X %Z'm—léxm—l<sm~12 > {xm: um{ >< %iirz+léxm+l<5m+1§ > --)-»

Demonstracdo de XXIX. Comecemos por notar que a
relacdo g) define, de facto, uma e s6é uma medida ¢ no espago
de Borel a /N dimensbes (isto por causa de XXV) e que a
diferen¢a do enunciado tem um limite nfo-negativo ou nio-
-positivo, conforme for #,x¢,, ou #,,<c, (atenda-se a XXII).
Se #m>c,, prova-se a tese, substituindo primeiro os termos
da diferenca do enunciado pelas suas expressbes em p[dadas
por a)], igualando depois a diferen¢a das medidas & medida
da diferenca [veja-se 4) de N XXXIII] e recorrendo, por fim, a
parte de Il relativa a continuidade superior. Se %,,<Cm, prova-
-se a tese, multiplicando primeiro por —1 a diferen¢a do enun-
ciado e procedendo depois, com a nova diferenca assim obtida,
do modo j4i explicado a propoésito do caso #,,>.c,. Fica assim
completada a demonstra¢io de XXIX.

A funcdo medidora de XXIX, além de ser semicontinua
do lado esquerdo na varidvel numero , é¢ também nédo-decres-
cente com respeito ao nimero ¢,. Portanto, uma vez escolhi-



204 PEDRO BRAUMANN

dos os valores de m e das grandezas u,, o limite do médulo
da diferenca referida na parte final do enunciado de XXIX
é a diferenca entre os limites maximo e minimo da fungio
medidora, ambos tomados com respeito a varidvel ntmero s,
ou, a mesma coisa dita por outras palavras, é o salto da fun-
¢do medidora com respeito d varidvel nimero m, o qual sai nulo
ou positivo, conforme a func¢do for continua ou descontinua
na varidvel namero m. Dai uma variante de XXIX, a saber:

XXIX") «Retomemos a fun¢do medidora da proposig¢do
XXIX e a medida p que lhe corresponde pela relagido a) res-
pectiva. Entédo, sejam quais forem os valores do inteiro m e
das grandezas u,, a fungio medidora considerada ndo sé
admite um salto com respeito a varidvel numero » igual a

f-L(-"X%im—léxm—l<sm—12X%umix xim+léxm+l<sm+1%>< -'-))

como também sai continua na varidvel nimero m, quando e
s6 quando for nulo o valor de g aqui citado (coisa esta que
sucede certamente na hipétese u,=c,, para algum n=£m).»

Observagcdo. Facamos V=1 em XXIX e XXIX' e simpli-
figuemos a notacdo, suprimindo o indice #»=1. Entio, seja
qual for o valor atribuido a variavel #, ndo s6 o salto
lirno{E (u+:)—F.(u)| resulta igual a p({u}), como também a

funcido F, sai continua no ponto #, quando e sé6 quando for
¢ (ju!)=0. Guardamos, para a proposi¢do XXXII, a prova de
que o conjunto dos pontos de descontinuidade de F, é finito
ou, quando muito, numeravel.

Quando se trabalha num espago de Borel com um ntumero
de dimensées superior a 1, ndo deixa de ter interesse o coro-
lario da proposi¢dio XXIX' que passamos a enunciar.

XXIX") «Retomemos a fun¢do medidora da proposicio
XXIX e suponhamos que /V>>1. Entdo, sejam quais forem os
valores do inteiro m e da grandeza ,,, a hipétese de a funcio
medidora se apresentar continua [descontinua) na variavel
numero m para certos valores u, das variaveis de indice #nm
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implica que ela saia também continua [descontinua] na varia-
vel nimero m para quaisquer valores #}, das varidveis de indice
n=tm tais que cada u, [#,] fique situado entre ¢, e u, (¢, € ), ).»

Demonstracdo de XXIX". A nossa tese é uma consequéncia
imediata da proposigdo XXIX' e da alinea 4) de N XXXIIIL

Segue um exemplo especialmente escolhido para assi-
nalar a necessidade de levar mais longe o estudo de conti-
nuidade aqui encetado.

Exemplo 53. FEscolham-se o espaco de Borel (X,8) a
V=3 dimensdes, 0s trés NUMEros ¢;=cy=c¢3= —oco € a medida
@ que atribui o valor 1 ao conjunto elementar {(0, 0, 0)} e o
valor 0 ao seu complementar. Corresponde a fun¢ido medi-
dora Fo o, ,-x (%1, #s, 43) que é igual a 1 para wu,, us € us
conjuntamente positivos e que € igual a 0 nos demais casos.
Esta funcdo sai continua na variavel numero m(m=1, 2, 3),
salvo se u,,—0 e, simultAneamente, #,,>>0 para n=Fm. Note-se
que a hipdtese u;=us=u3=0 torna a funcio descontinua na
totalidade das suas varidveis e continua em cada uma das suas
varidveis (e até em cada par de varidveis).

&
* &

As conclusfes até agora alcancadas nesta secgfo dizem
respeito a problemas de limite e de continuidade de fung¢des
medidoras, no caso particular de se tomar uma variavel de
cada vez. O caso geral trata-se por processos semelhantes
‘aos anteriormente usados, saindo as contas e os resultados
um nadinha mais complicados na hipétese de se tomar mais
de uma varidvel de cada vez, isto porque deixamos de dis-
por dum conceito ébvio de salto local com respeito a totali-
dade das variaveis consideradas.

Passamos a enunciar a proposig¢fio principal relativa ao
assunto que presentemente nos preocupa.

XXX) «Retomemos a fun¢io medidora da proposigio
XXIX, no caso N>1, e a medida ¢ que lhe corresponde pela
relacio a) respectiva. Entfio, sejam quais forem os valores
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atribuidos as grandezas u,, a funcio medidora considerada
sai continua na totalidade das suas variaveis, quando e s6

quando p confere o valor zero ao conjunto U ( II I, ,),
I=mz=N 1=n=N

onde, dado =, o simbolo /,.,,. significa o conjunto elementar
j#.} € cada simbolo 7, . de segundo indice » == significa
o conjunto |u,Lx,<¢.} se u,<c,, 0 conjunto lc,Lx,Lu,| se
UpCp>—oc0 € 0 CONJUNto | —oo<l X, Lity] S€ €= —o0.»

Demonstracio de XXX. Designemos por U a unido de
intervalos a /V dimensdes referida no enunciado e comece-
mos por provar que a condicio u(U)=0 é necessaria para
que a funcdo medidora em causa possa sair continua na tota-
lidade das suas varidveis.

Escolhidos quaisquer valores para as grandezas #,, con-
siderem-se pares de pontos #'=(ui,..,uy) e v’ =(ul,..,u%) tais
que ¢, <<uy< syl OU Cp=1j =14, <1, OU <t <tUj< 6y, CON-
forme for ¢,<u, ou ¢,=u, ou ¢,>u,, e faca-se i,=inf(c,,u),
Sp=5sUD (¢, uy), & =1inf(c,,uy) e si=sup(c,,u,), para cada n.
Entdo, a relacdo @) de XXIX e a alinea 4) de N XXXIII per-
mitem escrever a desigualdade

Fc.,...,q\: (%/1 ye. -)Z£3V>~};‘c,,...,q\: (ullly- . -,%K’ =

=p( T VoLx,<<sul]—[ Ii
1< 1<n=

LX< Sul)]2p (U),®
BN

|7
N
onde o sinal » se deve ao facto de a diferen¢a dos dois pro-
dutos escritos ser um sobreconjunto de U, isto porque o seu
diminuendo contém todas as parcelas de U e o seu diminui-
dor nio inclui nenhum ponto com alguma coordenada x,
igual a #,. Como cada um dos pontos #' e u" pode aproxi-
mar-se do ponto (uy,...,uy) tanto quanto se queira, conclui-
mos que a fungdo F,,,. . ., sai descontinua com respeito a
totalidade das suas varidveis em qualquer ponto que torne
p(U)>0.

() Caso se tenha ¢,=—o0, deve corrigir-se qualquer desigualdade
—oox, para —oco << X,.
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Posto isso, vamos provar que a condi¢do p({/)=0 ¢é sufi-
ciente para que a fun¢fo medidora referida no enunciado
saia continua na totalidade das suas varidveis.

Fixados de qualquer modo os valores das grandezas u,,
consideremos grandezas positivas p, e grandezas reais 4,,
ambas arbitrarias no caso u,=c¢, e tais que |/, |+ p. <
<|#y — ¢c4| DO caso |u, —c,| >0, estabelecamos a convengdo
| 4| + pu = qn para cada #, ponhamos Uy = Uy + §u S€ U, > 6, OU
S€ Uy — Cp=0L Ry € tly = Uy, — Qo S€ Uy < Cy OU S€ Uy — Cr =0 >,
igualemos #), a #,— ¢, ou a %, + ¢, ou a u,, conforme for
Uy >> Cn OU Uy << €, OU #, = ¢,, atribuamos aos simbolos 7,
Syy 1 € sy os significados formais acima explicados e facamos
coincidir primeiro .S, com s, + ¢, ou com s, conforme tiver-
nos ou deixarmos de ter a relagdo %, — ¢, = 0 > A,, e depois
I, com 2, — ¢, ou com 7;, conforme tivermos ou deixarmos
de ter a relagdo u, — ¢, = 0 L%, . Nesta conformidade, as pro-
priedades das func¢des medidoras afirmadas em XXIII, a rela-
cdo a) de XXIX, a alinea 6) de N XXXIII, a relagdo de inclu-
sio entre os membros extremos de 9), as /V igualdades 6bvias

W L2y < Syl =V i) Ly < S {={tty — qu £ X0 < Uy + @ |

e a alinea d) de N XXXIII, tudo isso permite escrever a
sucessio de desigualdades

67) IFm,ci,...,c‘V(ul‘f‘hl,Mz—f—}lg,. cey u,rf—kn)——

_Fcuca;---yﬁ\' (ul ) 1"2)' LICEY uJV)

/ /
éFC.,cg,...,cN(ulyu?.,- . -7”5\/‘)"‘
—F51,027..-,Cl\7 (u/ll,%é/,. . -,ufl(/' =

o[ D Lm<sil—[ O i Lm<si]e
1=n<N 1=n=N

Lp([ 1 N% Léxn<S£,H—[l<U N%i/{éxn<sz’}])é

n=

é 2 © (- PSS gjz/n—l é K1 < S!n—lf > (continua)
1=m=N

> %um_Qméxm< Ui+ qu > zlzﬁz—Héxm—l—l <S1;¢+1 } >, -),(*)

(0 Caso se tenha ¢, = — oo, deve corrigir-se qualquer desigualdade
—ocoL X, para —co <{x,.
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onde o argumento de p na parcela genérica do ultimo mem-

bro é um produto /,= II /.. que é sobreconjunto do
1=n<N

produto I 7, ,=1,, quer dizer, da parcela de indice m

1=n=N
de U, e onde p(/.)< 4+ para qualquer m, conforme pode
ver-se decompondo cada factor /.. » na soma ou diferenca de
dois intervalos lineares emergentes de ¢, (um dos quais sai
vazio para n==m e ¢,7~u,) e desenvolvendo, em seguida,
v(/n) numa soma algébrica de valores da fungdo F.,,. . .,
segundo o processo usado a propésito de 61). Ora bem, se
cada uma das /V grandezas g, tender monotonamente para
zero ao longo duma sucessio arbitrdria, formada por numeros
gn,»(r=1, 2, 8,...), e se, dado 7, designarmos por /., , o con-
junto J,, especial correspondente aos numeros ¢,,,, entio,
por um lado, a proposi¢io N VIda 7, /.. .} e, por outro lado,

a igualdade 10) conduza N J,,.=/,.. Nesta conformidade,
1=++o

caso ¢, — 0 para cada #, a parte de Il referente a continuidade

superior, as /V relagdes /,, U e a hipétese p(U)=0 impdem

o resultado 2 p(/.)— 2 p(l,)=0. Portanto, a cada
1=m=N

1=m=N

numero ¢>0 corresponde outro numero J(¢) >0 tal que o
primeiro membro de 67) fica menor do que ¢ quando
g» < 2.9(c) para cada # e, com maioria de razdio, quando
|hal<d(c) para cada z. Fica assim terminada a demonstracio
de XXX.

Uma consequéncia facil de XXX € o corolario seguinte.

XXX") «A fun¢io medidora da proposicio XXX sai des-
continua em qualquer ponto # (de coordenadas u,) tal que
a medida correspondente a func¢fio considerada atribua um
valor positivo ao conjunto elementar ju{.»

Demonstragdo de XXX'. Usaremos os mesmos simbolos p.
e U da demonstra¢do de XXX. Entdo, a hipotese p(]u})>0, a
relagio obvia {u|CU e a alinea 4) de N XXXIII implicam a
desigualdade u({)>0 ou seja, por causa de XXX, a descon-
tinuidade da fun¢io medidora no ponto «. Fica assim pro-
vada a nossa tese.
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Sabemos, pela observacio posta a seguir a XXIX', que,
para V=1, nfo so transita a proposi¢do XXX/, como também
colhe a sua inversa, a qual afirma a continuidade duma fun-
¢do medidora em # caso a medida correspondente atribua
o valor zero a |u|. Errariamos, porém, se pensissemos que
a proposicio inversa referida permanece verdadeira para
N>1; nada melhor do que um exemplo para nos inteirar-
mos da situacio.

Exemplo 54. Tomemos o numero de dimensdes V=2, os
dois ntiimeros ¢;=¢:= —o e a func¢do medidora FL,, (%, us)
que é igual a 0 em qualquer dos casos #;£0 e #;£0, igual a
u#; no caso de termos, simultaneamente, 0<{e; L1 € u:>0 €
igual a 1 no caso de termos, simultaneamente, %, >1 e #;>0.
Por um lado, a fun¢fio considerada sai continua com respeito
a #; em todo o plano de Borel; por outro lado, ela sai continua
com respeito a u#; e com respeito ao par das suas varidveis em
toda a parte, excepto nos pontos (%, 0) tais que #,>0. Note-se
que o ponto de continuidade (0,0) pode considerar-se um limite
de pontos de descontinuidade e note-se ainda que a medida p
correspondente a F_,, . atribui um valor positivo a todo o
conjunto da forma (Ja]><|—co <2 L0 U (| —oco<<a Lot | ><[0]),
com #;>>0 (veja-se XXX). Finalmente, o propdsito do nosso
exemplo nio deixa de cumprir-se, porque, se abreviarmos
I« -« para F, qualquer ponto de descontinuidade (#,0) torna

# (1, O = lim [(Furteye)—F (u1,6)—F (w142, 0) 4 F (w1, 0)] =0,

Vimos, a propésito do exemplo 53, que hd casos em que
um ponto torna uma fun¢io medidora continua em cada uma
das suas variaveis e descontinua na totalidade dessas varia-
veis. Dai o interesse que oferece a proposi¢io seguinte.

XXXI) «Retomemos a fun¢ido medidora da proposigio
XXIX, com N>1, consideremos a medida g que lhe corres-
ponde pela relagido a) respectiva e escolhamos arbitrariamente
um valor para cada u,. Entdo, a fun¢io medidora sai con-
tinua em cada uma das suas varidveis, quando e s6 quando g
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atribuir o valor zero ao conjunto U ( [0 A, ), onde,
1=m=N 1=n<N

dado m, o simbolo f,, ,. significa o conjunto elementar {u,,!
e todo o simbolo /7,,, de segundo indice #==m significa o
conjunto {u, L x,<c,} se #,<c¢y,, 0 cOnjunto |, Lx,<u,} se
Up D Cp >—rc0 € O conjunto | — oo < &, < #,| S€ ¢, =—o0.
Além disso, caso a func¢do medidora seja continua em cada
uma das suas varidveis, ela sai continua na totalidade das
suas varidveis, se e s6 se g atribuir o valor zero ao conjunto

U (O L=l U (O H,)

1=m=N 1= lsm=N 1=s=N
onde, dado m, vale a igualdade 7., =, U |#,| para cada n.»

Demonstracdo de XXXI. Designemos por W a diferenca
de unides do enunciado, por U o seu diminuendo e por V o
seu diminuidor. Entdo, a igualdade u(}")=0 implica a conti-
nuidade da funcio medidora em cada uma das suas varia-
veis, isto por causa da alinea 4) de N XXXIII e da segunda
afirmacdo feita na tese de XXIX'. Inversamente, a continui-
dade da fun¢io medidora em cada uma das suas varidveis
implica ¢ (F/)=0, isto por causa da proposi¢io XXIX' e da
alinea d) de N XXXIIL Fica assim provada a primeira parte
da nossa tese.

Suponhamos agora que p(7)=0. Entdo, a relagio 6bvia
VcU,devida a N VI, e a aplica¢do da alinea ) de N XXXIII
a diferenca U—J" ddo a igualdade p(J#")=p(U). Por outro
lado, a proposi¢io XXX afirma que p(U)=0 é a condigdo
necessdria e suficiente para que a funcio medidora saia con-
tinua na totalidade das suas variaveis. Em face do exposto,
podemos dar por terminada a demonstragio de XXXI.

Observagdo. Na hipotese ¢y =c;=--- =cy =+ o resulta
H, »=1,, para todos os valores dos indices m e » e das
grandezas u,; quer dizer, neste caso uma fun¢io medidora
associada aos numeros ¢, sai continua na totalidade das suas
varidveis em qualquer ponto onde ela seja continua em cada
uma delas. Uma adaptagdo facil dos cdlculos aqui feitos mos-
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tra que o mesmo sucede na hipétese (frequentemente usada)

C1=Cy=-.-=(y=—o0, S0b a condi¢do de modificarmos a relacdo
@) do enunciado de XXIX para

FC,,C:,-..,Q\' (Z‘17u2)- . -)MN)ZH‘( L n . g “‘°°<xn é Uy ‘).

=n=!

®
% *

Vamos apresentar um estudo sobre a forma como se
distribuem os possiveis pontos de descontinuidade duma
fun¢fio medidora de NN variaveis através do espago real a V
dimensdes ou seja através do produto das /V rectas reais
X, (xa)(m=1, 2,...,N).

A fim de facilitar a exposi¢io, comegamos por generalizar
a linguagem aplicdvel ao caso especial V=3 quando se faz a
representacio geométrica explicada no exemplo 8; isto &, esco-
lhido qualquer 7, chamamos plaro (a N—1 dimensdes) coorde-
nado mimero n ao cilindro - .. <X, _1><{0}<X, 1><--- e chamamos
plano (a N—1 dimensdes) paralelo ao plano coordenado niimero
1 a todo o cilindro da forma ... <X, 1><{x,}<X, 11<--.. Mais,
dado um plano paralelo ao plano coordenado numero , seja
P, e dada uma func¢io medidora de /V variaveis, seja F| dize-
mos que o ponto #=(#1,...,%4y), situado em P, é um ponto
de descontinuidade de F ligado a P se (e s6 se) a fungfo F for
descontinua em # com respeito a varidvel namero m. A ultima
definicdo & aceitavel, porque um ponto de descontinuidade
ligado a P ¢ dbviamente um ponto de descontinuidade que
pertence a £P; todavia, convém prevenir que um ponto de
descontinuidade sitnado em P ndo fica obrigatoriamente
ligado a P.

Evidentemente, caso se tenha V=1, 0 conjunto (elementar)
{0} confunde-se com o unico plano coordenado (a 0 dimensdes),
um conjunto sai elementar, quando e sé quando for um plano
paralelo ao plano coordenado, e um ponto de descontinuidade
de £ situado em tal plano fica sempre ligado a ele.

O resultado do estudo que vamos empreender consta
da proposicdo seguinte.
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XXXII) «Considere-se uma fun¢do medidora F de V1
varidveis, designe-se por p a (tinica) medida que F define no
corpo de BoreL a .V dimensbes $3(B) e represente-se por P
qualquer plano paralelo a um plano coordenado e tal que
p-(P)>0. Entdo, ndo s6 os pontos de descontinuidade de F se
distribuem por um numero finito ou, quando muito, por uma
infinidade numerdvel de planos #, como também a medida p
confere o valor zero a todo o conjunto B que esteja contido
num dos planos P possiveis, seja no plano F', e que tenha
intersec¢do vazia com o fecho® do conjunto formado pelos
pontos de descontinuidade de / ligados a P'. Em comple-
mento, se N2, a medida p atribui o valor zero a todo o
conjunto B que esteja contido em £’ e que esteja isento de
pontos de descontinuidade de F.»

Demonstracdo de XXXII. Seja X o espaco real a /V dimen-
sbes, com ponto genérico de coordenadas x,(n=1, 2,..., V),
representemos por ¢, os /N numeros reais a que a fungio
medidora / se encontra associada, ponhamos #, para indicar
as /V variaveis finitas de que £ depende e atribuamos ao
simbolo P, o significado dum plano que é paralelo ao plano
coordenado numero # € que fica com valor positivo quando
se lhe aplica a (uinica) medida p definida pela relagéo @) do
enunciado de XXIX. Além disso, escolhidos qualquer ponto
u==8,%s,...,uy) € qualquer inteiro m tal que 1 ZLm 2N,
facamos corresponder a cada » o conjunto /,(#) que € igual
alu, Lx,<c,} oualc, Lx,<u,}oua)—oco<x,<u,}, con-
forme tivermos u,<c¢, ou #,>¢,>—oc Ou ¢, = — oo, mais o
conjunto f{, () igual a |u,! ou a }u,|U J.(#), conforme
tivermos n#=m ou n=~m, e ainda o conjunto /A, ,(«) igual a
{m{ ou a J,(u), conforme tivermos #n=m ou #n=£m. Final-
mente, estabelecemos as convencdes

68) O Ju@)=J), T L.(u)=

#=N 1=n=N

1=

:]m (u)’ 1<£I<]V Hm,n (u):ffm (u) e 1<,,E)<N ]1«11 (%)z U(u)-

() Talvez convenha lembrar que o fecko dum conjunto contido no
espago real a [V dimensdes € a uniio do conjunto com o seu derivado.
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Ora, fixado arbitrariamente o ponto n=(n,n,...,nn)
entre os pontos u possiveis, este confere a " um valor finito
e, portanto, o conjunto de Borel J(w), abreviadamente J,
sujeita-se & desigualdade ¢ (/)<<+co. Entdo, dado 7, se desi-
gnarmos por F; qualquer plano paralelo ao plano coorde-
nado numero # tal que p(/ NA)>0, por um lado, a alinea 4)
de N XXXIII mostra que p(£;)>0, quer dizer, que P, é um
plano £,, e, por outro lado, a proposicdo N XXXVI esclarece
que ¢é finita ou, quando muito, numerdvel a classe formada
pelas intersecgdes JN P, disjuntas duas a duas (distintas
entre si), intersec¢bes estas cuja soma vamos designar por K,,,
de modo que resulta | K,=Kc/.

1=u=N

Se V=1, a conclusdo alcan¢ada significa, muito simples-
mente, que € finita ou, quando muito, numeravel a classe dos
conjuntos elementares ou planos P tais que cada um deles
esta contido em / e tem uma medida p positiva; isto quer
dizer, em vista da observacido posta a seguir a XXIX/, que o
conjunto dos pontos de descontinuidade de /7 situados em J
se distribui por um numero finito ou, quando muito, por uma
infinidade numerdvel de planos P.

Passemos para o caso /V>>1. Entdo, seja qual for o ponto
uef,cada nimero natural m £ /Vdd as duas relacbes uel,,(u)c/
e Ln(tt)C - <} Xt U | }X Xonp 1< - - = O, (1), das quais tiramos
a nova relagdo ue [, (u)c /N O, (u). Posto isso, como qualquer
ponto #e /—K torna impossivel a identificagdo dum dos N
planos Q..(#) com algum plano P}, (porque o contrario impli-
cava, para algum =z, ue /N P,cK), inferimos, das propriedades
das medidas, que a relagio we /—K arrasta a desigualdade

dU@E 3 pla)Z 2 p(JN On@)=0.

Portanto, a proposi¢do XXX permite-nos afirmar que
J—K € um conjunto de pontos de continuidade de F ou,
equivalentemente, que K contém o conjunto dos pontos de
descontinuidade de F pertencentes a /. Em suma, se F tiver
pontos de descontinuidade em J, estes distribuem-se ainda
por um numero finito ou, quando muito, por uma infinidade
numeravel de planos P.
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Seja qual for &V, consideremos /V variaveis inteiras £, e
substituamos o simbolo /J (), temporariamente, pelo simbolo
mais explicito J(u1,%s,...,un). Nestas condi¢bes, a igualdade

obvia X= U J(~1,/s,..., k) leva-nos a con-
—w <l ke iyl o

cluir que o conjunto de todos os pontos de descontinuidade
de F também se distribui por um numero finito ou, quando
muito, por uma infinidade numeravel de planos P. Fica
assim demonstrada a primeira das afirmacoes feitas na tese.

Vamos agora provar o seguinte: Sai p(B)=0 se B, con-
tido em P'=... <X, 1>X}|n.]<X,41><---, tiver uma inter-
sec¢do vazia com o fecho D' do conjunto D formado pelos
pontos de descontinuidade de 7 ligados a P'.

No caso V=1, a observagio posta a seguir a XXIX' mos-
tra logo que B=0, donde p.(B)=0. Por isso, vamos admitir,
a seguir, que é N>1.

As hipéteses feitas com respeito a B implicam a relagio
de inclusdo BCP'ND'"". Mas, qualquer vizinhanc¢a dum ponto
de acumulacgio de D' contém pontos de D; quer dizer, o deri-
vado de D' coincide com o derivado de D ou, expresso por
outras palavras, D' é um conjunto fechado. Logo a proposicio
N XXX" e as féormulas N 14) e 10) mostram que P'ND"~ é
uma unido, quando muitc numerdvel, de intervalos

qu o '><%am—l,q<xm—l<ém-l,q}X;nmzx‘

><’oam+1:9<xm+1<6m+1ﬂ!%><' (=1, 2, 8,.. ')1

onde, dado #=m, cada simbolo a, , significa um numero

real finito e o simbolo 4, , correspondente significa outro

ntamero real finito, maior do que o primeiro. Nesta confor-

midade, as alineas &) e d) de N XXXIII dio a desigualdade

uw(B)£LZp(V,), com cada V, disjunto de D', isso por causa de
q

N 9 g). Em vista do exposto, basta reduzir ao absurdo a
hipétese de p(V,) ser positivo para algum g.

Admita-se que o valor particular y de ¢ torna p (77, )>o0.
Entao, a continuidade inferior de ¢ permite determinar um
intervalo
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WZ =X %"xm—l,}ﬁéx771—lé ﬁm—l,‘L% >

> %ﬂmé > %a71z+1,xéx7n+1éﬁ7vz+l,1} > Ty

tal que @,y <o,z <Bu,y<0u,y, para cada n=tm, e que Wy
(disjunto de D'") fique com medida positiva. Por outro lado,
caso se verifique a desigualdade «,, ;< ¢, <Zf.,, para algum
n==m, podemos fazer corresponder a cada numero positivo
¢, < Cn— ay ,y, a igualdade entre conjuntos

ga,,7xéxfaé@”;15=
= o, 1 L %0 L On— {60 — 00 < Hn <G|+ |60 £ %n £ Ly |

Posto isso, desenvolvamos o produto a que € igual 7, segundo
a formula §), igualemos em seguida a medida da soma de
conjuntos obtida a soma das medidas das suas parcelas (em
namero quando muito igual a 3Y') e acabemos por tomar
em conta que a continuidade superior de p permite escolher
0s numeros ¢, eventuais de modo a tornarem inferior

a - - (W,)[8Y-1 qualquer das medidas resultantes cujo
2

argumento tenha algum factor do tipo ¢, —e, <x,<<c,!.
Nestas circunstancias, concluimos pela existéncia de nume-
ros reais finitos @, e b, (n=Fm) tais que se verifica, para cada
»# admissivel, uma das relacdes @, <6, <c¢, ou ¢, La,<ZLb, e
que, simultaneamente, o intervalo

YLZ R4 g [£ 290} é K1 é bm—1§ > ;nms > %am—{»l é Xm+1 é 6"”*}-1% > e

fica disjunto de D' e com medida positiva. Se igualarmos
agora n,(n==m) a a, ou a 0,, conforme for a,<c¢, ou @, > ¢,,
entio nfo s6 0 PONtO n=_uw,, Nty n, fu+1,...) F€SUlta pertencente
a Yy, como também gqualguer ponto t={_..., Um-1y Ny Umi1,y...)
com a propriedade de fazer corresponder a cada n#=Fm uma
coordenada u, situada para além de », em relacio a ¢,, qual-
quer ponto u nestas condi¢des da a relagdo Y, C/H,.(u), da
qual tiramos que (A, (%))>0 ou, por causa de XXIX/, que
ue ) ou ainda, atendendo a defini¢do de D', que ne D', uma
conclusio incompativel com o facto de Y, ser disjunto de D'
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Fica assim provada a segunda das afirmacdes feitas na tese.

Finalmente, vamos tratar da parte complementar do
enunciado, supondo que /N n#o excede 2 e que BC AP esta
isento de pontos de descontinuidade de Z.

No caso V=1, a observa¢fio posta a seguir a XXIX'
mostra logo que B=0, donde p(B)=0.

No caso V=2, as duas hipéteses admissiveis P/=X,><|n}
e P'=|m|><X; tratam-se de modos tdo semelhantes que
podemos fixar-nos numa delas, por exemplo na segunda.
Entdo, a proposigio XXIX" mostra que existem dois nume-
ros (ndo necessariamente finitos), um a<cs & outro s,
aos quais a formula 7 4) e a parte precedente da nossa pro-
posi¢do conferem as propriedades

69)  |ml<{eeLa LB DP — D] < o< a2 <Ba} =
=P —D e p(P—D"=0.

Como B nio tem pontos de descontinuidade de F, sai
Bc P'—D, de modo que as propriedades 69) e N 9 ), as
igualdades 8') e N 14'), a propriedade aditiva de p, a alinea 4)
de N XXXIII e a proposi¢dio XXX’ conduzem a relacio

p(B)=p (BO[mix |ardwo Lol )=
=eB0lnpx<|el]) +#BNL =D+ p(BOLn|><|fal]) =0,

onde deve ler-se O em lugar de |z} e de |}, respectiva-
mente se a=—oco € s& [y=+oco, Fica assim concluida a
demonstracio de XXXII.

Observagdo. Seja N>1 e consideremos a funcio 7 e o
plano P' de XXXIL Entdo, o conjunto D dos pountos de descon-
tinutdade de F ligados a P' ndo so é distinto do vazio, como tam-
bém tem fecho igual ao seu derivado ou, a mesma coisa dita
por outras palavras, estd contido no seu derivado. Com efeito,
se o conjunto D fosse vazio, o mesmo sucedia ao seu fecho

() Caso um dos dois nimeros o, ¢ B, seja infinito, deve substituir-se
por < qualquer sinal <{ que figure junto a ele.
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D' e, portanto, a segunda afirmacio feita no enunciado de
XXXl dava o resultado absurdo p(#£")=0.® Por outro lado, o
conjunto D estd contido no seu derivado, porque a proposi-
¢cdo XXIX" obriga qualquer ponto #eD a ser um ponto de
acumulagio de outros pontos pertencentes a .09

Acrescentamos alguns exemplos destinados a lancar luz
sobre certas questées suscitadas pelo estudo precedente.

Exemplo 55. Os possiveis planos P do enunciado de XXXII
Sormam uma classe finita ou, quando muito, numerdvel. Com
efeito, no caso contrario, a proposicio XXXII impunha a
existéncia de planos P destituidos de pontos de desconti-
nuidade de F, situagio esta que € incompativel com a ultima
observac¢fio (acompanhada da nota respectiva).

Exemplo 56. Se a fun¢io medidora F do enunciado de
XXXII admitir um ponto de descontinuidade # de natureza
arbitrdria, entdo existe um plano P' (de medida positiva) tal
que # pertence ao fecho do conjunto formado pelos pontos de
descontinuidade de /' ligados a P'. De facto, se # de coorde-
nadas #,(z=1, 2,...,/V) for o ponto em causa: Primeiro,
XXX da p(U(u))>0; depois, 68) e a alinea d) de N XXXIII
mostram que p(/,(%))>0, para um certo valor de #, seja w;
em seguida, a alinea 4) de N XXXIII prova que p(/,.(2))>0
em todo o ponto v de coordenadas v, com a propriedade de

) Esta parte do raciocinio vale também para N=1.

() A indicagdo colocada dentro de paréntesis no fim do enunciado
de XXIX’ e a parte do enunciado de XXIX' relativa 4 descontinuidade

forgam qualquer ponto w=(... 2%, ;,#,,%,.,-..)6 D a ter coordenadas
#,=f=¢,, para cada #3~u, e a consentir uma ligacfo continua, sem nunca
sair de D, com qualquer ponto U=(..., ¥, 1, %y, Upi1,...) € D tal que ¢, ndo

faga interposi¢io entre #, € v, para nenhum s=tm, podendo estabele-
cer-se essa ligagdo ao longo do «contorno do paralelipipedo» de arestas
o VInE (v 4,0 ) ¥ <SUP (%4, Ty ) Yy
DT (2413 Dyt X1 < SUD (Hpny 13 Vg1 )}y - -

(por um caminho que acompanhe as arestas primeiro do ponto # até ao
«vértice mais afastado» dos niimeros ¢, e depois deste vértice ao ponto ).
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tornarem v,,=#, € de verificarem uma das desigualdades
V< thy<Cy OU Uy >0y, para cada n == m; por fim, a propo-
sicao XXIX' institul # em ponto de acumula¢zo de pontos o
tais que cada um deles seja um ponto de descontinuidade
de F ligado ao plano - >< X1 < { st | XX X <-4

Exemplo 57. O leitor pode verificar, por meio de célcu-
los simples, que é uma fun¢io medidora associada aos nime-
ros ¢, =6 =c3=0 a funcdo Foo,0 (%1, us,us) que toma o valor
zero se #, 20 ou #2220 ou %320 ou w-+us L1 € que toma o
valor #;+u;—1 em todos os casos restantes. A funcio consi-
derada sai continua no produto das trés rectas de Borel
(X (%), Bu(B)](n=1,2,8), desde que exceptuemos os conjun-
tos £,, com [, igual ao conjunto contido no plano coordenado
numero # e caracterizado pelas desigualdades #,—1>0Lus
(se m=1) ou u; —1>0Lus (se n=2) ou #;u> 0<w+u;—1
(se n=38). Ndo so6 todo o plano paralelo a um plano coorde-
nado e distinto dele fica com medida nula, conforme pode
vér-se pela observagdo posta no fim da demonstracio de
XXXII (acompanhada da nota respectiva), como também
cada um dos planos coordenados fica com medida infinita,
porque qualquer permutagio « {5, y dos numeros 1, 2, 3 da

lim [ lim Fo,0,0(%1, 8%, us)]=+00.—O conjunto ¥Y={1}x<
sy, upt Ho 0

><10}><lu#s> 0] é um conjunto de pontos de continuidade de 7,
¢ um subconjunto da diferen¢a D'—D correspondente ao
plano coordenado numero 2¢), ¢ um conjunto de Borel (por
causa de N XXX) e tem por medida

p(Y)= lim <1if{: (1im [Fo,o,O(uu”2,%3)—Fo,o,o(l,Z@,us)])):o.
25440 s, w1

Por outro lado, o conjunto Z={0Lu;=1—uL1|><|0} é um

conjunto de pontos de continuidade de /, é um subconjunto

da diferenca D'— D correspondente ao plano coordenado

numero 30, é um conjunto de Borel (por causa de N XXX'")

(v Como de costume, aqui D significa o conjunto dos pontos de
descontinuidade ligados e D' significa o fecho de D.
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e tem por medida

ru(Z):lim{lim < 2 [ lim F0}0,0<u1,1——q;—1,u3>——

w30 Upt4o \ ISg=s2r 2yl qf2r

. / g—1 .
— lim F(),(),o(%[’lm -‘q"ip~—,7/[3/ — lim E)’(),0<%1,1— %,%3) -

uil(g-1)2» wuy|qf2v

+ lim F0,0,0<u1,1——gj;,ugﬂ>}+y_(30§><{l}><§0§)=

wil(g—1)2? /
. . 1 '
=1?m( lim [ 2 <~—»~O—O+O>])+O=1.
wi0 \ptte | izgser \ 20 /

O resultado ¢ (Z)>>0 tem bastante interesse, porque nmos-
tra que, no caso N>>2, nio & licito suprimir a passagem
«fecho do» do enunciado de XXXII, nem sequer na hipdtese
dum conjunto B formado exclusivamente por pontos de continui-
dade de F.

# ¥ S

Terminamos esta sec¢do tratando da ligacdo (nfo inteira-
mente satisfatéria) que existe entre as propriedades de con-
tinuidade duma funcio medidora dada e as das novas funcoes
medidoras resultantes da primeira por operacbes de margi-
nacéo.

Tomemos o produto (X,#) das IV rectas de Borel
(Xuy&B,) (m=1,2,...,V), consideremos a fun¢fdo medidora
Fo oy on(t1yu2, ..., 2y) associada aos NV numeros ¢,, qualquer
deles finito arbitrario ou infinito com sinal qualificado, repar-
tamos a colec¢do dos valores # possiveis por duas colec¢des
parciais ndo-vazias, a primeira de elementos %, 1>4, j>i,...
e a outra de elementos 7, s>7, £>>5,..., marginemos a (inica)
medida p, definida em $ pela fun¢fo medidora considerada
(veja-se XXV), com respeito ao produto X< X;<X,;><-.- e ao
factor de escala P, admitamos que a medida pp' resultante
determina uma func¢io medidora pF/ ., ., ... (¢6, 15, t4;,...) 2sSO-
ciada aos nQmeros ¢,, ¢, ¢;,... € recordemos gue a relacdo @)
do enunciado de XXVIII permite a passagem directa de

Foenoen pPara pl . Nesta conformidade, nfo parece

r3CsyCigane
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mal dizer que a funcdo medidora pF,, ..., ... € obtida pela mar-
ginacdo de I, ., ... .. com respeito ds varidveis uy  u;,4;,... ¢ ao
Jactor de escala Pou ainda que pF; . ., ... € a fungdo medidora
marginal de F, ., .. . tomada nas varidveis w, s, %;,... ¢

reduzida na proporcio de P para 1.

Posto isso, estamos habilitados a enunciar a proposi¢do
seguinte.

XXXIII) «Dados um numero natural s, quando muito
igual a /V, e uma funcio medidora das N variaveis u,,u,,..., %y,
esta sai continua com respeito a varidvel #,, no ponto de
coordenadas m,ms,... My, S€ €xistir uma marginal dela, tomada
em varidveis u,,#s,u;,... compreendendo #,, e reduzida na
proporgdo dalgum numero finito positivo £ para 1, que seja
continua com respeito a variavel #,, no ponto de coordenadas
Ty Ny Npyean oP

Demonstracdo de XXXIII. Vamos empregar a notacio
explicada no texto que serve de preambulo a nossa proposi-
¢do e vamos admitir que a fungdo pF7, .. ... (4,,u,...), abre-
viadamente /", existe, conta u,, entre as suas varidveis e é
continua com respeito a #,, no ponto n'=(n,,%,...). Ento,
se adaptarmos XXIX' a fung¢do #' e ao ponto #, se recorrer-
mos aos simbolos /7, , de 68), se pusermos n=(n ,nz,...,ny)
e se langarmos mio da férmula 66), se fizermos tudo isso,
obtemos a relacio

H=t,5,...

0=pu'( 0 Hm,n(n))=p(l<H<N G, n (1)), com G,y (1)

igual a H,,,, (1) para n=7,s,... e igual a X,, para n=4,1,...,

da qual tiramos primeiro, atendendo a alinea 4) de N XXXIII,
que u( I A, ,(n)=0 e tiramos em seguida, atendendo a
N

1I=n=
proposi¢io XXIX') que » € um ponto de continuidade da fun-
¢do F, .,,...,.y COmM respeito a variavel u,,.
Assim fica provada a nossa tese.
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Enquanto a proposicio XXXIII tratava da continuidade
parcial das fun¢bes medidoras, a proposi¢do seguinte vai
tratar da continuidade total dessas fungées.

XXXIV) «Uma fun¢do medidora F das NN variaveis
u,(n=1, 2,...,V) sai continua no ponto de coordenadas =,
se for possivel repartir os /V valores » por L>1 colecces
ndo-vazias tais que a convencio de designar por #; o ele-
mento genérico da colec¢do numero /(/=1, 2,...,L) implique
que, escolhido qualquer /, a fun¢io medidora marginal de
F, tomada nas varidveis u,, e reduzida na propor¢io dalgum
numero finito positivo F; para 1, exista em toda a parte e
seja continua no ponto de coordenadas w,, .»

Demonstracdo de XXXIV. Aceitemos a hipétese estabele-
cida no enunciado, designemos por x a medida correspondente
a I’ e, dado /, representemos pelo simbolo ppi a medida
correspondente & fun¢do medidora marginal de F, tomada
nas variaveis u, e reduzida na propor¢io de P, para 1.
Entdo, se adaptarmos XXX a cada uma das L colecgdes de
numeros #;, se recorrermos aos simbolos [, .(#) emprega-
dos em 68), se pusermos n=(n,%,...,ny) € se lancarmos
méao da formula 66), se fizermos tudo isso, obtemos as L
igualdades

O=ppi( U [ I L, . (0))=p (B,
m=n, n=w
onde, dado /, o simbolo B; significa o cilindro que tem por
base o argumento de p p; e que tem geratrizes paralelas as
rectas X, de indices #n=£m;. Mas, B,o U [ 1 N[m,,, ()},

m=mn 1=n=
para cada /, conforme pode ver-se por intermédio da obser-
vacdo final posta na secg¢do n.° 9, da igualdade 8) e da pro-
posicdo N VI Portanto, as alineas d) e ) de N XXXIll e a
proposi¢gdo N Il conduzem ao resultado
o=p( U By=p( U [ 1 L..(),
1=i<L 1=m=<N 1=n=N

o qual mostra, juntamente com XXX, que a funcio / é conti-
nua no ponto =.
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Assim fica provada a nossa tese.

Observacdo. Se pusermos L=/ em XXXIV, obtemos o
caso particular interessante em que cada uma das fung¢les
medidoras marginais depende duma sé varidvel.

A inversa da proposicio XXXIV ndo € verdadeira ou, o
mesmo dito por outras palavras, uma funcdo medidora pode
sair continua num ponto, mesmo que ndo haja funcbes medidoras
marginais que cumpram com a condicGo veferida em XXXIV.
Eo que sucede com a fun¢io F_, . o (01,u:,us3) do exem-
plo 58, reterida, digamos, ao ponto (-1, 0, 0), conforme pode
ver-se construinde todas as funcdes medidoras marginais
possiveis de uma ou duas varidveis, isto com o auxilio da
observac¢io posta a seguir a XXVIIL

Outro facto digno de registo é o seguinte: Dadas duas
reparticbes diferentes dos /V valores # de XXXIV por colec-
¢cdes nio-vazias, em numero iguala L>1ea L'>1, é de enca-
rar a hipétese de haver fun¢des medidoras marginais corres-
pondentes a uma das reparticbes que satisfacam a condigdo
referida em XXXIV g, simultaneamente, de nfio haver funcdes
medidoras marginals correspondentes a outra reparticio que
satisfacam a dita condigio, podendo declarar-se esta divergén-
cia no caso L==1L" e até no caso L=L'. Vamos exemplificar,
mais uma vez, com a fun¢fo Fl. . o (%1,us,us) supracitada,
referida, digamos, ao ponto (-1, -1, 0), escolhendo, para o efeito,
os seguintes agrupamentos de fun¢bes medidoras marginais:

1.° Quaisquer trés fungdes p F'_ (1) (n=1, 2, 8), com
numeros finitos positivos 2, arbitrarios. 2.° Quaisquer duas
funcdes p Ll _o(uy, u2) € pLl.(us), com nimeros finitos
positivos P;(/=1, 2) arbitrarios. 8.° Quaisquer duas fung¢des
pllo(n1) e p Lo (2, 13), com numeros finitos positivos 7
arbitrdrios.

Vejamos, por fim, mais dois exemplos relativos ao

assunto em estudo.

Exemplo 58. O leitor reconhece, sem dificuldade, que é
uma funcio medidora associada aos numeros ¢,=—1,6=—2¢
ca=—3 a fungdo F_i o 3 (w1, u2u3) que sai igual a w1 u us ou
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a 0, conforme u;, u, e u3 forem ou deixarem de ser conjunta-
mente positivos. Embora a fun¢do considerada resulte conti-
nua em todo o espa¢o de Borel a trés dimensdes, ela nio
admite nenhuma funcido medidora marginal; com efeito, a
relacdo @) de XXVIII d4 um limite infinito sempre que os
argumentos do seu segundo membro forem conjuntamente
positivos.

Exemplo 59. O leitor pode verificar, por meio de cal-
culos simples, que ¢ uma fun¢io medidora associada aos
NUMEros ¢1==-+oo € =0 a funcdo F o 4o (41, u3) que sai
igual a inf(|u:|,{us]) ou a 0, conforme #, e u, forem ou dei-
xarem de ser conjuntamente negativos. Nesta conformidade,
a observacgio posta a seguir a XXVIII' faz atribuir uma
medida infinita ao plano de Borel. Todavia, existem funcées
medidoras marginais em cada uma das varidveis #; e u., por-
que a observacio posta a seguir a XXVIII permite concluir
que F7 o (1y) vale 0 ou |u;|, conforme for %20 ou #,;<0, e
que /L. (us) vale 0 ou |uy|, conforme for #s>.0 ou #;<0.
Como cada uma das duas fun¢des medidoras marginais cal-
culadas sai continua para todos os valores da sua variavel,
inferimos, da proposi¢do XXXIV, que a func¢io /., ini-
cialmente considerada nZo pode deixar de ser continua em
todo o seu campo de existéncia.

38. Mudanga dos nimeros a que se encontra associada uma
fungdo medidora. Suponhamos que /o, ., .. .y (%1,%2,...,u5)
é uma funcio medidora associada aos /N ntumeros reais
cn(m=1, 2,..,V), qualquer deles ou finito arbitrario ou infi-
nito com sinal qualificado, e seja ¢ a (inica) medida definida,
no produto das /V rectas de Borel [X, (x,.), &.(B.)], através
da relacdo @) do enunciado de XXV. Entdo, dados os /V nume-
ros reais d,, qualquer deles ou finito ouigual a + e ou igual
a —oo, convém saber se a relacio @) de XXIV, com 4, em lugar
de ¢,, define uma func¢ido medidora associada aos numeros
d,. e, no caso afifmativo, convém exprimir tal fun¢fo medi-
dora a custa da originariamente considerada.
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Nesta conformidade, admitamos, em primeiro lugar, que
os numeros d, sdo todos finitos. Ora, basta representar por
¢ a restri¢do de p ao corpo gerador de II B, = & referido em

n

5. da secgdo n.° 15 ou em 4.° da sec¢do n.° 20 (conforme for
N=1 ou N>1), basta isso para que a finitude de ¢ e de o
na subclasse principal de 8 (assegurada por XXV), a relacgio
a) de XX1V, com d, em lugar de ¢,, e a igualdade 63), com
inf(d,.,u.) e sup(d.,u,) respectivamente em lugar de #, e de
Uy, Provem que a medida u define uma funcdo medidora das N
varidvess (finitas) u,, associada aos N mimeros d,,, seja a funcdo
Faa.,... ay (1,82, .., uy), 2 qual se confunde com a funcio

T (inf(dy,uy),...,inf(dy, un), sup (dr,#1),. ..,sup (dy, uy)).

Portanto, as igualdades 61') e 63') e a relagdo a) de XXV,
com ¢ em lugar de ¢, permitem escrever a férmula

70) Fd,,d:,...,dﬁf(“lyf’i?!"')uN)=

- s [(—1)pp+s +2_+eon

Fc,,m---,ﬂv (MI;IJ:;”‘Z,p:;'"; ”N,Av)];
1=ps;p25. .0, pN=2

onde valem as regras seguintes: Os niimeros ¢,6>0,7>0,...
representam os valores de # para os quais é desrespeitada
a desigualdade inf(d,,#,) <c,<sup(d,,u,); caso a colecgio
,0,7,... Seja vazia, toma-se a convengio Potpst+p.+...=0;
caso a colec¢do dos # diferentes de o,5,7,... seja ndo-vazia e
caso o valor de » lhe pertenca, pbe-se u, ~=inf(d,,u,) € u, =
=sup(d,,u,); caso a colec¢do p,0,7,... seja ndo-vazia e caso
n lhe pertenga, pde-se u,,1=inf(d,,u,) e u, 2=sup(d,,u,) ou
Up,1==SUD (@, %) € t4,,2=1n1(d, , ), conforme for ¢, <inf(d,,u,)
ou ¢, sup (du, #,).

Admitamos agora que hd mimeros d, infinitos. Nesta
eventualidade, podemos aplicar 70), com cada d, infinito
substituido por uma grandeza v, finita e do mesmo sinal
que d,, e podemos, em seguida, fazer tender cada v, mono-
tonamente para o 4, correspondente por forma tal que as
diversas variaveis v, tenham igual médulo. Entdo, o esquema
de raciocinio do exemplo 48 mostra que as operacdes
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descritas conduzem ambos os membros de 70) ao limite
(I int(d, , u,) L2, <sup(d,,u,)}), onde deve escrever-se < x,

u
em lugar de £x,, caso se tenha d,=-co. Dai e de @) de XXIV
inferimos o seguinte: Se o limite alcangado for infinito para
certos valores das varidveis (finitas) u,, entdo ele nfio define
nenhuma fun¢ido medidora associada aos ntmeros d, e, se o
limite alcancado for finito para quaisquer valores das varia-
veis (finitas) u,, ele identifica-se com a funcio medidora
associada aos numeros &, que é determinada pela medida p.

Observacdo.  Facamos N=1 em 70) e simplifiquemos ai
a notacdo suprimindo o indice #=1. Entdo, dado o numero
real finito d, sai Fu(u)igual a F,(ini(d,u))+ F.(sup(d,«)) ou
igual a ~/(inf(d,u))+ F.(sup (d,u)) ou igual a ~F,(sup(d,u))+
+ £ (inf(d,u)), conforme for inf(d,u)<c<sup(d,u) ou
¢<inf(d,u) ou cxsup(d,u). Além disso, se for d= —oo, pode
ter-se lim F,(v)= + o, caso este em que ndo se define

v —%
nenhuma fun¢ido medidora associada ao numero —oo, e pode
ter-se também lim 7, (v)<<+<, caso este em que a hipdtese

v |—x

u>c¢ da
F_o(u)=lim [F, (inf (u,0)) + F, (sup (#,2))] = lim F,(v) + F, (&)
|~ v|—0

e a hipotese u<c da

F_o(u)=lm [-F; (sup (u,v)) + F, (inf (u,2))] = lim F,(v)-F, (&).

vy —~0 vj—w
Finalmente, se d= 4o, 0 estudo resulta semelhante ao que
acabamos de fazer.

39. Quantis, Retomemos a notagdo apresentada no prin-
cipio da sec¢fo anterior, designemos abreviadamente por £,
a fun¢do medidora ai considerada, escolhamos um intervalo
J da forma I}a, £x,<f.|, onde, dado 7, se verifica a desi-

n
gualdade —ooLa, <B,L+o0 e se corrige Zx, para <, na
hipotese o, = —eco, € suponhamos que a medida p correspon-
dente a £, atribui a / um valor finito e positivo, coisa esta
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que sucede com certeza se p(J)>0 e se todos 0s niimeros
a, € B, forem finitos (veja-se XXV). Entdo, sejam quais forem
o numero y tal que 0<y<1 e o inteiro m tal que 1ZLm LN,
dizemos que a medida w ou a fun¢do /., admite o numero
0 como gquantil da ordem vy welativo ao intervalo J e ao seu
m-ésimo factor se (e sO se) esse NUMero pertencer ao m-€simo
factor de J e satisfizer a dupla desigualdade

71) w ( - gdm_l éxm—1<@m—12 > %améxm<jxg)i > (comtinua)
Xgamﬁ—léxm+l<ﬁm+1g><- . .)é"/ i (])é
é{l- ( X gaan—-l é-xm-1<t6m—1% >< ;aﬂiéxiﬂéjxs;{)} >< (continua)

> g X1 éx1n+1 < r/—;)m-}—l } > '))

na qual, dado #, deve corrigir-se Z£&, para <%,, €aso se
tenha «, = — o,

Observacdo. Quando N=1, o indice m de ;) e a indica-
cdo «relativo ao seu m-ésimo factor» omitem-se sempre, por
serem supérfluas. Além disso, quando J é o espago real a IV
dimensdes, o indice (esquerdo) J de ;) e a indicagdo «rela-
tivo ao intervalo /» costumam omitir-se, a fim de tornar mais
comodo o tratamento deste caso particular muito frequente
nas aplica¢des. Semelhantemente, quando y=1/2, o indice
(superior) 1/2 de ;0 e a indica¢do «da ordem 1/2» podem
omitir-se, mais uma vez porque se trata dum caso particular
muito importante. Nesta ordem de ideias, se #, for uma fun-
¢io duma s6 varidvel, o simbolo ¥ denota um quantil admi-
tido por u ou por F,, subentendendo-se que tal quantil é da
ordem 1/2 e é relativo a recta real e ao seu unico factor.

Se substituirmos a grandeza ;y{" do primeiro membro de
71) por uma varidvel u, gue percorra o intervalo linear de
extremos a, € (,,, excepto os eventuais extremos infiritos,
entdo fica uma funcdo Gy (u,.), a qual vamos estender a recta
X,. convencionando que a hipétese «,, > —oo implica G {#,,)=0
para #,<o, € que a hipétese (,,<+co implica Gylu,,)=u(])
para #,,>0,. Ora, a observagfio posta a seguir ao exemplo 49
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mostra que a funcio G;(#.) assim estendida ¢ wma funcdo
medidora associada ao mimero o,,, porque ela € definida e
ndo-negativa em X,., anula-se para u,,=o,,>> —oco, pOr causa
da alinea a) de N XXXIII, ¢ néo-decrescente com respeito a
o, € limitada superiormente por p(J/), em virtude da ali-
nea §) de N XXXIII, tende para zero se #,,} «,,=—oo, devido
a proposicao I, e resulta semicontinua i esquerda em qualquer
ponto #,,, também devido a II. Claro que a conveng¢io de desi-
gnar por Gj(#,+0) o limite a direita de G; em qualquer
ponto #,, juntamente com II, torna a funcdo G;(u..,+0) semi-
continua d dirveita na recta X,, e torna 71) equivalente & nova

dupla desigualdade

71 G Ly - v (LGP +0),

a qual vamos utilizar, em seguida, para a determinacio efec-
tiva dos quantis ;%D que houver.

Nesta conformidade, o supremo o« dos valores de u,
que tornam G;(#.)<y-p (/) e o infimo () dos valores de u,,
que tornam Gy (#,+0)>7y - w(/J) existem e satisfazem a relacgio
D Z O < B,y 5@ @, > —oo, OU 24 Telagio —oo<lalD) LB,

se o, = — oo, isto porque a igualdade «,=a)=—oco dava o
resultado absurdo 0= lim G (u.)>v-un(/), porque a desi-
T y— 00

gualdade £ 4., juntamente com II, dava o resultado

absurdo p (/)= lim G,(u,+0)<Ly (/) e porque a desigual-
0} B

dade B <) permitia fazer corresponder a cada par de
nimeros o, € (3, tais que V<o, <plL <V a relagio impos-
sivel y - (/)< G (o +0)L G/ (EL) <y pn(J]). Entdo, a hipdtese
o, el impede a relagio sy <«D, porque, no caso contrario,
qualquer numero #,, tal que y{P<<u, <)) imporia, por causa
da segunda parte de 71'), a desigualdade absurda 7 .p (/)<
LGy (tm)<<y-p(/f); semelhantemente, € de excluir a eventua-
lidade ;3" >pM, porque, no caso contrario, qualquer numero
u,, tal que yyV>u,,>E imporia, por causa da primeira parte
de 71'), a desigualdade absurda y-p(/)> G/ (¢n+0)>y - p(J).

() A desigualdade f/.,“\<\a(7) ¢é evidente.

e
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Por outro lado, ¢ ¢bvio que G Ly v ()LGy(ED+0) e
que, no caso «P< V) qualquer valor de u,, situado no inter-
valo aberto de extremos o)) e BV da a relacdo y.u(/)<
LGy () LGy (o +0) Ly -1 (]) ou, equivalentemente, da a
dupla igualdade G (umy=y - p(J)= G/ (t,,+0), cuja primeira
[segunda] parte continua a valer para U = D [a0] devido
as propriedades de semicontinuidade das funcées envolvidas.

Em face do exposto, podemos enunciar a regra seguinte:

«Dados F.(ou v), Jym ey, o conjunto dos quantis ;3 coin-
cide com o intervalo fechado cujo extremo esquerdo é o supremo
ol) dos valores de w,, que tornam G, () <y-p(J) & cujo extremo
direilo € o tnfimo B dos valores de u,, que tornam Gy (4 +0) >
(). Em aditamento, temos um quantil sinico ou um intervalo
significativo de quantis, conforme () igualar ou exceder al.»

Observacdo. Por vezes, dada a funcdo F, ou a medida 2
e dados o intervalo J e o inteiro m, é cémodo fazer corres-
ponder a cada y o quantil interpolado entre os quantis minimo
«{D e maximo B(I’ na propor¢ao de y para 1-y, quer dizer, o
quantil especial a4y (FV—o), a que podemos chamar
quantil principal da ordem y se y for fixo (e que € uma funcdo
uniforme de y se y for variavel).

*

Todo o valor u,, que verifique simultaneamente as desi-
gualdades o, 2u,<fo,G;(1:+0)>0 e G;(un)<p(J) & por
causa de 71'), um quantil de gualguer ordem y tal que 0<y<1
e que G/ (un)/u(J)£7Z G/ (tn+0)/u(]) € portanto, & um
quantil duma tnica ordem ou duma infinidade continua de
ordens, conforme a fun¢do G; for continua ou descontinua no
ponto u,,. Por outro lado, se y e 3 forem dois numeros sujei-
tos a condi¢do 0<y<(d<1, a desigualdade 7)< ;70 torna-se
impossivel, porque ela e 71') implicariam o resultado absurdo
5 (LG (D +0)LG (175 <Ly - 1(J). Do exposto conclui-
mos primeiro que se verifica a relagéo 7EPZ 77 (para cuja

“Fi2

interpretacdo correcta lembramos que qualquer dos seus
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membros pode representar uma infinidade de quantis) e infe-
rimos depois que cada #, situado nalgum intervalo aberto
de extremos ;zM e ;y® diferentes € um quantil cujos numeros
de ordem n satisfazem todos a desigualdade y<Zn<3d.

Posto isso, designemos por £® o infimo dos valores de
i,, tais que G/ (u,,+0)>0 e por oll) o supremo dos valores de
u,, tais que Gj(u,)<p(J). Logo se vé que 0, L0 L 25,
que ol)>-co, que £0<?,, que G;(ED)=0, que G;(a)+0)=p(]),
que nenhum quantil de ordem positiva e menor do que 1 pode
ser nem anterior a £ nem posterior a a{), que a hipétese
G (EO+0)>0 forca 9 a ser quantil de qualquer ordem 7
sujeita as desigualdades y<1 e 0<y LG, (BO+0)/n.(]) e que a
hipétese G, («l))< p.(J) obriga o) a ser quantil de qualquer
ordem y sujeita as demgualdades 7>0 e 19> Gy (aW)/p (J)
Nestas condi¢des, se §O<a(), basta fazer percorrer a gran-
deza u,, crescentemente o intervalo aberto de extremos (¥
e o) para que ela se constitua em quantil com um nimero
de ordem (em geral variavel) 7 positivo, menor do que 1,
nio-decrescente e sujeito a 1e1 ¢do G(FO+0)/u(J)LyL
G (])-

Por vezes, é cémodo classificar como gquanti! da ordem 0
qualquer numero finito ou infinito ;%@ tal que .2 ;xOLEY
e como quantil da ordem 1 qualquer nimero finito ou infinito
770 tal que o)< ,7W.LE,,, subentendendo-se, em ambos os
casos, que se trata de quantis admitidos por ¢ ou £ e relativos
ao intervalo / e ao seu m-ésimo factor. Tais quantis podem
distinguir-se dos anteriormente considerados, de ordem posi-
tiva e menor do que 1, chamando prdprios a estes e cha-
mando improprios aos novos quantis. Claro que a hipétese
G ((O+0)=0 [G,(«V)=p.(])] exclui o tnico caso em que um
quantil da ordem O0[1] tem a possibilidade de ser préprio.

Acrescentamos um exemplo em que se efectua o estudo
completo dos quantis correspondentes a um g e 2 um J dados.

Exemplo 60. Fagamos N=1, oy=a=—o0,f1=F=1, c;=¢c=0,
w,=u e Fy(u) igual a 0 ou a 1/2 ou a 2%, conforme for #£1/3
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ou 1/8<uL2/8 ou 2/8<u. Sai p(J)=2e G,(u)igual a 0 ou 2
1/2 ou a 2# ou a 2, conforme for n#.<£1/3 ou 1/8<u<2/8 ou
2/8<uLt ou 1Zu, Dai; das convengdes feitas na observacio
posta a seguir a 71) e alargadas ao caso dos quantis impré-
prios, das igvaldades 2®=1/3 e «W=1 e da dupla desigual-
dade 71') tiramos que ;% pode ser qualquer numero desde
—eo a 13, extremos incluidos, que ,yM=1/3 para 0<y<1/4,
que sz pode ser qualquer numero desde 1/3 a 2/3, extre-
mos incluidos, que ;™ =2/3 para 1/4 27223, que 7V vale v
e apenas y para 2/3Ly< 1 e que yy{ vale 1 e apenas 1. Note-se
que o quantil improprio £ é também proprio e gue o quan-
til impréprio o0 nZo é préprio.

Fechamos esta sec¢@o apresentando a nomenclatura espe-
ctal que é costume aplicar aos quantis mais importantes.

Chama-se mediana ou, por vezes, valor mediano a todo o
quantil da ordem 1/2. Também se chama 7-ésimo ftercil a
todo o quantil da ordem #/3(i=1, 2), -ésimo quartil a todo o
quantil da ordem /4 (¢=1, 2, 3), 7-ésimo penti! a todo o quan-
til da ordem 7/5(r=1, 2, 3, 4), -ésimo sex#i/ a todo o quantil
da ordem ¢/6(1=1, 2,...,5), i-ésimo s¢pti/ a todo o quantil da
ordem Z/7(z=1, 2,...,6), -ésimo oc#i/ a todo o quantil da
ordem 7/8(¢=1, 2,...,7), z-ésimo noni/ a todo o quantil da
ordem 7/9(z=1, 2,...,8), 1-ésimo deci/ a todo o quantil da
ordem 7/10(¢=1, 2,...,9), i-ésimo centi! a todo o quantil da
ordem 7/100(z =1, 2,...,99) e i-ésimo permil a todo ¢ quantil
da ordem 7/1000(i=1, 2,..., 999). Deste modo, alguns quantis
ficam simultaneamente com varias designagdes; por exem-
plo, todo o segundo quartil é uma mediana, todo o vigésimo
quinto centil é um primeiro quartil, ete.

Finalmente, recordemos a no¢éo de quantil principal da
ordem y, explicada na ultima observagio. Nesta conformi-
dade, podemos chamar infervalo fercil (veduzido) 2 diferenca
entre os tercis principais segundo e primeiro, intervalo semi-
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quartil ou intervalo quariil reduzido 4 semidiferenca entre os
quartis principais terceiro e primeiro, intervalo pentil redu-
zido a terga parte da diferenca entre os pentis principais
quarto e primeiro, etc., infervalo decil reduzido a oitava parte
da diferenca entre os decis principais nono e primeiro, etc.
O mais usado dos intervalos citados é o intervalo semiquar-
til, a que se recorre frequentemente em questdes estatisticas.

40. Funcdes quase-medidoras associadas a colecgdes orde~
nadas formadas por VX1 nimeros reais. Convergéncias fraca e
completa de certas sucessdes de tais fungdes. Escolhidos a nossa
vontade VX1 numeros reais ¢,(m=1, 2,...,/N), cada um
deles finito arbitrario ou infinito com sinal qualificado, pode
acontecer que a esses numeros corresponda uma fungdo real
e, onno.. exy abreviadamente O,, das NV variaveis reais finitas
u, que seja dotada das propriedades duma funcio medidora
associada a ¢i,¢z,...,cy com excepcdo possivel da terceira
(veja-se, para o efeito, a primeira parte da sec¢do n.° 35), isto
¢, dotada das trés propriedades seguintes: 1.> A funcfo existe
e ¢ finita para quaisquer valores das varidveis w,. 2.* Em
qualquer ponto do seu campo de existéncia a funcio sai
semicontinua do lado esquerdo com respeito a cada uma das
suas varidveis. 3.* Se substituirmos 7 por O no segundo
membro de 61'), este fica com valor ndo-negativo para qual-
qguer escolha dos 2 /N numeros reais finitos a,, € &,>a,.

Pois bem, a uma fungéo do tipo referido chama-se fun-
clo quase-medidora assvciada aos nimeros ¢, 6x,...,¢x, justi-
ficando-se tal classificacdo como segue:

Quando se iguala o segundo membro de 61", com O em
lugar de 7, a uma fungdo © das 2 /V variaveis reais finitas
a, e by>a,, a esta é aplicavel a demonstragio de XXV até a
altura em que se invoca a terceira propriedade das fungées
medidoras. Portanto, a fun¢do © referida admite uma e uma
s6 extensdo a uma medida, digamos , definida no corpo de
Borer & a /N dimensdes, a qual sai finita-c em & e {inita na
subclasse principal de &. Deve notar-se, porém, que dum
modo geral ndoc € vidvel a identificacio da fungio O, com a



[32)
a3
(V]

PEDRO BRAUMANN

restricio da medida ¢ a classe dos intervalos da forma
Dinf (¢, u,) L 2, <sup (c.,1,)| (onde deve ler-se <a, em

M
lugar de Zx, sempre que ¢, =—oe). Convém acrescentar que
¢ uso designar a extensdo p aqui considerada por medida
determinada pela fungdo Q..

A defini¢do acima dada e a proposi¢io XXIII mostram
a verdade da afirmacdo seguinte: Qualquer funcio medidora
associada aos numeros 6;,cs,...,cxy € uma func¢do quase-
-medidora associada aos mesmos numeros e € nao-negativa,
nio-decrescente com respeito a cada ¢, e privilegiada com
respeito a todo o ponto do espago real X a /V dimensdes.
Todavia, a afirmacéo inversa da que acabamos de fazer escusa
de ser verdadeira, conforme mostra o caso da funcfo idénti-
camente igual a 1 no plano real, quando associada a qual-
quer par de numeros ¢ € ¢.

Segue um exemplo destinado a ilustrar como uma fungio
quase-medidora associada aos numeros ¢,¢,...,cy pode
tomar valores negativos, pode também deixar de ser nio-
-decrescente com respeito a cada ¢, e pode ainda sair privi-
legiada com respeito a certos pontos de X sem sair privile-
giada com respeito aos restantes pontos de X.

Exemplo 61. Considere-se a funcio das duas varidveis
1, € 1y que € igual a 0 se #,>>0 e u,>0, que € igual a —u»
se u; £0 e 120 e que é igual a u; nos demalis casos. Esta
func¢io é quase-medidora associada aos numeros ¢;=0 € ¢;=0,
sai privilegiada com respeito ao ponto (—1, 1) e assume, no
ponto (1, —1), um valor negativo maior do que o valor assu-
inido no ponto (1, —2), pelo que ela ndo pode sair privile-
giada com respeito a todo o ponto de X (veja-se o comen-
tario a definicdo de funcdo privilegiada, dada na primeira
parte da sec¢do n.° 35).

Vimos, a propésito de XXXII, que uma func¢do medidora
associada aos numeros ¢i,cs,...,cy tem um conjunto de pon-
tos de descontinuidade que se distribui por um nuamero finito
ou, quando muito, por uma infinidade numerdvel de planos
paralelos aos planos coordenados do espaco real a /Y dimen-
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sdes. A proposi¢do seguinte esclarece que basta sujeitar uma
funcio quase-medidora associada a ¢;,6,...,6y @ uma res-
trigio comparativamente suave para que o seu conjunto de
pontos de descontinuidade se distribua dum modo igual ao
duma fun¢io medidora.

XXXV) «Toda a funcido quase-medidora que seja asso-
clada a V> 1 nameros reais ¢;,¢s,...,cn, cada um deles finito
arbitrario ou infinito com sinal qualificado, e que seja privi-
legiada com respeito a algum ponto do espaco real X a NV
dimensbes®), toda a funcio nestas condigbes apresenta um
conjunto de pontos de descontinuidade o qual se distribui
por um numero finito ou, quando muito, por uma infinidade
numerdvel de planos paralelos aos planos coordenados de X.»

Demonstragdo de XXXV. Consideremos uma funcio
quase-medidora, associada a ¢,¢s,...,cxy € privilegiada com
respeito 2o ponto ne X de coordenadas n,(n=1, 2,..., V), seja
a funcio Q.(u1,us,...,uyx), tomemos qualquer niumero natu-
ral K Z /N e quaisquer inteiros #,(k=1, 2,...,K) tais que
1L <ne<l - - <mxLIN, representemos por O . (U, tn,y.eey Uny)
a funcdo que se obtém a partir da funcio considerada quando
se faz u, =mn, para todo o n diferente de cada um dos ",
introduzamos as 2 K variaveis reais finitas a,, e b,>a.,, €
formemos a fun¢do @, dessas varidveis, definida pela expressdo

72) @'A(aﬂﬂ'"7“”}\'7b”1""76”1\'>:

P E [(-1)1’.\?/ dpal N Q',‘,c(au”})”l,. N .,a;”\-/_P"K)},

L= pu, e s Pugy 50

em relacdo a qual valem as regras seguintes: Os simbolos

¢o,d'y... designam os inteiros =, para os quais é desrespei-

y

tada a desigualdade a,,<c.,<b.; se a colecgdo ¢,d',... for

(+} Se for N=1, esta 1ultima propriedade esta implicita no facto de
se tratar duma funcio quase-medidora.

(») Claro que a unica funcio Qy,c{(#n,,...,#sy) coincide com a fun-
cdo Jc(uy,. .., uy).
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vazia, estabelece-se a conven¢do px+p+ ---=0,; caso se
tenha », ¢, ¢,..., pde-se a,, 1=a,, € a,, =0, se u; for um
dos inteiros ¢,¢',..., pde-se a,, 1=a,, € Qp, :=0n, OU dyu, 1=="0,,

€ @y, ,2=a,, conforme tivermos ¢, <a,, ou ¢,,>0,,.

Nestas condi¢fes, as hipéteses feitas com respeito a fun¢do
O.(t1,...,uy) ndo s6 implicam que a funcdo Q.. (s, .. -y tny)
seja em toda a parte finita e semicontinua do lado esquerdo
com respeito a cada uma das suas varidveis, como também
implicam que a funcdo ©, do primeiro membro de 72) saia
nic-negativa no seu campo de existéncia. Sendo assim, refe-
riu-se, no principio desta secgdo, que a fun¢do 0, pode esten-
der-se, dum e dum s6 modo, 2 uma medida definida no espaco
de BoreL (X', ") a K dimensbdes que corresponde as K varia-
veis u,,, medida esta que resulta finita na subclasse principal
de #'. Portanto, a proposi¢do XXIV mostra que a fungio

4 (Anf (0, )y e o oy INE (s %)y SUP (B y %)y -« oy SUD (g y Unie))y

dependente das varidveis #,,, sai uma fun¢io medidora asso-
ciada aos nUmMeros w,,,...,M,, €, consequentemente, tem um
conjunto de pontos de descontinuidade distribuido por um
numero finito ou, quando muito, por uma infinidade numera-
vel de planos paralelos aos planos coordenados de X', planos
coordenados estes que sdo caracterizados pelas K equacgdes
#,,~0, cada uma das quais caracteriza também um plano coor-
denado de X. Por outro lado, sempre que 0 ponto (u,%s,....,%y)
varrer uma das regides nio-vazias de X em que, escolhido
qualquer 7z, a coordenada u,, suposta diferente de »,, per-
corre um e um s6 dos intervalos u,ZLinf(c,,n,.), inf(c.,n.)<
LUy ZSUD (Cny M) € s >SUD (s, 1), sempre que suceder isso,
a nossa funcio medidora constitui-se em combinacio linear
(de coeficientes fixos) da fun¢do Q.. (u,,,...,u,,) e das 25—2
funcdes que conseguem obter-se a partir da anterior intro-
duzindo nela, de todas as maneiras possiveis, igualdades
Hy, =1, €m ntmero de 1, 2,..., K—1. Atendendo ao exposto,

() As regides ndo-vazias do tipo aqui descrito sio em niamero de
21,3, onde I significa o nimero de grandezas ¢, infinitas ou iguais a =, .
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concluimos, trabalhando sucessivamente com todos os casos
em que K=1, em que K=2, etc.,, em que K=, que a func¢io
Qc(#1,. .. uy) tem, em cada uma das regides citadas, um
conjunto de pontos de descontinuidade distribuido por um
numero finito ou, quando muito, por uma infinidade nume-
ravel de planos paralelos aos planos ‘coordenados de X.
Finalmente, a tese afirmada no enunciado decorre do facto
de o complemento da unido ou soma das regiées mencio-
nadas se identificar com a unifo dos /V planos (paralelos aos
planos coordenados de X) caracterizados pelas /N equagdes
Uy == Tip.

Seguem uma definicio e duas proposicées destinadas a
preparar a continuacio desta secciio.

Em primeiro lugar, considerem-se /VX\1 varidveis reais
tinitas #, (#=1, 2,...,V), faca-se corresponder a cada numero
natural / uma funcio real JF'(s1,u2,...,uy), definida e finita no
espaco real X a /N dimensdes, e suponha-se que a funcéo real
F(uy,us,...,uy) tem as duas primeiras propriedades duma
fun¢do quase-medidora (associada a quaisquer /V ntmeros) e,
além disso, apresenta um conjunto de pontos de descontinui-
dade D distribuido por um numero finito ou, quando muito,
por uma infinidade numerdvel de planos paralelos aos planos
coordenados (de X). Nesta conformidade, se (e sé se) a suces-
sdo das fungbes // convergir (no sentido corrente da palavra)
para /' em todos os pontos de D7, com excepc¢ido possivel dos
situados numa coleccio finita ou numeravel de planos parale-
los aos planos coordenados, entdo escreve-se simbolicamente

73) Ilim FF ou FF, quando /- oo,
-

e diz-se quer que /7 ¢ limite fraco (ou essencial) da sucessdo
das funcoes [[° quer que esta sucessdo converge fracamente
(ou essencialmente) para F.

Quando cada uma das func¢des F e & for quase-medi-
dora associada aos /¥ nameros ¢, ¢,...,cy, cada um deles
finito ou igual a Lo ou igual a —oo, diz-se também que as



236 PEDRO BRAUMANYN

medidas p determinadas pelas funcies | convergem fracamente
(ou essencialmente) para a medida p determinada pela fun-
¢do F. Neste caso, 1 considera-se como sendo o fimite fraco
(ou essencial) das medidas ;p.

As defini¢des dadas tornam-se aceitaveis em face da pro-
posicdo que passamos a apresentar.

XXXVI) «Dada uma sucessdo de funcbes definidas e
finitas num espaco real com um numero finito de dimensdes,
ela ndo pode ter mais do que um limite fraco ou essencial.»

Demonstracdo de XXXVI. Admitamos que se verifica a
relagdo 73), que G (uy,us,...,uy) € uma fungio dotada de pro-

priedades iguais as de F e que se verifica a relacio FG,
homologa de 73). Entdo, pondo

Fugyusyo..yun)—G(ur 1y, un)=H(u,u,. .. uy),

reconhecemos nfio s6 que a fungio / sai finita e semicontinua
do lado esquerdo com respeito a cada uma das suas varia-
veis, isto para qualquer ponto do espago real X considerado,
como também que ela sai nula em todos os pontos de X,
com excep¢do possivel dos situados numa colec¢do finita ou
numeravel de planos paralelos aos plancs coordenados. Por
isso, se escolhermos um ponto arbitrario (ni,nz,...,7nv)eX €
se fizermos corresponder a cada namero natural zZ/V uma
sucessdo (infinita) formada por numeros w,, 5, 1 % (P»=1,2,3,...)
de maneira tal que a func¢fio A se anule em qualquer ponto
(M1, 50372, 523+ + +y . py), S€ procedermos do modo descrito, obte-
mos a relagio

O=Ulm (...} Hm [ Hm H (i, py 02, peyee-0 08, p)ll ) =H (0,102,008,

pw—wzo P> P>

a qual prova que a func¢do A sai idénticamente nula em X
ou, dito por outras palavras, que o limite fraco /& tunico.
Fica assim concluida a nossa demonstracio.

Terminamos esta parte da seccio n.° 40 pela proposigédo
seguinte:
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XXXVII) «Escolham-se arbitrariamente um espaco real
X com um numero finito de dimens&es, um conjunto nume-
ravel ¥ extraido de X e uma sucessdo (infinita) formada por
fungdes reais definidas em X. Se a sucessdo escolhida for
limitada em cada ponto de X, entdo ela admite uma subsu-
cessdo convergente em todos os pontos de Y.»

Demonstracdo de XXXVIL. Seja N o numero de dimen-
sdes de X, representemos por (X1, p, % py.-y Xy, 50 (p=1,2,8,...)
o ponto genérico de Y e admitamos que as fungles
Ly s, uy) ([=1,2,8,...), consideradas no preambulo
a 73), formam uma sucessfo limitada em cada ponto de X.
Nesta conformidade, podemos extrair primeiro da sucessdo
dos numeros / uma subsucessio formada por nameros /; tais
que & (%1,1,%2,1,...,%y,1) converge quando /,— co, podemos
extrair depois da sucessdo dos /; uma subsucessdo formada
por ntumeros /; tais que ;F (%1 2,%2,2,...,4x,2) converge quando
ly—> oo, podemos extrair em seguida da sucessio dos /; uma
subsucessdo formada por nameros /; tais que ;£ (%15, % 5,00 Xn,3)
converge quando /3—sco, etc. Portanto, se designarmos por 7,
o p-ésimo dos numeros /,, entdo os ntumeros y, formam uma
sucessdo estritamente crescente e as fungdes ; F'(u1,2s,...,u4xN)
portam-se como segue: Convergem no primeiro ponto de Y,
porque todo o y, € um /;; convergem no segundo ponto de
Y, porque todo o y, de indice p>1 é um /;; etc.; convergem
no g-ésimo ponto de Y, porque todo o y, de indice p>g—1
€ um /,; etc. Por outras palavras, a sucessdo das funcdes
..k, extraida da sucessdo das funcdes ;/, converge em todos
os pontos de Y, ficando assim demonstrada a nossa tese.

%
A parte subsequente desta sec¢iio esteia-se na proposi¢do
que passamos a ‘enunciar.

XXXVHD  «Considerem-se /.1 varidveis reais finitas
#,(n=1,2,...,/V), mais /V numeros reais ¢,, qualquer deles
finito arbitrario ou infinito com sinal qualificado, e ainda
uma sucessdo (infinita) formada por fung¢bes nio-negativas
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Fo(uyyusy. . un) (1=1,2,3,...), cada uma das quais € quase-
-medidora associada aos ¢, e privilegiada com respeito ao
ponto genérico (%, %s,...,%y) do espago real X a N dimen-
sBes. Entdo, a sucessio das funcdes /', converge fracamente
para uma (e s6 uma) funcdo F,(uy,u.,...,uy) se existir uma
funcdo G, sujeita a relagao

a) llim Fe(yiy ¥2ye e oy 90) =Ge( V1, Y240 oy YN) F= 00

em todos os pontos (¥1,¥s,...,¥y) dum conjunto denso em X.

Em complemento, a func¢io F, resulta ndo-negativa,
quase-medidora associada aos ¢, e privilegiada com respeito
ao ponto genérico de X e sai igual ao limite das funcbes
F,, quando tomada em qualquer ponto de continuidade de
coordenadas #, # ¢, para cada #. Além disso, escolhido arbi-
trariamente um ponto # de coordenadas #, e postos os sim-
bolos « e # para designar os valores genéricos de »# para os
quais #, >¢, e u, £c¢,, respectivamente, feito isso, se a
grandeza H, for igual ao supremo de G, relativo a parte de
X em que ¢, < 9, < u, para cada « (se houver valores «) e
em que ¢g > yg > xg, com xg < #g, para cada 8 (se houver
valores f), entdo a determinagio de £, em # confunde-se com
H, ou com o infimo de H, sobre a regifio onde xg < ug para
cada {3, conforme a colecgfio dos valores « coincidir ou deixar
de coincidir com a de todos os valores n.»

Demonstracdo de XXXVIII. Dividamos a nossa demons-
tracdo em duas fases: Primeiro, vamos deduzir que a fung¢io
F, sujeita as regras referidas no fim do enunciado é uma
funcdo ndo-negativa, quase-medidora associada aos ¢, e pri-
vilegiada com respeito ao ponto genérico de X; em seguida,
vamos provar que a fun¢io F, é o limite das func¢des J.,
quando tomada em qualquer ponto de continuidade de coor-
denadas #, 5~¢, para cada #», e vamos- concluir dai que as
fun¢des ;/; convergem fracamente para 7, (e sé para £, isto
por causa de XXXVI).

1.* fase. Para comecar, fixemos de qualquer modo um
namero natural m.2/N e dois pontos (..., Y1,V ) Ymsiye.) =3
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€ (cooyVmety Vimy Yms1y-.)=2%", pertencentes ao conjunto Y em
que é valida a relagiio @) e tais que se verifica uma das duas
desigualdades ¢, < ¥, <y 0u ¥, <y <L Cm. Entio, se algum
numero >0 tornasse G.(9)— G, (¥")=¢, podiamos encontrar
um !/ que verificasse a desigualdade /F.(9)>G.(y)—¢/2=
=G (¥ +¢/2>:1F,(y"), resultando assim uma contradigio com
o facto, mencionado no fim do terceiro trecho da secgdo n.° 85,
de qualquer uma das fung¢des ,f, ser nio-decrescente com
respeito a cada ¢,. Concluimos primeiro, atendendo ao
exposto, que a funcdo G, sai ndo-negativa e ndo-decrescente com
respeito a cada ¢, (no conjunto ¥) e concluimos em seguida,
atendendo a estrutura de Y e as propriedades dos supremos
e dos infimos, que qualquer uma das funcoes H, e F, referi-
das na parte final do enunciado sai ndo-negativa, finita e
ndo-decrescente com respeito a cada c, .

Posto isso, sejam quais forem o ponto (ny,ne,..,ny)=n€ X,
o nimero natural KN e os inteiros n,(k=1,2,..,K) tais que
1Lm<na<l---<mg £ N, representemos por £, (thu,y Un, yeey Uny)
a funcdo em que se transforma a func¢io 7, quando se iguala
#, a un, para todo o # distinto de cada um dos #; (a propria
fungdo . no caso K=UX), consideremos 2 K varidveis reais
finitas a,, e 6., a, e designemos por & a funcio dessas
varidveis que se obtém substituindo, no segundo membro de
72), o simbolo- O, por Fy .. Como as fungbes Fy,, sdo ndo-
-negativas em toda a parte, reconhecemos o seguinte: Todas
as fun¢des C; possiveis sdo obrigadas a sair ndo-negativas nos
seus campos de existéncia se cada Ln(@u, .. ) Gugy Onyye v oy by
tomar apenas valores ndo-negativos em qualquer regido nio-
-vazia tirada da classe das 2% regiGes que podem alcancar-se
fazendo variar os argumentos de modo tal que, seja qual for
%, o intervalo (linear) }a,, Zx,,< b, fique sempre contido
num intervalo fixo coincidente ou com | —oo< %, Zc,,) ou
com 6, <%, <+oo}. Por outro lado, seleccionadas primeiro
uma das fun¢bes I, e a seguir uma das regides ndo-vazias
citadas, a féormula 72), com F e ¢ em lugar de Q e O, respec-
tivamente, toma o aspecto particular®

() Havera coincidéncia entre os nimeros ¢/, ¢,... € 0s DGMEros 1, ,...,7;.



240 PEDRO BRAUMANN

74) (e e oy By By ey b=

— D o s, e 4 A
== ‘( 1)? t Py . Ff"c(dnuP”x’. . "anx,?”;()}’

1= pugs o 52

onde @, 1=, € @y,,2==b,, OU @y 1=0, € @y, 2=a,,, conforme
tivermos ¢,,<a,, ou ¢,,>b, , € onde todos os valores de F .
possiveis resultam da fun¢io F, tomwada numa e s6 numa
das (ndo mais de 2%) regides ndo-vazias que podem cobter-se
fazendo variar os argumentos de modo tal que, seja qual
for #, 0 n-ésimo argumento da fun¢io permane¢a num inter-
valo (linear) fixo coincidente ou com }—co<x,<c.| ou com
16, <%, < +oof, quer dizer, de modo tal que permanegam fixos
os valores 2 do tipo « e os do tipo f£.

Agora, escolhamos numeros 7, € uma qualquer das
regides indicadas para a funcéio £, reportemos a formula 74) a
um ponto » compativel com a escolha feita, designemos por 2
e &' os somatorios das 2%~ parcelas do segundo membro de 74)
ao longo das quais p,, +-- -+ p., s€ conserva respectivamente
impar e par, ponhamos em lugar do ponto » outro ponto »* de
coordenadas =% iguais a ou menores do que u,, conforme #
for um « ou um {, substituamos cada ponto <“n,,pn,r"'v”71,(,pm)

por outro (ay s, 1.y @y, p,) Quetorne ay, igual a ou menor

do que a,, 4, , conforme 7, for um « ou for um B, represente-

1k, p
mos por /1w, a funcdo em que se transforma a funcio /.,

quando se iguala o seu argumento ndmero 7z a =, para todo
o n distinto de cada um dos #; (a propria funcido A, no caso
K—=N) e, por fim, fixemos arbitrariamente um numero ¢>0.
Nesta conformidade, a estrutura de Y e a defini¢do de /7. per-
mitem determinar um numero ¢>>0 nas condigdes seguintes:
A cada um dos pontos (%1, fe,...,xn)=me X(1=1,2,...,2K71)
que podem obter-se supondo %pn"' impar e supondo &,

igual a af, ,, ou a 7, conforme # for ou deixar de ser um
dos #, a cada um desses pontos corresponde outro ponto
(ViyiV2ye- V)= eY tal que ¢,<;p,<s4,—¢ se »n for um 4
que ¢, >:y,>:%,-+5 se n for um § e que se verifica sempre a
desigualdade — G.(;y)<L —Huw (x)+¢. Logo a relagdao @) do
enunciado, o ndo-decrescimento das func¢des ;/, com respeito
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a cada ¢, e a convencio de designar por » o ponto de coor-
denadas 7, iguais a v — J ou a 7 +9, conforme 7z for um « ou
um f, isto tudo mostra a existéncia dum namero natural /'
com a propriedade de conduzir, para qualquer /x/', a desi-
gualdade

75) .28 3 H

% # ¢ . OK-1 _
€ (a”ll VPurtty a"}ﬂf)w\')é' -

— 2G>~ 2P () — 2 B (T prees Tn )

ﬂ/c,Pn,_.
sinal — para os dois valores de p,, possiveis se #, for um «

e com o sinal + para esses dois valores se ». for um §. Por

onde, dado %4, o argumento 4, ,  vale a Id, com o

outro lado, a cada um dos pontos (&1, jXa,..., ¥, = 26X
(j=1,2,...,251) que podem obter-se supondo %p,,,.. par e

supondo ;x, igual a a}, , ou a 7}, conforme 7 forb ou deixar
de ser um dos #;, a cada um desses pontos corresponde
outro ponto (;¥1,;¥z,...,; ¥y =,;veY tal que ¢, <x,—dL
L iyu < X, se n for um e, que ¢, > %, + 0 ;9. > %, se n for
um % e que existe um namero natural /” com a propriedade de
conduzir, para qualquer /> /", a desigualdade

T6) B e (@ e i ) P 2C )
éf‘" lFf(jy\)éZ” II:'\G,C < 7”1’ Dur dM}\-, pn;{)'

Mas, 4, 5, s6 pode assumir dois valores para cada %, as
parcelas dos ultimos membros de 75) e de 76) sdo, seja qual
for /, valores de ,F, tirados da regifo escolhida e cada funcéo
i, é, por hipotese, privilegiada com respeito ao ponto gené-
rico de X. Portanto, se fizermos />sup(/,/") e se somarmos
ordenadamente os membros extremos de 75) e de 76), sai,
em todos os pontos da regido escolhida, a relagdo

77) x [(_1)]5:11+"'+P”K.Hn*’c([l};“p”',...,aflh,ypnk)]é
1<]>H;,~-~5Pn1\'<2
D o—e - 28T

vdlida para qualquer valor de :. Consequentemente, na regifo
referida sai ndo-negativo o primeiro membro de 77), como
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quem diz o segundo membro de 74) com H, 4" e ¢* em lugar
de F,n e a, respectivamente. Finalmente, se a dita regifo for
uma daquelas em que Hye o (@ 5,00+ G, 5,,) POde diferir
de F.n,c(czm’?m yoos Gy pu) OU S€JA €m que existem valores #
do tipo B, entdo, escolhido arbitrariamente um namero 42>0,
a definicio da funcio F, e o ndo-decrescimento de #, com
respeito a cada ¢, permitem determinar as grandezas rg de
indices  diferentes de todos os #, e as grandezas a?ﬁ;’ﬁﬁ de
indices {% iguais a algum 7 por forma tal que cada wm dos 2%
termos /7 do primeiro membro de 77) fique compreendido
entre o termo homdlogo F/ do segundo membro de 74) e o
mesmo termo aumentado de 4, facto este do qual inferimos
primeiro que o segundo membro de 74) ndo € excedido pelo
numero —4.257 e inferimos em seguida, por causa da arbi-
trariedade de %, que o mesmo segundo membro resulta néo-
-negativo.

As consideracfes acabadas de fazer obrigam a funcio
F, a ter a propriedade de sair privilegiada com wespeito o
qualquer ponto de X, propriedade esta que comporta os dois
seguintes aspectos particulares: Pondo K=JWN, sujetta-se F, a
terceira propricdade de definicdo duma funcdo quase-medidora
e, pondo K=2 (se possivel), tira-se de 74), com 0 par my=s e
#s=1¢ formado por um « e por um f3, a relacfo

78) 'n,c(asl 675)—}77,,0(‘25)‘7") _Fn,c(be 61>_{_F:C,L‘<bsyat) é G

para qualquer ne X, da qual deduzimos que o modulo da pri-
meira difevenca de F, . com respeito a varidvel de indice [ ¢
uma funcdo ndo-decrescente da varidvel de indice a.

Chegados a esta altura, podemos terminar a primeira
fase da nossa demonstragfio provando que a funcdo F. ¢, em
qualquer pownto, semicontinua do lado esquerdo com respeito a
cada uma das suas varidveis.

Paraestefim, tomemos um ponto qualquer (#:,2s,...,25) =,
consideremos outro ponto (xy,%s,...,xn)=x tal que x,=u,
para cada o e que wg<ug para cada { e lixemos arbitraria-
mente um numero p>0. Pois bem, se o numero m per-
tencer a coleccdo dos 5, suposta ndo-vazia, entdo, escolhido
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um ponto x de modo a tornar F (u)+4o>/ (%), sal H, (%)
SF ()2 Fo(u) para todo o ponto #'=(...,tu 1, Uy, thusty...)
tal que x,.<w,ZLu,; quer dizer, podemos afirmar que 7o
ponto u a funcdo F. é semicontinua do lado esquerdo com res-
peito a cada um dos argumentos de indice B. Semelhantemente,
se m pertencer a colec¢do dos « [ou dos f3], suposta ndo-vazia,
entde, escolhido um ponto (¥, ¥2,...,¥x)=9, cCOM €,< Yy<%,
para cada «, com cg>y;>x; para cada § e com a propriedade
de tornar H,(x)—o<G.(y), feito isso, sai G ()L H, (¥) <L H, (%)
para t0do 0 ponto &'= (..., X1, X, Ling1yen) tal QUE 9, <X L X
fou yu>%.>x,]; quer dizer, podemos afirmar, em geral,
que no pornto x a funcdo H, ¢ semicontinua do lado esquerdo
lou direito] com respeito a cada um dos avgumentos de indice
a [ou B} e podemos afirmar, em particular, que %o ponlo u a
Suncdo F, é semicontinua do lado esquerdo com respeito a todos
0 seus argumentos, isto na hipdtese da coleccGo dos o coincidiv
com a de todos os n.

Suponhamos agora que a coleccdo dos « e a dos  sio
ambas ndo-vazias, que / pertence 4 primeira dessas coleccoes
e que a outra tem £ elementos. Entéo, a definicdo de F, pos-
sibilita a escolha dum «x tal que 0LH,(x)—F.(x)<g/4; mais,
o ndo-decrescimento da func¢io /7, com respeito a cada ¢, e a
sua semicontinuidade lateral esquerda na varidvel de indice
m permitem achar um ponto x" de coordenadas xj tal que
Cin< X< Fy QUE Xy =2, Para nstm e que 0LH, (2)-H, (x")<o/4;
depois, a semicontinuidade lateral direita de /., em qualquer
variavel de indice 8 conduz a um ponto x de coordenadas

;) tal que %/ =20, se » for um «, que x,<x)/<u, se n for um

£ e que 0LH. (x")—H, (x")<p/4; a seguir, uma nova aplicacio
da defini¢do de F, imp&e a existéncia dum ponto #" de coor-
dernadas u; tal que #),=ux}'=x, se n for um «, que xj<<uj<xll
se n for um £ e que H,(x")£LF,(v")£LH, (%"); por outro lado,
0 nédo-decrescimento da fungdo F, com respeito a cada ¢,
obriga o ponto " de coordenadas #) tais que u)=u,, e
u,'=u, para n=Em a satisfazer a desigualdade 0£F,(u")—
—F(u)LH (x)—F.(u); agora, substituicdes consecutivas de
cada uma das P coordenadas uj =u3 pela grandeza g COTres-

pondente, acompanhadas de P aplicacbes (também consecu-
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tivas) da propriedade de 7, deduzida de 78), transformam »" nno
ponto # de coordenadas w, tal que Yo = Uy Uy QUE 2y =T,
para n=bEm e que 0LF,(u")—F.(u)LF.(u")—F.(u); por fim,
a desigualdade obvia 0L F,(u) — F.(u) £ | F. (1) — Ho(x)| +
Py — ()| + | Holx) — HL(x")] + | H(&") — F(u")] £ 2
[ Hox)—Fo()] + [Ho(x) — H(a")} + [He(«") — H(x")]<p prova,
atendendo mais uma vez ao ndo-decrescimento da funcgio
F, com respeito a cada ¢, , que 1o ponto u a funcdo F, é semi-
continua do lado esquerdo com respeito ao argumento de indice im.

Fica assim completada a primeira fase da nossa demons-
tracao.

2.2 fase. Vamos fixar arbitrariamente um numero :>0 e
um ponto 2 que seja de continuidade para F. e que tenha
coordenadas #, =%=c¢, para cada n. Entdo, nio pode deixar de
existir um ntimero §>>0 tal que ¢.<inf(u,—0) (caso haja valo-

A

res a), que cg>sup (ug +3) (caso haja valores {) e que | £ () —
B

—F,(x)|<c para todo o ponto x de coordenadas x, compreen-
didas entre u,—3J e u,+0 (com qualquer ).

Pois bem, considere-se primeiro um ponto #*[ou »*] de
coordenadas u) [ou u, | tais que u, —d<u,<u, [ou U <thy <ty +0]
para cada z e que uB—)—8>u:§>ug [ou u5>u§%>u5—5] para cada §,
depois escolha-se outro ponto x*[ou x**] de coordenadas

3 e . ¥ % e Hee
x,[ou x, | tals que x,=w,[ou %, =u, | para cada «, que
ug > g >uglon ug >x3 >ug—3] para cada f e que a fungio /.
(ndo-decrescente com respeito a cada ¢,) satisfaca a desigual-
dade 0L H (x%)—F.(u*)<c[ou 0LH (x**)— F.(s**)<l¢], em
seguida recorra-se a um ponto y*eY[ou y**eY] de coorde-
nadas y,[ou y, | tais que 11, — < Y X [OU s < s, < X, | P2T2

* * e ek FHe R
cada «, que ug > Y5> %5 [ou ug >yp > %g ] para cada f e que
a func¢io G, (nfZo-decrescente com respeito a cada ¢,) satis-
faca a desigualdade 0L H. (x*)— G.(y*)<e[ou 0L H. (x**)—
—G.(y**)<c] e, por fim, recorde-se que qualquer funcédo /.
é nao-decrescente com respeito a cada ¢,. Nestas condigdes,
¢ possivel determinar um numero /, com a propriedade
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seguinte: Seja qual for IX/, sai
Fo(u) =3 L F(u)=2 e LH. ()= 2L G (3") e LiF ()<
LIF WLy ) LG () e L H (87 ) oL
LF () +2eLF (0)+3¢.

Portanto, ;. (u) — F. (%), quando /- oo.

Em face do exposto, a relagido F,(u)- F.(u) vale para
todos os pontos # que sdo de continuidade de /., com excep-
¢do possivel dos situados nos (quando muito V) planos para-
lelos aos planos coordenados (de X)) caracterizados por equa-
¢bes da forma u,=c¢, . Por outro lado, como F, é uma
funcdo quase-medidora associada aos ¢, e privilegiada com
respeito a qualquer ponto de X, a proposi¢cio XXXV distri-
bui o conjunto dos pontos de descontinuidade de /, por uma
colec¢do finita ou numerdvel de planos paralelos aos planos
coordenados. Consequentemente, aplica-se a definigdo de con-
vergéncia fraca das fun¢bes ,F, para a fungio £, e fica assim
terminada a ultima fase da nossa demonstragio.

Observacdo. K evidente que a convergéncia fraca de qual-
quer sucessdo de fung¢bes é uma convergéncia no sentido
corrente sobre um conjunto denso no seu espago. Por isso,
podemos dar o seguinte enunciado abreviado de XXXVIII:
«Considevem-se N ntimeros reais e uma sucessdo formada por
Sfuncoes ndo-negativas, cada uma das quais é quase-medidora
associada aos numeros dados e ¢ privilegiada com respeito ao
ponto genérico do espaco real X a N dimensoes. Entdo, a suces-
sdo considerada converge fracamente se ¢ so se ela convergir
no sentido covrente sobre um conjunto denso em X.»

Segue um exemplo destinado a ilustrar que a fungdo £,
referida no enunciado de XXXVIII escusa de ser o limite das
fungdes :F,, quando tomada num ponto de continuidade que
tenha alguma coordenada #,=c¢,.

Exemplo 62. Ponhamos N=2 e ¢;=¢,=0 e facamos cor-
responder a cada / natural a fungdo ;F, das varidveis reais
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finitas #; e #; que é igual a 1 para #,>>0 e para m;<L—1/l e
que é igual a —/u, para —1/l£u;£0. Entdo, cada fungdo ./
sai nio-negativa, quase-medidora associada a ¢ e ¢z e privi-
legiada com respeito ao ponto genérico do plano real X, mas
deixa de sair medidora associada a ¢, e ¢, porque a isso
obsta o facto de ser ;F,(u:,0)5=0 para u;=+0. Como (£ (u1, 1)
converge para 1 se #;==0 e para 0 se u;==0, concluimos que
F.(uy,u5) vale 1 em todo o ponto de X. Logo qualquer ponto
de continuidade de F, de coordenada u,=0 torna F, diferente
do limite das fun¢des ;F,.

Vejamos agora um corolario importante de XXXVIII.
Ei-lo. '

XXXVIII) «Considerem-se V1 varidveis reais finitas
un(n=1, 2,...,N) e N nimeros reais c,, qualquer deles finito
arbitrario ou infinito com sinal qualificado, e suponha-se que a
cada ndmero natural / corresponde uma fungo ; . (#:,%z,...,%x)
ndo-negativa, quase-medidora associada aos ¢, € privilegiada
com respeito ao ponto genérico do espago real X a N dimen-
sées. Entdao, se a sucessio das fungdes /. for limitada em
cada ponto de X, existe uma subsucessao, extraida dela, com
limite fraco (unico) igual a uma fun¢io F, ndo-negativa, quase-
-medidora associada aos ¢, e privilegiada com respeito ao
ponto genérico de X e igual também ao limite corrente em
todos os pontos de continuidade de F. que tenham coor-
denadas #, o= ¢, para todo o #.»

Demonstracio de XXXVIII'. Tome-se o conjunto Y for-
mado por todos os pontos (y1,:,...,¥v) € X tais que, seja
qual for #, a hipétese c,=co obrigue a coordenada y, a ser
racional e a hipétese ¢, == < obrigue a diferenga ¥,-—¢, a ser
racional. Entéio, nio sé a proposi¢io XXXVIlleva a sucessdo
das funcdes ;F, a admitir uma certa subsucessdo convergente
sobre Y, como também a proposicio XXXVIII faz corres-
ponder a essa subsucessio um e s6 um limite fraco que se
encontra nas condic¢des referidas no enunciado. Fica assim

completada a nossa demonstragao.
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Uma consequéncia, por assim dizer imediata, de XXXVIII'
€ a proposicio seguinte.

XXXVIII") «Se a cada numero natural / corresponder
uma fung¢io ;F,(e1,%s,. ..,4n) medidora associada aos ntimeros
¢a(n=1,2,...,V), entdo a hipotese de a sucessdo das fungdes
[, ser limitada em qualquer ponto do espago real X a WV
dimensées implica a existéncia duma subsucessdo com limite
fraco (tnico) igual a uma fungdo £, ndo-negativa, quase-medi-
dora associada aos ¢, e privilegiada com respeito ao ponto
genérico de X e igual também ao limite corrente em todos
os pontos de continuidade de /. dotados de coordenadas
%, = ¢,, para cada n.»

Demonstracdo de XXXVIII". Atenda-se a XXIII e a
XXXVIIT,

Passamos a dar um exemplo destinado a mostrar que a fun-
¢do-limite referida no enunciado de XXXVIII"” pode ser, mas
nio é necessariamente uma fun¢fo medidora associada aos ¢,.

Exemplo 63. Tomemos N=1, simplifiquemos a escrita
suprimindo o indice 1 das letras ¢ e #, ponhamos ¢=0 e
facamos corresponder a cada / a fun¢do ;fy(x), medidora
associada ao nimero 0, que ¢ igual a 1—e*! [a 1—¢*] ou a 1,
conforme for #.£0 ou #>>0. Nestas condigbes, /o (%) tem um
limite igual a 0 [a 1] para #<0, igual a 0 para =0 e igual
a 1 para »>0, pelo que o limite fraco Fy(u) sai iguala 0{a 1]
para %20 e igual a 1 para »>0. Portanto, F(«) é [ndo €]
uma funcio medidora associada a 0.

Na parte final desta secgio vamos tratar primeiro dal-
gumas propriedades suplementares da convergéncia fraca de
funcées quase-medidoras do tipo considerado em XXXVIII'
e vamos referir depois um caso particular dessa convergén-
cia que é muito importante para o estudo de questdes ulte-
riores. Comecemos por enunciar a proposi¢io seguinte:
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XXXIX) «Considerem-se N> 1 numeros reais ¢,
(n=1,2,...,N), qualquer deles finito arbitrario ou infinito
com sinal qualificado, facam-se corresponder a cada # gran-
dezas n,,,, (pu=1,2) tais que —w,,1="n,, 2=+ oo, admita-se que,
seja qual for o numero natural /, o simbolo (F, (uy,us,...,uxN)
representa uma fung¢fo ndo-negativa, quase-medidora asso-
ciada aos ¢, e privilegiada com respeito ao ponto genérico
do espacgo real X a NV dimensdes e suponha-se que a suces-
sdo das fungbes ,F, converge fracamente para a funcgido F:.
Entdo, primeiro a escolha de /V grandezas #,,;,=¢x, S€ possi-
vel, conduz a relagao®™

a) lim ; Folugyo.yug)>
”1“’7’1;151:~-':”A’""nN,P,\';lul[z""':IuN;
>lim max| lim Fo(ug,. . uy)l,
!0 Up— 0L, pro- - Mg TN, p M| ==y

depois a escolha de quaisquer /V grandezas u,,,, de indices »
todos distintos e tais quew,, 5, ¢, para cada zimplica a relagio

b) lim F.(uy,.. ,uy)<
Uy =0, prye - U =N, pxi| B ==y
Zlim min{ lim o (thy. oy un)]
I>oo  wg—sug,pyy. .ty =y, pes =" =]y

e, por fim, a convengido de designar por ¢ e por ;u as medidas
determinadas respectivamente por F, e por /. dd a fé6rmula

c) ;L(X)élinll min,u(X)»

Demonstracdo de XXXIX. Iniciemos a nossa demonstra-
¢do notando que o nio-decrescimento das fun¢des F, e iF,
com respeito a cada c,, assegurado por XXXVIII e pela parte
final do terceiro trecho da seccio n.° 35, ndo s6 impde a exis-
téncia dos limites (ordinarios) postos na relagio &) [ou )],
digamos T [ou S] para F, e ;T [ou ;S] para ,/;, como também
impede que algum desses limites se apresente menor [ou

() A seguir escrevemos /im max para o maior e /Jim min para
o menor limite ao longo de subsucessdes extraidas da sucessdo dos I
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maior] do que qualquer uma das grandezas em relagio as
quais ele ¢ tomado. Por outro lado, a defini¢do da conver-
géncia fraca prova que ha, quando muito, uma infinidade
numeravel de pontos (z#,,u%s,. .., uy)=u tais que |u;|=|us|="--
--.=|uy| € que /. («) deixa de convergir, no sentido corrente,
para F,(#). Nesta conformidade, se fosse 7—lim min;7=:>0

>

[ou S—lim max;S=-—¢<0], podiamos escolher » de modo

l—>w

que cada />/(u) extraido da sucessdo ao longo da qual ,7
[ou ;S] tende para o seu lim min [ou lim max] desse a relacdo

Fo(u)> Fo(1)— /4> T—xj2=lim min ;T +/2>;T
I->o0

[ou /()< F. (1) +0/4<S+o/2=1lim max,;S—q/2<;S].
I>o

Como esta conclusido ¢ absurda, fica demonstrada a relagio
b) [ou a)].

Posto isso, notemos que o segundo trecho desta seccdo
e as propriedades da fun¢io F, afirmadas em XXXVIII asse-
guram a existéncia das medidas ;p e p referidas no nosso
enunciado. Entdo, se fizermos K=/ e se substituirmos
On,c=0. por F, em 72), sai o primeiro membro igual a uma
funcdo © das 2 NV variaveis a, e b.>a, tal que

9(611,. . .,[lN,bx,. . .,bN)zp-(l I N %anéxn<bn})-

=n=

Semelhantemente, se fizermos K=/ e se substituirmos
por ;F, em 72), sai o primeiro membro igual a uma fungdo ,©
das 2 /V variaveis citadas tal que

B (@@, by b= (T jauLan <)

=u=xN

Evidentemente, ndo sé a funcio © (e qualquer fungio ;0) nio
decresce, caso algum a, decresga ou caso algum &, cresca,
como também os pontos (a,...,an,b:1,...,05)=w possiveis
apresentam, quando muito, uma infinidade numeravel de coor-
denadas a, e b, para as quais ;0 (w) deixa de convergir, no
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sentido corrente, para O (w). Por outro lado, o trecho final do
enunciado de XX esclarece que p(X)=sup®(w) e que

i (X)=sup ;0 (w), para cada /. Nesta conformidade, se fosse

¢ (X)—1im min ;p (X )=p>0, podiamos escolher w de modo que
I— o

cada /> (w) extraido da sucessdo ao longo da qual ;u(X)
tende para o seu lim min desse a relagio

10 (10)> 0 (1) — /4> (X)—p/2 = Lim min s (X)+¢/2>15- (X))

Como esta conclusdo é absurda, fica provada a férmula ¢) e,
portanto, fica terminada a nossa demonstracéio.

Observacido. Caso [F(u)tF.(u) [ou | F.(4)] em pontos
u=(u,, ..., uy) tirados da relacdo 4) [ou )] e arbitrariamente
proximos de (m,4,...,7n,5y), Caso suceda isso, verifica-se,
para os pontos referidos e para qualquer /, a desigualdade
T F. () iF.(u) [ou S£LF.(4)£F.(n)], da qual tiramos,
fazendo primeiro #, —>,, 5, com #=1,...,/N e tomando depois
em conta a defini¢io de lim max [ou lim min}, que se veri-
fica a nova desigualdade 7 xlim max,7 [ou S£lim minS],

I>w I—+w

como quem diz, que se verifica a igualdade 7 =lim,T

o>
fou S=1im ;S]. Semelhantemente, caso ;0 (w)! 6 (w) em pon-

I>w

tos w=(ay,...,an,bi,...,by) arbitrariamente préximos de
(—o00,.u.y —00, Hoo,..., +co), entdo verifica-se, para os pon-
tos referidos e para qualquer /, a desigualdade p (X)>0 (w)>
>0 (w), da qual tiramos, fazendo @,——co € b,—>+oco com
n=1,...,N, que se verifica a nova desigualdade p(X)x
;HHII max jp (X), como quem diz, que se verifica a igualdade

u(X)=lim ;u (X).
>
*
Terminemos esta sec¢io com um breve estudo da nogio
de convergéncia completa.
Admitamos que a cada numero natural / corresponde
uma funcio ;F, nio-negativa, quase-medidora associada aos
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nimeros ¢,cz,...,cy € privilegiada com respeito ao ponto

genérico do espago real X a /Vdimensdes. Nesta conformidade,

se a sucesso das fungbes 7, convergir fracamente para a fun-

¢lo (quase-medidora) F, e se, além disso, as medidas ;¢ deter-

minadas pelas fung¢des F, forem tais que }im i (X)) = p(X),
>

onde p significa a medida determinada por /%, entdo escre-
vemos simbolicamente

79) lim /F.=F, ou !Fc—c—ch, quando /— oo,

I+

e dizemos tanto que F, ou p € o limite completo da sucessdo
formada pelas funcdes F, ou da sucessdo formada pelas medi-
das p, como também dizemos que a swucessdo em causa comn-
verge completamente para F, ou para p. Comentamos que
o emprego simultaneo do indice ¢ de F e da letra ¢ isolada
em 79) (o qual nfo deve causar confusio ao leitor) ¢ motivado
pela necessidade de fazer concordar o texto presente com
passagens futuras deste tratado.

Por fim, um exemplo destinado a mostrar que a conver-
géncia fraca pode ser ou deixar de ser completa.

Exemplo 64. Retomemos as fungdes ;o e Fy do exemplo 63.
No caso 1—¢* a convergéncia fraca para /; ndo é completa,
porque qualquer / da ;p(X)=2-1=p(X). Todavia, no caso
1—¢'% a convergéncia fraca para Fy ja € completa, porque
qualquer / da ;p(X)=2=p(X) (compare-se com a ultima
observagio). ‘

41, Classificacdo das medidas definidas em espagos de Borel
com um ndmero finito de dimensdes. Esta seccdo tem por fim
passar uma breve revista aos principais tipos de medida ¢
que podem definir-se num espago de Borel [X(x), 8 (5)] com
um numero finito V> 1 de dimensdes.

Para comegcar, as medidas p ou g (B) referidas admitem
varias classificagbes em funcio do seu comportamento nos
diversos planos P paralelos aos planos coordenados de X.
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Assim, dada uma medida ¢ definida em (X, &), ela diz-se
impropria (e também degenerada) ou propria (e também ndo-
-degenerada) conforme existir ou deixar de existir algum
plano P tal que u(P7)=0. A este propésito, talvez seja opor-
tuno recordar que no caso /N=1 um plano £ se reduz 2 um
conjunto elementar.

Mais, dada uma medida ¢ definida em (X, ), ela diz-se
simples ou néo-simples conforme existir ou deixar de existir
algum conjunto B formado pela unido dum numero finito de
planos P e tal que ¢ (B7)=0 e ela diz-se discreta ou ndo-dis-
creta conforme existir ou deixar de existir algum conjunto B
formado pela unido duma infinidade numeravel de planos P
e tal que p(B7)=0.

Ainda, dada uma medida p definida em (X, ), ela diz-se
elementar ou ndo-elementar conforme existir ou deixar de exis-
tir algum conjunto B formado por uma infinidade numeravel
de pontos (veja-se o exemplo 31) e tal que u (5 )=0. Notamos,
de passagem, que os conceitos de medida discreta e de medida
elementar coincidem na hipétese V=1,

Por fim, dada uma medida u definida em (X, $3), ela diz-se
descontinua ou continua conforme existir ou deixar de existir
algum plano P tal que p(P)>0. '

Exemplo 65. A medida nula definida em (X, ) é simul-
taneamente impropria, simples, discreta, elementar e con-
tinua.

A ultima das definicdes acima dadas e a alinea 4) da
proposi¢do N XXXIII provam o teorema seguinte:

XL) <«Qualquer medida continua definida num espag¢o
de Borel (X, ) a /x1 dimensdes atribui o valor zero a toda
a unido finita ou numeravel de planos paralelos aos planos
coordenados de X.»

Vejamos agora um coroldrio de XL, a saber:

XL «Seja (X,#8) o espago de Borel a /.1 dimensdes,
seja @ a subclasse principal de & e seja p uma medida con-
tinua definida em &. Entdo, ¢ atribui a qualquer uniio finita
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ou numeravel de conjuntos C,(p=1,2,3,...) nio-vazios
e situados em @ um valor que nio se altera quando substitui-
mos cada C pelo seu fecho [ou pelo seu fecho privado da
fronteira].»

Demonstra¢do de XL'. Seja qual for p, ponhamos

Co= T |ty yL5x<bupl € Dp= 1 la, , 20,205,

1=n=N 1=<n=<N

fou Dy=1T1 |a,,,<%,<bn il

1=n=<N

de modo que D, se identifica com o fecho de C; [ou com o
fecho de C, privado da fronteira). Supondo agora p(U Cp)<+o0
?

fou u(UD,)< +o0], a alinea ) de N XXXIII, a relagdo (U 7,)—
? ?
—(US,)cU(Tp—S,) (verificada por quaisquer conjuntos S,

? ?
e T, extraidos de X®), a féormula 9), a conven¢io de designar

por X, as rectas reais cujo produto ¢ X, a proposi¢io N VI
e a proposicdo XL permitem escrever a desigualdade

0L (YDp)—e (U Cp)=#(<gDp)—(g C)<
éu(y(Dp— CoNe (UIUC- XX} b, p} X XK g1 <)) =0

[ou a desigualdade que se obtém a partir da anterior pondo
a, C e D em lugar de 4, D e C, respectivamente],

da qual tiramos a igualdade p.(U Cp)=p. (U D,). A mesma igual-
? »
dade ¢é obvia no caso p(U ()=~ [ou p(U D)= +] e, por-
? ?
tanto, fica concluida a nossa demonstracio.

Acrescentamos um exemplo duma medida continua g,
definida em (X, 3), para a qual é preciso encarar a hipétese

) Com efeito, a férmula N 12), a relacio N10a), a hipotese de
o indice ¢ ter 0 mesmo campo de variagdio que p, a igualdade N 14) e as
propriedades da intersec¢do conduzem a

(!;’JTp)'(ysp)=(‘~:’)Tp)n(OSﬂ—):LFJ[Tpn(OS:)]Cl"J(Tp_Sp)'
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(U Cp)=+oo [ou p(U D)= + 0], mencionada no fim da ultima
? ?

demonstracgio.

Exemplo 66. Represente-se por B o conjunto genérico
de $B e considere-se a funcdo p(B) igual a 0 ou a +oo con-
forme existir ou deixar de existir uma unifio quando muito
numeravel / de planos P tal que UDB. Entdo, sai ¢.(B) uma
medida continua e infinita-c e sai p(UCy)=p(UDp)=+-oo,

? ?

desde que ;=<0 para algum 3.

*
Ed *

Passamos a ocupar-nos duma categoria especial de medi-
das ¢ definidas no espago (X, &) supramencionado, a qual
é muito importante quer do ponto de vista tedrico quer do
ponto de vista das aplicagdes.

Representemos por (#,%:,...,4y) 0 ponto genérico de X
e por @ a subclasse principal de $, quer dizer, a classe for-
mada por todos os intervalos / a /V dimensbes tais que

I= 1 la,Zx,<b,} onde, fixado », as grandezas a, e b, se
1=n=N

consideram arbitrarias, debaixo da condi¢fio —co<<a@,Lb,<+oo.
Nesta conformidade, se (e s6 se) a funcio p sair finita sobre
@, entdo, por um lado, chamamos a ela medida de Lebesgue-
-Stieltjes (a N dimensoes para N qualquer, linear para N=1
e plana para N=2) e, por outro lado, chamamos medida de
Lebesgue-Stieltjes (também a N dimensies, linear e plana) com-
pleta a medida g que é a completiva de ¢, chamamos corpo de
Lebesgue-Stieltjes (a N dimensies, linear e plano) a classe By
que é o corpo-o completivo de & com respeito a g, chamamos
conjunto de Lebesgue-Stieltjes (a N dimensées, linear e plana)
a todo o conjunto extraido de $Bs, e chamamos espaco de
Lebesgue-Stieltjes (espaco a N dimensoes para N qualquer,
recta para N=1 e plano para N=2) ao espago de medida
(X, Bp, ). Talvez convenha acrescentar que muitos autores
reservam a designacdo de medidas de Lebesgue-Stieltjes
para aquelas medidas que nés designamos por medidas de
Lebesgue-Stieltjes completas.
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Ora, a nog¢io (aqui adoptada) de medida de Lebesgue-
-Stieltjes a /V dimensées anda bem proxima da nogio de fun-
¢do medidora associada a /V nimeros tomados por ordem dos
seus indices. Com efeito, vale a proposi¢do seguinte:

XLI) «Considerem-se /x1rectas de Borer [X,(%.),8B,(B.)}
(n=1,2,...,V), mais /N numeros reais finitos ¢, e ainda N
varidveis reais finitas u,. Entdo, para que a medida g defi-
nida no produto das /V rectas (X,,#,) resulte uma medida
de Lebesgue-Stieltjes a /V dimensdes, é condicio necessaria
e suficiente que a sua restri¢do a classe dos intervalos da

forma I {inf(c,,u.)Lx,<sup(e.,#,)| se reduza a uma fun-
1=n=<N

¢io medidora associada aos /N numeros c,.»

Demonstracdo de XLI. A condicio necessiria do enun-
ciado é uma consequéncia imediata da proposi¢io XXIV.
Quanto a condi¢do suficiente, ela é uma consequéncia ime-
diata da proposigio XXV.

Segue um corolario de XLI, a saber:

XLI) «Qualquer medida de Lebesgue-Stieltjes ¢ uma
medida finita-c.»

Demonstracido de XLI. O nosso corolario é uma conse-
quéncia imediata de XLI e de XXV.

A proposicio XLI pode generalizar-se para

XLI") «Uma medida é de Lebesgue-Stieltjes a /V dimen-
sbes se e s6 se ela for determinada por uma fun¢io quase-
-medidora dependente de /V variaveis.»

Demonstracdo. Atenda-se ao segundo trecho do inicio
da secg¢do n.° 40 e a circunstancia de a fun¢io medidora refe-
rida em XLI poder considerar-se uma fung¢do quase-medidora.

Chegados a esta altura, consideremos uma medida de
Lebesgue-Stieltjes a /1 dimensdes, seja u(B). Entao, sabe-
mos, pelo exemplo 55, que hd quando muito uma infinidade
numeravel de planos P paralelos aos planos coordenados de



256 PEDRO BRAUMANN

X e tais que g atribui um valor positivo a cada um deles. Se
designarmos agora por U o conjunto de Borel a N dimensdes
que é igual a unido dos planos £ referidos, podemos intro-
duzir duas funcoes p' e p” em (X, &) através das igualdades
de definicdo

80) p(B)=p(BNU) e p'(B)=pBNU)

das quais tiramos que Zanto p' como também p' é uma medida
de Lebesgue-Stieltjes a N dimensdes, isso pelas razdes seguin-
tes: Primeiro, qualquer conjunto B torna p’ (B)>0Lp"(B);
depois, qualquer colecgdo finita ou numeravel de conjuntos
B,e®B(m=1,2,3,...) disjuntos dois a dois d4, por causa de
N 14') e da propriedade aditiva de p, as igualdades p' (2 B,.)=
—pC(BaNU)=3¢/(By) & @' (EBy)=p(2(Bun UT)=2p"(By);

por fim, qualquer intervalo Ie@ conduz, por causa de N9a)
e de N XXXIII 4), a dupla desigualdade ' ({/)Lp(H)>p" (1),
com [-L(])< + oo,

Visto que ¢/ (B)+p" (B)=p(BN(U+ U7))=p(B) para qual-
quer B, é uso chamar as fungdes o' e p" medidas parciais ou
partes da medida original p. Quanio a medida parcial ou parte
u!, ela sai sempre discreta, porque qualquer unigo B duma infi-
nidade numeravel de planos P tal que BOU da a relagdo
0Lu (B)£p! (UT)=p(0)=0. Quanto a medida parcial ou parte
u', ela sai sempre continua, porque, dado um plano P, a hipé-
tese P c U implica p'(P)=p(PNU7)=0 e a hipétese PcU™
implica 0Lp" (P)Lp(P)=0.

Vejamos agora uma proposicao destinada a aclarar os
significados das partes discreta e continua duma medida de
Lebesgue-Stieltjes.

XLII) «Seja p(B) uma medida de Lebesgue-Stieltjes
definida no espaco de BoreL [X (x),B(B)] 2 V1 dimensdes,
sejam p' e p" as partes discreta e continua de g, seja F, a fun-
¢io medidora que determina p e que sé encontra associada
a N numeros reais ¢,(#=1,2,...,/V) admissiveis, qualquer
deles finito ou igual a +oco ou igual a —co, sejam /e F.' as
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fun¢ées medidoras que se encontram ambas associadas aos
c. € que determinam p' e u', respectivamente, e sejam P,
(m=1,2,8,...) os planos paralelos aos planos coordenados
de X com a propriedade de tornarem p(2,)>0 para cada m
(se houver tais planos).

Entdo, ndo s6 p" anula-se e p' sai igual a u para qualquer
conjunto 5 contido em U /£, = U, como também p' anula-se e

u' sai igual a u para qua”iquer B contido em U~ e, mais geral-
mente, para qualquer B disjunto de UFE,, onde, dado m, o

simbolo £, significa o fecho do conjunto formado pelos pon-
tos de descontinuidade de /7, ligados a P, [no caso ¥ L2 o
simbolo £, pode significar também um conjunto de Borer
contido em £, que compreenda todos os pontos de desconti-
nuidade de £, pertencentes a P,.]. Além disso, verifica-se a
igualdade entre funcdes F,=F/+F/, a funcio F/ resulta con-
tinua no seu campo de existéncia e a fungio F/ fica com os
mesmos pontos de continuidade e de descontinuidade que 7.
Finalmente, se V=1, a fun¢do /! sai estaciondria em qual-
quer intervalo contido em U™.»

Demonstracdo de XLI. A hipétese Bc U da, por causa de
80), as igualdades p' (B)=p(B) e " (B)=0. Semelhantemente,
a hipétese BC U™ da as igualdades p'(B)=0 e u'(B)=un(B).
Mais, como cada £,, € um conjunto de Borel (veja-se N XXX,
a convengiio UE,=F, a relagio ébvia UNE cU(P,—E,),

as alineas 6) e d) de N XXXIII e a proposi¢io XXXII arras-
tam p(UNE7)=0, de forma que a hipétese BC L™ implica,
por causa de UTCE e de B=BnN(U +U)nE=[BNU )+
+HIBAUNEY], as relagses u(B)—p(BAU)+0—p"(B) e
0Ly (ByLu (UTy+w' (UNEHYZLO+p(UNE™). Deste modo fica
arrumada a afirmac¢do (da nossa tese) relativa a medidas e s6
falta considerar a afirmacio relativa a func¢bes medidoras.
Obtém-se a igualdade entre fun¢des medidoras F,=F/+
+F/ a partir da igualdade entre medidas p=p'+p" restrin-
gindo o argumento desta tltima aos intervalos da forma

0 {inf(c.,#s)Lx0<<SUP (Cry 141,

1=n<N
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com a correccio habitual se ¢,=—oco. Quanto a fungio F/, ela
nio tem pontos de descontinuidade, porque a isso se opdem
a continuidade de p' e a proposicio XXXIL Consequente-
mente, a funcgio F/=F,—F/ é continua ou descontinua junta-
mente com 7,. Por fim, se /=1, caso em que suprimimos o
(inico) indice 1 das possiveis grandezas @, 6 e x, entdo nenhum
intervalo /c U™ pode abranger dois pontos a € 6>>a tais que
F(b)5=F!(a), isso porque na hipétese a<c< b chegavamos a
conclusio absurda de que um certo namero , sujeito a relagdo
0<e<b—c tornava O0<F!(a)+F/(b—e)=p'(jaLx<b—z])=0 e
porque nas hipéteses ¢<<a e ¢xb chegdvamos a conclusdo
também absurda de que um certo numero ¢, sujeito a relagédo
0<e<b—a, tornava 0<|F/(b—e)—F/(a)|=p'(laLx<b—:|)=0.
Fica assim terminada a demonstragio de XLIL

Observacdo. A afirmagio de XLII relativa a medidas
esclarece que uma medida de Lebesgue-Stieltjes resulta con-
tinua [discreta] quando e s6 quando coincidir com a sua parte
continua [discreta] ou ainda quando e s6 quando for nula a sua
parte discreta [continua].

Acrescentamos um exemplo destinado a mostrar que
a propriedade referida no fim do enunciado de XLII pode
falhar no caso de ser N >1.

Exemplo 67. Tome-se, no plano de Borel [X (x),B(B)],
o ponto de coordenadas ¢ =c:=0 e considere-se a medida
p(B) tal que p(}0Lu <ui}>x<|0})=wu; para 0<u L1, que
e (101310 Lws <ms|) =us para 0<#221 € que p(B)=0 para
B X—[(JoLx<1]><{0})U(j0}<]0Lxr<1])), 2 qual se encon-
tra bem definida pela sua restrigdo a subclasse principal de &
(veja-se a proposigio XX), restricio esta que € facil de obter
com o auxilio das propriedades gerais das medidas. A medida
¢ determina a fun¢fo medidora £y o(u:,us) igual a 0 se % Z0
ou se 20, igual a u+us se 0<wy,usL1, igual a 1+u; se
0<#i1 L1 e us>>1, igual a 1+us se u3>1 e 0<usL1 e igual a 2
se #;>1<us. Os planos P que tornam p (£)>0 sdo os dois
planos coordenados e s6 estes, a parte continua de p sai nula
e a parte discreta confunde-se com p. Nestas condigdes, tem-se
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Fi o(u1,u)=0 e Foo(th,us)=F{ o(u1,us). Logo os pontos
(1/4,1/4) e (3/4,3/4), ambos situados num mesmo intervalo
contido em U7, tornam g ,(8/4,8/4)=1%2>1/2=F§ ¢(1/4,1/4).
*
* *

Dados os /N numeros reais ¢,(#n=1,2,...,/N), qualquer
deles finito arbitrario ou infinito com sinal qualificado, e dada
a medida p (B), definida no espaco de Borel (X, 8) a /V dimen-
sbes de ponto genérico (%1, z,. . ., xy), diz-se que p(B) é asso-
cidvel aos numeros c, se (e s6 se) quaisquer valores das varia-
veis reais finitas #, tornarem finita a grandeza

(T nf (6, 1) Laa<SUP (6 , )]),
1=<#<N

onde deve substituir-se £x, por <x, todas as vezes que se
tenha ¢,=—oo, ou, dito por outras palavras, se (e s6 se) a
medida u for restringivel a uma fun¢io medidora associada
aos ¢, (veja-se a proposicdo XXIV). Tal medida p.(B) resulta
uma medida de Lebesgue-Stielljes a N dimensées, ndo sé se
todos os ¢, forem finitos, neste caso por causa de XLI, como
também se houver algum ¢,=co, neste caso porque a alinea 4)
de N XXXIII torna p(B) associdvel aos numeros ¢, tais que
¢, vale ¢, ou 0 conforme ¢, tiver um valor finito ou infinito.
Imediatamente se reconhece que toda a medida de Lebes-
gue-Stieltjes a /V dimensdes € associdvel a quaisquer /V ntiime-
ros reais finitos c,, mas escusa de ser associavel a NV ntimeros
reais ¢, nem todos finitos. Merecem mencéo especial as medi-
das de Lebesgue-Stieltjes (a /V dimensdes) que sdo associa-
veis aos N numeros ¢i=c;=---=¢y=—oo [0U -0}, as quais
consentem funcds medidoras Fu, w, .., —w [0U Fiw, tw. .. to)
comodas para calcular medidas de intervalos situados na
subclasse principal de 8 a partir do segundo membro de 617),
com F em lugar de 7. Existem, porém, as medidas de Lebes-
gue-Stieltjes (a /N dimensdes) mais esquivas do ponto de
vista aqui considerado, quer dizer, as que nio sio asso-
cidveis a nenhuns /V numeros reais ¢, tais que ¢,=c para
algum #, conforme veremos na parte subsequente desta sec¢do

através dum caso particular importantissimo.
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Observacdo. Uma medida (de Lebesgue-Stieltjes) finita
u(B), definida em (X, ), sai, obviamente, associdvel a quais-
quer NV numeros reais ¢,, quer eles sejam todos finitos quer
nio o sejam. Inversamente, uma medida u(B) associavel a
quaisquer NV numeros reais ¢, € necessariamente (de Lebes-
gue-Stieltjes) finita, conforme pode provar-se desenvolvendo
primeiro X= 0 (}—oo<®,<0}+]0Lx,< +oof) segundo a

1<<n=N
formula 8'), aplicando depois a medida ¢ e a sua propriedade
aditiva ao desenvolvimento obtido, usando em seguida a
definicio de medida associavel a / numeros dados e recor-
rendo, por fim, 4 alinea 4) de N XXXV.
ES * E3
Consideremos, mais uma vez, o espaco de Borel [ X (x),B(B)]
a N>x1 dimensées, de ponto genérico (x1,4s,...,xy). Entdo, a
funcio © definida na subclasse principal de &, seja @, através
da relacgédo
81)  O( I Mawcx<bu)= M (bn—au),
I=nsN ]

| =n=N

suposta valida para quaisquer 2 V numeros finitos a, € &,>a,,
esta funcfio constitui-se dbviamente em funcio aferidora finita
para cada Ce@ e quase-continua no intervalo vazio e consti-
tui-se também em fungio parcialmente aditiva -z, conforme
pode ver-se escolhendo primeiro um ntimero natural m<ZN
e um namero d, tal que a.,<£d.<b,, atendendo depois
a igualdade

(bm—am>' _13 (&n_‘an)z(dm_’am)' n (bn_an)+

nm

"}“(ém'—dm)‘ H (bn“‘an)

e reproduzindo em seguida a parte da demonstragio de XXV
que vai desde a igualdade 64) até ao ponto em que se declara
a aditividade finita de ©.

Em face do exposto, da proposigio XX e das defini¢Ges
dadas no segundo trecho da segunda parte desta sec¢ido, em
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face disso tudo, podemos afirmar que a func¢io ©, introduzida
através de 81), admite uma e uma sé extensio a uma medida
definida em (X,8) e podemos afirmar ainda que tal extenséo,
seja L£(B), resulta uma medida de Lebesgue-Stieltjes (a /V di-
mensoes) infinita. E uso chamar a £ medida de Lebesgue (a N
dimensées para N qualquer, /inear para N=1 e plana para
N=2) e é ainda uso chamar medida de Lebesgue (também
a N dimensées, linear e plana) completa 2 medida £ que €
a completiva de ., chamar corpo de Lebesgue (a N dimensies,
linear e plano) a classe #g que € o corpo-¢ completivo de &
com respeito a £, chamar conjunto de Lebesgue (a N dimensaes,
linear e plano) a todo o conjunto extraido de #Be e chamar
espaco de Lebesgue (espaco a N dimensées para N qualquer,
recta para N=1 e plano para [N=2) ao espaco de medida
(X, Be,L). Semelhantemente ao caso geral das medidas de
Lebesgue-Stieltjes arbitrérias, também aqui muitos autores
reservam a designa¢do de medidas de Lebesgue para aquelas
medidas que nés designamos por medidas de Lebesgue com-
pletas.

Ora, a fungdo © da relagio 81) € uma restrigio da medida
de Lebesgue, esta representada por £(B5). Logo a medida .0
atribui ao intervalo genérico C'e € um valor que se confunde
com o seu comprimento ou com a sua 4rea ou com o Sseu
volume se igualarmos /N a 1 ou a 2 ou a 3 e se recorrermos
a interpretagdo geométrica de X dada no exemplo 8, usando
eixos coordenados ortogonais. A mesma medida atribui ao
conjunto C um valor que se considera igual ao seu «volume
a /V dimensbes» se N=£3, volume esse denominado também
«volume linear» se V=1, «volume plano» se V=2 e «hiper-
volume a /V dimensées» se /N >3.

Fixado arbitrariamente um produto de /Vintervalos linea-
res significativos contendo factores infinitos, seja o produto /,
concluimos da parte de II relativa a continuidade inferior
que sai .£(J)=++oc. Por outro lado, fixado arbitrariamente um
plano P paralelo a algum plano coordenado de X, concluimos
primeiro, da parte de II relativa a continuidade superior, que
qualquer intervalo a /V dimensdes, de factores todos finitos
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e contido em P, anula .£ e concluimos em seguida, da outra
parte de II, que se verifica a igualdade .£(£)=0. Nestas con-
di¢des, a medida infinita £(5) é propria, nio-simples, néo-
-discreta, ndo-elementar, continua e associavel a quaisquer /V
nimero reais finitos ¢,, mas ndo € associdvel a nenhuns NV
nameros reais ¢, tais que ¢,==o0 para algum .

Escolhamos agora, de qualquer modo, /N ntmeros reais
finitos ¢,. Entdo, a medida .£(5) associa aos nimeros esco-
lhidos a fungfo medidora continua £, ., .. ., das /V varidveis
reais finitas u#, que é definida pela igualdade

82) Frerrooyoy rytteye o yuy)= 11 Ju,—cy,
1=nsN
a qual se simplifica para

82') f‘o,o]“‘,o(%l,%2,...,%1\7): 11 !Mn‘
l=n=N

fiA

na hipdtese ¢y=co=... =cn=0.

Qualquer medida de Lebesgue a /V>1 dimensdes pode
construir-se, por um processo comparativamente simples,
a partir de NV medidas de Lebesgue lineares. Com efeito,
vale a proposicido seguinte:

XLIII) <«A medida de Lebesgue definida no espago de
Borel (X, ) a N>>1 dimensdes identifica-se com o produto
das NV medidas de Lebesgue lineares definidas nas rectas de
Borel cujo produto € igual a (X, B).»

Demonstracdo de X1III. A nossa tese ¢ uma consequén-
cia imediata da férmula 82) e da proposi¢do XXVIL

49, Densidades de medida. Considere-se o espaco de Borel
[X(x),#B(B)) a N1 dimensoes, tome-se a medida de Lebes-
gue .£(B) a IV dimensbes, designem-se por x,(n=1,2,...,V)
as coordenadas de x e escolha-se uma fungéo ¢(x)=9(xy,%z,..., %)
definida e ndo-negativa em X e limitada em qualquer inter-
valo pertencente a classe @ que se identifica com a subclasse
principal de &. Entdo, se representarmos por C o conjunto
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enégrico de @, torna-se aferidora finita em @a funcio 8, (C)
que se anula para C=0 e que ¢é igual ao integral (N-multiplo)
superior [ou inferior] de Darboux de o(x), estendido a C®,
quando for C=£ 0.

E facil de ver que a funcéo B¢ (C) aqui definida resulta
parcialmente aditiva-c em @ e quase-continua no intervalo
vazio. Com efeito, ha quase-continuidade porque, escolhidos
um numero natural m</V, um nimero real finito 4,, e 2.(NV—1)
numeros reais finitos a,(n=tm) e b,>a,., escolhidas estas
grandezas, as convengdes de fazer corresponder a cada a,,< b,
o intervalo C(a,,)= 1 N{anéxﬂ<bn§ e de designar por D (a.,)

1<y

o fecho de C(a,) ddo 0Ly (C(an)LL(C(am) sup o(%) e,
xeD(ap)

portanto, a relacio evidente lim .£(C(a,,))=0 implica a nova

A Om
relacdo lim O (C(@,))=0=0,(0). Reconhece-se que a fungio
amem
O (C') resulta parcialmente aditiva-¢ em @ escolhendo pri-
meiro  como anteriormente e um namero d,, tal que a,,<
£d,£b,,, atendendo depois 2 bem conhecida igualdade (entre

integrais se a,< b, para cada # e se @, <d,,<b,,)
83) O (- 3< | @y L2y < Dot |} Ao LH < b < (oomtimna)
>N A1 £ X1 <O} <) =
=B (- X | Bt L1 < bt | S Ao L8 < o} X (eomtivua)
>N 1 L Xp 1 < D pr | <)+
+Ou (- - > Bt L X1 <bina | X} Ao £ X< b} < (continme)
XN W1 L K 1< D1 | 5< - - -)

() Para formarmos o integral superior [ou inferior] de Darboux, esten-
dido a C, partimos de decomposi¢des sucessivas de C em somas de con-
juntos pertencentes a @ e fazemos corresponder & decomposicio genérica
o somatério de todos os produtos que podem obter-se multiplicando a
medida de Lebesgue de cada elemento da decomposicdo pelo supremo
[ou infimo] da fun¢io integranda relativo, por op¢do, quer a esse elemento
quer ao seu fecho quer ainda ao seu fecho privado da fronteira. Evidente-
mente, a medida de Lebesgue dum elemento duma decomposicdo pode
igualar-se a c¢hamada «medida» de Jorpan do mesmo elemento ou seja ao
valor que lhe atribui a teoria elementar do integral de Darsoux ou de
RiEmann (compare-se com o texto da pag. 261).
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e reproduzindo em seguida a parte da demonstracio de XXV
que vai desde 64), com © a desempenhar o papel de Oy, até
ao ponto onde se declara a aditividade finita de ©.

Em face do exposto, da proposicio XX e da definigdo
dada no inicio da segunda parte da secgdo 41, em face disso
tudo, podemos afirmar que o integral (/V-multiplo) superior
[ou inferior] de Darboux de ¢(x), considerado como funcio
de C, pode estender-se dum e dum s6 modo a uma medida
definida em &, digamos p (B), a qual € de Lebesgue-Stieltjes
a /V dimensdes. Esta medida resulta continua porque, se esco-
lhermos primeiro um numero natural m~sN e um valor &,
da variavel x,, e se fizermos corresponder em seguida a quais-
quer numeros naturais

“',ﬁm—l;pm;]ﬁm—ﬁ—h"‘

o intervalo
- s _Pm—léxm—1<ﬁm—1} > giméxm<£m+ 1/pm} ><

X;“}Sm—f—léxmvf«1<ﬁm+ls><’ = C( ] Pm—-l,im;ﬁm,pm-{d [ ')y

de fecho |
.D(.--yﬁm—lyim,ﬁ;n,[{),,n+l’...),

entdo verifica-se a desigualdade

0Lptg (C oy Bt oms Py Pty DZ2V (T )
(/) - sup ? (%)

xez)("':?m—lVEmyLPm-i—h‘“)

para qualquer p, e, portanto, a proposi¢do II, juntamente
com as formulas 10) e 8), implica que o plano 7, caracteri-
zado pela equacio x,,=%, fique com o valor

po (L) =

= lim [ im po (C(-y Pty oy Py Prntrye-))]=0.
s Pm=1y Pty Pl w

Podemos resumir o estudo aqui feito dizendo que qual-
quer fungdo ¢(x) definida e nio-negativa em X e limitada
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em cada intervalo C determina uma (e uma sé) medida, con-
tinua e de Lebesgue-Stieltjes a /V dimensdes, seja uy (5), tal
que, seja qual for C=£0, o valor po(C) coincide com o inte-
gral (V-multiplo) superior [ou inferior] de Darboux de ¢ (x),
estendido a C. Dada uma funcido ¢(x) que se encontre nas
condi¢bes apontadas, é uso chamar-lhe densidade superior [ou
inferior] (a N dimensdes) da medida u, correspondente. Tal
densidade ndo é a unica em relacdo a pe, porque sabemos
que é possivel mudar o valor da funcido ¢ em certos pontos x
sem alterar o integral superior [ou inferior] de Darboux de g,
estendido a qualquer C.

Exemplo 68. Suponhamos /N=1, omitamos os indices 1
das letras a, 6 e x e consideremos a funcdo ¢(x) que vale 1 ou
0 conforme x for racional ou irracional. Nesta conformidade,
dado o intervalo |a£Lx<b|=C=0, toma 0;(C) o valor 6—a
ou 0 conforme interpretarmos & como integral (simples) supe-
rior ou inferior de Darboux de ¢, estendido a (. Caso siga-
mos a primeira interpretagéo, fica ¢ () uma densidade supe-
rior (linear) da medida de Lebesgue linear e, caso sigamos a
outra interpretacgio, fica 9(x) uma densidade inferior (linear)
da medida nula definida na recta de Borel. Claro que a fun-
¢do o(x)=1 ¢é outra densidade superior da medida de Lebes-
gue linear e é também uma densidade inferior da mesma
medida. Semelhantemente, a fun¢do ¢(x)==0 é outra densi-
dade inferior da medida nula definida na recta de Borel e é
também uma densidade superior da mesma medida.

Continuemos esta parte da seccio 42 considerando o caso
particular em que nfo s6 o(x) é uma funcdo definida e nio-
-negativa em X e limitada em cada intervalo C, como também
existe o infegral (N-multiplo) de Riemann de o(x), estendido a
C®, quando for C==0. Neste caso, se a fun¢io 0y (C) for nula

(+) Para formarmos o integral de Riemann, estendido a C, procedemos
dum modo semelhante ao descrito na nota anterior, com a diferencga de
substituirmos o factor igual ao supremo [respectivamente ao infimo] ai
referido por um ntmero arbitrario compreendido, em sentido lato, entre
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para C= 0O e coincidir com o dito integral de Riemann para
C=0, entio ela admite uma (e uma s6) extensio a uma
medida ue(B), a qual sai continua e de Lebesgue-Stieltjes
a /V dimensdes. Agora a fungdo ¢ é simultineamente uma den-
sidade superior e uma densidade inferior (a /V dimensées) da
medida po, pelo que ela recebe a designagdo abreviada de
densidade (a N dimensdes) da medida po. Tal densidade néo
¢ a unica em relagdo a po, isto por um motivo semelhante ao
invocado para justificar a existéncia de varias densidades
superiores ou inferiores.

Suponhamos agora que 5 é um conjunto de Borel a V
dimensdes para o qual sabemos definir o integral (V-multiplo)
de Riemann de ¢(x), estendido a B, integral este que vamos

R
representar pelo simbolo fB O (X1, %,y..0yXy) A%y dXs...dxy OU

ainda pelo simbolo simplificado gefB ¢ (x)dx. Na teoria elemen-
tar do integral de Riemann admite-se sempre que o campo
de integragio B faz o efeito dum campo limitado e igual
a unifo finita ou numerdvel U de conjuntos nio-vazios
C,e@(p=1,2,8,...), disjuntos dois a dois, ou entéo, indiferen-
temente, igual & unido V" dos fechos D, dos intervalos C} consi-
derados. Nestas condic¢des, caso exista um tltimo valor P de p,
a proposicdo XL/, a aditividade e a definicdo da medida ps e
as propriedades do integral de Riemann arrastam a igualdade

R
84) o (V)=pte (U) =32 (C)=2 [, 3 ()= " [ 5 @)

Por outro lado, se a colecgic dos valores p possiveis for infi-
nita, entdo primeiro a continuidade da medida de Lebesgue
£ a NNV dimensbes, a proposicdo XL/, a propriedade aditiva
de Leaconven¢dio U D,=Vp para qualquer P natural,

1=p=P
tudo isto dd a relacio
85 L(My=2(2C,)=1i 2 Cy)=1i v,
) ) (p 5) e L(Cy) ;Trr;.,f( P)

o infimo e o supremo da funcdo integranda, ambos relativos ao fecho do
elemento de decomposicdo considerado ou, sem prejuizo do valor do
integral, relativos quer ao proprio elemento quer ao seu fecho privado
da fronteira.
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(a qual vale também se .2 for a chamada «medida» de Jordan
ou seja o valor genérico que € uso atribuir ao campo de inte-
gragdo na teoria elementar do integral de Riemann), depois
85) implica a nova relagio

R . R
86) f,,qo(xﬁx:gm [, 0@ dx

(2 qual pode provar-se, por exemplo, segundo um processo
adaptado ao usado para deduzir a relagdo semelhante citada
na pdgina 271 do tratado «Théorie des Fonctions» de
G. VaLirown, segunda edigfo) e, por fim, a proposigio XL/, a
parte de II relativa a continuidade inferior, a igualdade 84)
aplicada ao conjunto genérico Vp» e a passagem ao limite
de 86) arrastam a igualdade

8 we(V)=pe (U)=limpe (Ve)=lim [, o (x)dx= [, g (x)dx:

A igualdade entre os membros extremos quer de 84) quer
de 87) subsiste se tomarmos um campo de integragdo V ili-
mitado e equivalente 2 unido duma sucessio de conjuntos
V,1(g=1,2,3,..) tais que cada um deles seja um campo limi-
tado do tipo /” precedente e subsiste ainda se tomarmos um
campo VC X que seja a intersec¢do doutro campo de qual-
quer dos tipos anteriormente referidos com alguma unido
finita ou numeravel de planos paralelos aos planos coorde-
nados de X. De facto, no primeiro caso a hipétese gt € a

proposic¢io Il levam po (V)= gerqu(x)dx ao limite po(V), 0
qual, por ser o mesmo para quatsquer conjuntos }J,t de
unifo igual a V, nfo pode deixar de coincidir com o integral
de Riemann (/V-multiplo impréprio ou generalizado) de ¢ (x),
estendido a V, integral este que vamos representar ainda pelo
R

simbolo fV o(x)dx. No outro caso nio sé6 a continuidade
de py e a proposi¢io XL implicam pe(})=0, como também
vale a convenc¢do bem familiar gef,,rp (x)dx=0.

Podemos resumir os resultados aqui alcancados através
da proposi¢do seguinte:
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XLIV) «Consideremos o espago de Borel [X(x),8(8)]
a V>.1 dimensdes, representemos por € a subclasse principal
de B e suponhamos que a func¢fo (%), definida em X, é uma
densidade de medida (a N dimensdes). Entdo, todo o conjunto
de Borel coincidente com algum campo de integra¢io (no sen-
tido de Riemann) que faca o efeito dum campo limitado e
igual a uma unifo finita ou numeravel de fechos de conjuntos
nio-vazios, estes situados em € e disjuntos dois a dois, que
equivalha a um campo ilimitado e igual a unido duma suces-
sdo ascendente formada por campos do tipo acabado de men-
cionar e que seja a intersec¢io dum campo de qualquer dos
tipos até agora referidos com alguma unido finita ou nume-
ravel de planos paralelos aos planos cocrdenados de X, todo
o conjunto /" nessas condi¢des torna verdadeira a igualdade

“[y 0@ dn=ps (1),

onde o primeiro membro representa o integral de Riemann
(N-multiplo corrente ou generalizado) da fung@o ¢(x), esten-
dido a V, e onde o segundo membro representa o valor atri-
buido a ¥ pela medida u, (B), continua e de Lebesgue-Stielt-
jes (a N dimensdes), em relagdo a qual 9(x) € uma densidade.»

Exemplo 69. Escolhamos arbitrariamente um inteiro
N1, Entdo, a constante 1 € uma densidade de medida a V
dimensdes e a medida correspondente atribui a cada con-
junto C= 0 la,£x,<b,|e@um valor que resulta igual

1<n<=N
a I (b,— a.). Dai e da relacdo 81) concluimos que 1 ¢
1<n=N
uma densidade da medida de Lebesgue a N dimensdes.
Fechamos esta parte da sec¢do 42 generalizando primeiro
o conceito de densidade de medida e deduzindo em seguida
o aditamento de XLIV correspondente & generalizacdo feita.
Suponhamos que a fungio ¢ (x)=¢ (%1, ¥2,...,%y) possui
as trés propriedades seguintes: 1.2 E finita e ndo-negativa
em X. 2.2 Aos diversos inteiros positivos m £V correspondem
ntimeros reais finitos g, .,, constituindo colec¢bes vazias ou
finitas ndo-vazias, de modo tal que a funcio ¢ sai limitada
em cada CeC de fecho disjunto da unido de todos os planos
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(paralelos aos planos coordenados) caracterizados por equa-
¢des da forma x, =g, 4 (n=1, 2,..., V). 3.2 Seja qual for C,
existe e € finita a funcio @y (C) que é nula para C=0 e que,
para (#0, ¢ igual ao integral (N-multiplo) de Riemann de ¢(x),
quer covvenle quer improprio ou gemevalizado, estendido a C.

Dado um intervalo C= 11 {a,<x,<b,|== 0O e esco-

1=nsN

lhido qualquer valor particular do indice z, pomos @ ="%4,0,
igualamos (@, a 0 caso ndo existam ntumeros g, tais que
@n<9u,g,< b., representamos por &, ,(g.=1,2,...,0,) os
nUmMEros g,, g Situados em |a, <x,< b, | e dispostos por ordem
crescente, isto caso haja tais niumeros, e tomamos a conven-
G840 by=1,,0,+1€m qualquer dos casos.

Se introduzirmos agora, para qualquer #, grandezas reais
T,y (= 0y 1100y O +1) tais que £y 0 <0 2.0, 29, + 1< b, g0 41
para ¢,=0, 1,.., O,, entdo a definicio do integral (N-multiplo)
de Riemann, generalizado e estendido a C, a relagdo entre
integrais de Riemann correntes expressa em 86) e o facto de
um integral de Riemann corrente ser o mesmo para um con-
junto situado em @ e para o seu fecho privado da fronteira, eis
trés propriedades que, por associacio conveniente, obrigam

88) Se (€)=
= <Z 90( H ;‘n”a?‘lnéx”’<n”:‘?%'f‘l})

0=¢:=0,0=0:50:,.--, 059,50, 1=n=N

a tender nio-decrescentemente para 0 (C) quando, seja qual
for #, cada uma das (0, +1) grandezas u,,2,, tende, ao longo
duma sucessido ndo-crescente arbitrdria, para o numero %, g,
correspondente e cada uma das ((J,+1) grandezas n,,24, 41
tende, ao longo duma sucessido nio-decrescente earbitrdria,
para o numero &, .41 correspondente. Nesta conformidade,
a nossa fun¢do 0, (C) sai parcialmente aditiva-c em @ porque:
Se escolhermos um inteiro positivo m</N e um ntimero 4,
sujeito a desigualdade @,,£d,,£06,,, verifica-se a igualdade 83)
tanto nos casos d,,=a, ¢ d,,=0b,,, isto por causa da hipétese
9, (0)=0, como também nos casos restantes, em que podemos
primeiro incluir &, na coleccio dos numeros g.,g,, como
quem diz igualar 4,, 2 um ntmero §,, ,. de indice ¢, positivo
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e menor do que O,+1, e podemos em seguida associar as
parcelas de Sy (C) para as quais %,,24,+1<d» € associar tam-
bém as parcelas de S, (C) para as quais nm,2q,>dm. Por outro
lado, a nossa fungio Oy (C) sai também guase-continua no
intervalo vazio porque: Se igualarmos a grandeza d, de 83) a
Tim,20n+1, €0td0 a primeira parcela do segundo membro de
83) fica igual ao limite do somatério designado por Se(C),
isto quando w94, 1 £, para quaisquer valores de z e de ¢
€ 729001 1En, o+1 Para quaisquer valores de # e de ¢, com
excep¢do do par #=m € ¢m=Om, Pelo que 1, 20,+1%1Ekm,0,+1
faz tender a primeira parcela referida para ©,((C) ou seja
para o primeiro membro de 83), quer dizer pelo que 1 b
faz tender a segunda parcela do segundo membro de 83)
para zero.

Em face do exposto, da proposicio XX e da definicdo
dada no inicio da segunda parte da secgfo 41, em face desta
situa¢do, podemos agora afirmar que o integral de Riemann
(N-multiplo corrente ou generalizado) de 9¢(x), considerado
como func¢io de C, admite uma e uma sO extensdo a uma
medida definida em &, seja po(B), a qual resulta de Lebes-
gue-Stieltjes a /V dimensoes. Quanto a fun¢éo ¢ (x), chama-se-
-lhe usualmente densidade (a N dimensdes) generalizada da
medida p, correspondente. Claro que esta densidade generali-
zada ndo é a tnica em relacdo a py. Além disso, também aqui
a medida py sai continua, isto porque: Escolhidos um numero
natural m<N e um valor ¢,, da variavel x,,, basta considerar
£, igual 2 um numero &, ,, de indice ¢,, positivo e inferior
a 0,.+1 para que primeiro a férmula 88), as propriedades de
Sy, a defini¢do de p, e a parte de Il relativa a continuidade
inferior permitam obter, por passagem ao limite, a relagio

O, (C)= 2 o I JE, <l En

°(C) qu(éQnoéﬁést---yﬂéqxéQﬁ-Hl(I_S_"_SJV;' < En gl
para que depois a definicdio de O, (C), a igualdade 8') e
as alineas ¢) e 4) de N XXXIII tornem nulo, quando
0£Lg1£01y...,0£9,£0,, 0 somatério de parcela genérica

e ([ I %E”:Q‘:zéx”<£":9n+‘ﬂ—[1<H<N %a”»qu<x”<2”7?n+1u))

1=n<N
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para que em seguida a primeira parte de N 12), o facto de o
complemento do termo subtractivo do argumento de p, con-
ter o lugar dos pontos x,,=%t,, a alinea 4) de N XXXIII e a
formula 10), por um lado, e a igualdade 8') e a propriedade
associativa da adi¢do de conjuntos, por outro lado, condu-
zam & relacio

0= o ( > (continua)
b 0= 1= Ot ) 0E g1 = Omtl - -

(I g 8T gt >} B X IV Y2 g, £ <<E g )] =
n<im n>m

=t ([ I anan<bul > |En]><[ 0 1anlan<bul])

e para que, por fim, a parte de Il relativa a continuidade
inferior e a convengio de designar por P, o plano caracte-
rizado pela equagdo x,.=%, provem o resultado pg(P,,)=0.

Ora, se ¢(#1, %2,...,%,)=0(x) for a densidade (a V dimen-
sOes) generalizada duma medida, representamos ainda por

®R .
fB ¢ (%1, X2y, .y %) d% dxs ... dxy ou, abreviadamente, por

geang(x} dx o integral de Riemann (N-multiplo corrente ou

generalizado) de ¢(x), estendido a qualquer campo de inte-
gragdo B incluido nalgum dos tipos anteriormente conside-
rados. Além disso, continuamos a aceitar que, se tivermos
o equivalente a um campo limitado e igual a unido U de con-
juntos nio-vazios C,e@(p=1, 2, 3,...), disjuntos dois a dois e
com fechos [),, estes de unifo igual a V, entdo a definicdo

de ger ¢(x) dx confunde-se com a de ger o (x)dx. Também

R .
mantemos a convenc¢io de que fV 9(x)dx=0 caso Vc X

seja um campo de integra¢io contido nalguma unio finita ou
numeravel de planos paralelos aos planos coordenados de X.

Posto isso, fagamos corresponder a cada parcela de U=2C,
?

; ) -
gra’ndezas a”:P’ b”yﬁ} q”:PY Qﬂ:}’! X"yf” Qn:?)%z.n e n”y?;ln,p SHJEL-
tas a conven¢des decalcadas das referentes as grandezas
Ay buy Quy Ouy Yuy bn,qn © "u,y, utilizadas a propdsito de
88), introduzamos, sejam quais forem # e p, os conjuntos

.
En,zb,2qn,p = %sz’:%,ﬁsy En,p,?q,,’,ﬁ»l = gz-”:?:qn,ﬂ<x” <E” :P:Qn,p‘}’ls =
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C”:Paqum:;.n”:;b:2qnméx”<w”¢Pyzqn,p+ls’ com qﬂzPZO’ 17""Q"7?’
e suponhamos que cada grandeza n, 5,24, , tende, ao longo
duma sucessio ndo-crescente arbifrdriq, para O numero
%, 5.0, correspondente e que cada grandeza 7., ,,2q, ,+1 tende,
ao longo duma sucessfo nfo-decrescente arbitrdria, para o
namero £, 5 4. -1 correspondente. Nesta conformidade, a defi-
nicio dos numeros £% e a igualdade 8') permitem escrever

U=2[ Z (Elyf’:y-l,zﬂxl"XEN:P;Z;\',))}
P 0= =201 51,005 p =208, 011 .

e, portanto, as proposi¢ées XL e XL'e as propriedades das
medidas ddo a igualdade

po (U)=pe (V)=

={JC?( [ 2 (Ell7?7271,n+1><"'XEN;_P72‘1N,17+1>D)

0=g1,7 =01, 0=qv,»=05.»

A

cujo tltimo membro coincide com o limite da medida (variavel)

ED(S‘[ ‘2 (CI,P;QJ,pX" XCN}P:%\'.]D)])J

P 0=q1,p=0Qlps - 0SaN, 0= 0N,

isto por causa de N VI e da parte de Il relativa & continui-
dade inferior. Por outro lado, se designarmos por U' o tltimo
argumento (variavel) de po, entdo nio s6 po(U') coincide

. R <
com o integral (corrente) fU/go(x) dx, como também este

integral tende para gercp(x) dx:ge/Va)(x) dx, isto porque: Pri-
meiro podemos fazer tender para os seus limites somente as
variaveis 15,7, , (€ventuais) que nos permitam evitar a pro-
ximidade de ilimita¢tes da funcdo ¢, depois podemos atender
a circunstancia de que a passagem ao limite (eventual) aca-
bada de mencionar leva a soma das parcelas de U' por ela
abrangidas a percorrer uma sucessio ascendente e leva, aten-
dendo a Il e a XL, a grandeza po(U') a tender para po (U¥),
onde U* se obtém a partir de ' substituindo cada uma das
variaveis #2 tendentes pelo limite respectivo, em seguida
podemos jgualar (eventualmente) uo (U*) ao integral corrente
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ge'/'w ¢ (x)dx e, por fim, caso o integral com que ficamos ainda
nio seja o integral (generalizado) estendido a U, neste caso
podemos fazer tender para os seus limites as varidveis
T, p,%.., TEIDALESCENLES,

Em face do exposto, nfio s6 permanecem validas as igual-
dades entre os membros extremos quer de 84) quer de 87),
como também ficamos habilitados a retomar as considera-
cbes postas entre 87) e XLIV. Consequentemente, vale o
seguinte aditamento a XL1V:

XLIVY) «A proposicdo XLIV continua a ser verdadeira
se interpretarmos ¢(x) como a densidade (a N dimensdes)
generalizada duma medida.»

Observacdo. Caso b (x)=1{ (%1, x2,...,%y) seja a diferenca
(ndo necessariamente ndo-negativa) de duas densidades de
medida a N dimensdes, suponhamos ¢*(x) e 9**(x), cada uma
delas corrente ou generalizada, usamos o simbolo

R
[B¢<x1,x2,...,xN)dx1 dxg...de

. ) R -
ou, abreviadamente, o simbolo [Bq»(x) dx para indicar o

integral (N-multiplo) de Riemann de § (x) (quer corrente quer
impréprio ou generalizado), estendido a qualquer conjunto
de Borel B que convenha para campo de integragio, apli-
camos todas as convengdes feitas com respeito ao integral
(N-multiplo) de Riemann duma densidade corrente ou gene-
ralizada, estendido a qualquer conjunto / do tipo conside-
rado em XLIV e XLIV', e representamos por ps(B) e por
por+(B) as medidas de Lebesgue-Stieltjes (a N dimensdes) em
relacdo as quais ¢*(x) e 9**(x) sdo densidades, medidas essas
que obviamente atribuem valores finitos a qualquer B limi-
tado. Nesta conformidade, ndo s6 as proposi¢cbes XLIV e
XLIV' impbdem a igualdade

89) [, @de="[, 9" () de=po (V)—pe (V)
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para todos os conjuntos J tais que a diferenca entre medidas
escrita ndo apresente a forma indeterminada (4 o) —(+ o),
como também a definicio do conceito de integral de Riemann
tem por consequéncia praticamente imediata a validade da

igualdade
R R " R s
90) [ v@de="[, o* @) ds~"[, o (&) dx

para todos os conjuntos } tais que a diferenca entre integrais
escrita nio apresente a forma indeterminada (+oo)—(+o0).
Portanto, o integral do primeiro membro de 90) coincide com
a diferenca de medidas do segundo membro de 89) sobre a
classe @ formada pelos conjuntos /' para os quais o dito
segundo membro sai determinado, classe essa a que perten-
cem sempre todos os conjuntos /7 limitados e a que per-
tencem por vezes conjuntos V ilimitados.

# #

Consideremos o espaco de Borel [X(x),8(B)] a N1

dimensées, de ponto genérico x= (%1, %2,...,%y), tomemos
ai uma densidade de medida, corrente ou generalizada, seja
0 (x)=0(%, %,...,%,), representemos por p(B) a medida,

continua e de Lebesgue-Sieltjes (a N dimensoes), determinada

por o (x), escolhamos os simbolos u,(z=1, 2,...,/V) para desi-

gnar MV variaveis reais finitas, fixemos /V numeros reais ¢,

qualquer deles finito ou igual a 4o ou igual 2 —oo, € faga-

mos a hipotese pg(B)< +o para qualquer 5=I1 [, tal que,
k(4

dado 7, o factor 7, é da forma | — co << %, <] ou {¢, L %, <t}
ou {u, L x,<c¢,| conforme tivermos ¢, =—co ou —oeo< ¢y < n
ou ¢, >u,. Claro que a hipétese feita vale sempre para nume-
ros ¢, todos finitos e s6 representa uma imposi¢io adicional
para numeros ¢, nem todos finitos.

A situacdo descrita, a proposicio XXIV e o penultimo
periodo de XLII mostram que ¢ uma funcido medidora, con#i-
nua e associada aos numero c¢,, a funcdo F,(uy, us,...,uy) que
se obtem restringindo a medida po aos conjuntos C(c, u)=
= inf(c,,u,) L5, <sup(e.,u,)}, onde, dado n, deve substi-

n
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tuir-se Zx, por <, caso se tenha ¢,=—o. Por outro lado, as
proposicdes XL, XLIV e XLIV/, juntamente com o exem-
plo 48 na hipétese de haver numeros ¢, infinitos, provam que,
seja qual for o ponto # de coordenadas ., vale a igualdade

®
91) Folug, ugyo o yuy)= fD(C)u)cp(x)dx,

com D(c,u)=1\inf(c,,u,) L x, Lsup (cn, u.){, onde, dado #,

deve substituir-se por < qualquer sinal £ posto ao pé duma
grandeza infinita. Portanto, como podemos fazer coincidir o
primeiro membro de 61) com o integral de ¢(x) estendido ao
fecho D{(a, ) do argumento da fun¢do O, como podemos fazer
isso, a igualdade 61') d4, para cada D(q, 4), uma relagio

o . ® N
algébrica interessante entre o numero fD(a o (*)dx e os 2
2

nimeros que podem obter-se substituindo em = [, o(x)dx

cada uma das coordenadas #, sucessivamente por @, € por 0,.

Posto isso, suponhamos que €é nfo-vazio o intervalo
Ola,£Lx,<u.| e que existe um numero 4>0 tal que o inter-
k3

valo Il {a, £ %, <wu,+h} é de continuidade para a funcio o.
Nestas condigdes, vale a igualdade

92) o [ge./‘ma,u)@(x) dx]

()ul'duz-..()ul\[ :?(ulyuz;-..,uN)

(a qual pode provar-se, por exemplo, seguindo um processo
adaptado ao usado para deduzir a igualdade semelhante
citada na pagina 300 do tomo I do «Cours d’Analyse Mathé-
matique» de E. Goursart, quinta edicdo). Mas, a relagdo algé-
brica referida no fim do trecho anterior conduz 4 igualdade®

93) ()N[Qfmmu)rp (x) dx:] (. ()N[gefp(mu)@(x) dx] ,

Uy - 0Us v v . Uy O0uy - ot « .. Oy

() A seguir subentende-se que a derivacdo em ordem a #, é laleral
esquerda na hipétese #,=¢,.
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onde N(c,u) significa o mimero de grandezas u, tais que U LG
Ora, as igualdades 91), 92) e 98) mostram que a relagio®

()N[Fc(ulyu%"wul\[)]

Al
Oty - QUa . .. Oy

94) 2(__1)N(c,u).cp(ul,ug,...,uN)

se verifica para qualquer ponto # interior a um intervalo de
continuidade da fun¢do ¢. Em tal ponto ha, pois, coincidéncia
entre o valor absoluto da densidade dada o e o valor abso-
luto® da «derivada mista» daquela func¢io medidora asso-
ciada aos ¢, que corresponde 4 medida determinada por ¢,

Exemplo 10. Tomemos N=2, ¢(#1,42)= x|+ %; € ¢c1=06=0.
A func¢io 9 é uma densidade continua (corrente) no plano de
Borel e determina ai uma medida g, a qual corresponde
a funcdo medidora, associada aos ¢,, dada pela igualdade

Q )
Fo,o (o1, 12)= fD(c,u)(xi+x3>dx1 dzs,
com

D(c,u)=1{inf (0, u) Lx Lsup (0, u)}{><}inf (0, uz) Lx2L5up (0, us)}.

O céalculo do integral escrito conduz a £y (%1, u:)=(1/3)-
| o1 w2 - (#;+u2). Como ndo pode deixar de ser, a «derivada
mista»® da funcido F,,, tem, em toda a parte, um valor igual
a soma #’+#; multiplicada por —1 elevado ao numero de gran-
dezas #, nio-positivas.

Admitamos agora que a densidade de medida ¢ € con-
tinua no conjunto Y, limitado e igual a uma unifo finita
ou numeravel de fechos tirados de intervalos a N dimen-
sbes, estes disjuntos dois a dois, consideremos /V fungdes x} =
=g, (%1,%2,..., %) (p=1, 2,...,4V) tais que existam e sejam
continuas em Y as /V2 derivadas parcias da primeira ordem
ox% [ 0%, (n,p=1,2,...,N) e que o (determinante) jacobiano

(» A seguir subentende-se que a deriva¢io em ordem a w, & lateral
esquerda na hipotese u, =¢,.
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0(aF &5y vy x)
O (X1, Xayeuny X)
compreendido entre dois numeros positivos, interpretemos
as varidveis x} como coordenadas do ponto genérico x#* dum
novo espag¢o de Borel [X*(x*), $*(B*)], representemos por ¥Y'*
o conjunto de X* em que as func¢des g, transformam o con-
junto Y donde partimos e suponhamos Y* um campo de inte-
gragdo que € do primeiro tipo considerado no enunciado
de XLIV e que nio pode fazer corresponder pontos sobre-
postos a pontos distintos tirados de Y. Nesta conformidade,
nio s6 é certa a existéncia duma e apenas duma solugio
Xu=gu (xF,45,..,25) (n=1,2,...,V) do sistema das equagdes
de ligagdo das variaveis x, para as varidveis x,°, tal que Y
coincide com o conjunto transformado de Y* pelas funcdes
g%, que existem e saem continuas em Y * as /V? derivadas
parciais da primeira ordem Jx,/dx;* e que se verifica a igual-

dessas derivadas tenha em Y um médulo

dade entre jacobianos o ey %N) PRGN ’x‘\’),
o(xt, a8, ., 4%) 0 (%1, %2,y XN)

como também vale a igualdade entre integrais

R
95) fY Clo(xli'“ny)dxl.-.de:
# P e x| 0@ )
g oy 6 ) o g,
yoray

porque primeiro XLIV e XL' implicam a aditividade-c de
cada um dos integrais de 95) em relagio aos intervalos par-
ciais do respectivo campo de integragio®), considerados aber-
tos e disjuntos dois a dois, e depois a transcrigdo para um &V
qualquer da propriedade expressa no teorema da pdg. 275 do
tratado «Theéorie des Fonctions» de G. VaLiron, segunda edi-
cdo, quando aplicada aos intervalos parciais abertos compe-

(*) A funcdo integranda do segundo membro de 95) pode estender-se
a uma densidade definida em X*, atrvibuindo-lhe o valov sero para cada
x*eY*,
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tentes e aos seus transformados [estes quadraveis devido a
N XXX'"), permite concluir facilmente que qualquer um dos
membros de 95) ndo pode exceder o outro.

Talvez valha a pena acrescentar duas coisas: 1.° O resul-
tado 95) permanece valido se substituirmos Y por um con-
junto Z limitado ou ilimitado e igual a uma unido numeravel
de conjuntos Yp1(P=1, 2, 8,...), todos do mesmo tipo que Y,
de transformados Y%, dbviamente ascendentes e supostos do
mesmo tipo que Y *, se substituirmos ainda Y* pelo trans-
formado Z* de Z, quer dizer pela unifo dos YZ®, e se
aceitarmos que a hipotese Pt oo faz tender o segundo mem-
brot+ de 95) para o respectivo integral estendido a Z*. 2.°
A funcido integranda do segundo membro de 95) € a transfor-
mada duma densidade de medida quando x*e¥™*, mas nido se
reduz necessariamente a uma densidade definida em X™*; por
exemplo, ela escusa de existir em todos os pontos de X*
[compare-se com a nota® da pdgina anterior].

Posto isso, seja £*(B*) a medida de Lebesgue a N
dimensdes, definida em (X*,8*). Se fixarmos ¥ e se escolher-
mos as varidveis &, =x, para p>1 e a variavel x* por forma

axf* .oo(aff, s, L, xR
que —— =9(%1, %2,...,%,), entdo sai ACE TR S
dx1 d(xl,xg,...,xN)
=0¢ (%1, ¥2,...,%,) €, portanto, 2 igualdade 95), o exemplo 69

e a proposigdo XLIV ddo a relacdo
95') “fy o,y 2g)dor o dry— 2% (V)

por vezes bastante util nas aplicacdes.

Outro caso especial importante de 95) corresponde a
escolha duma transformagio linear ortogonal (de inversa cer-
tamente também ortogonal) x,= 2 Nan,Px?*'Fﬁn (n=1, 2,...,V),

1=p=

onde os /V simbolos £, designam constantes reais arbitrarias e

(» Atenda-se a Z*CcyYrcZ®.
P

(+») Quanto ao primeiro membro de 95), com Y, em lugar de Y, a
proposicdo XLIV obriga-o a tender para o integral da fungfio ¢, esten-
dido a Z.
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onde os V? simbolos «,, ; significam constantes reais de matriz
(quadrada) com transposta igual a4 sua inversa e, portanto,
com determinante igual a +1. Neste caso obtemos a relacio

R
95") fyip(xl,---ny)dxl---de—“:

F* 3 3
- ge./Y*q)<1§p§Nal’pxP i ’m’xgngN an,p X+ By) dxF ... dxg,
a qual refere uma propriedade de invaridncia numérica inte-
ressante, a saber: O valor da fungéo integranda do primeiro
membro em qualquer ponto xe¢Y é o mesmo que o valor da
funcdo integranda do segundo membro no ponto x* corres-
pondente a x. Evidentemente, a invariancia numeérica refe-
rida tem lugar todas as vezes que o jacobiano do segundo
membro de 95) seja constantemente igual a +1 ou —1, quer
haja transformacao linear ortogonal quer nio haja.

Exemplo 71. Seja® Y(y) o produto das duas rectas reais
Yi(y) e Ya(y2), representemos por X{x) o produto doutras
duas rectas reais Xj(x,) e X, (x») e interpretemos o plano real X
como plano euclideano dotado dum referencial cartesiano
ortogonal. Entdo, qualquer recta R situada em X é um con-
junto de Borel (veja-se o exemplo 32) caracterizado por uma
(e uma sé) equacido da forma x-cosy;+4s-seny;—y;=0, onde
y1 € ¥ sdo as chamadas coordenadas pluckerianas de R, quer
dizer onde y; significa um numero finito, ndo-negativo e igual
a distancia de R a origem O do referencial e onde y, significa
um numero nio-negativo, menor do que 2= e igual ao angulo
(expresso em radianos e percorrido no sentido positivo) com-
preendido entre o semieixo positivo das abcissas e a semi-
perpendicular baixada de O sobre R. Nestas condig¢ées, afi-
gura-se razoavel considerar uma densidade de medida ¢ (y)=
=4 (¥1,7s), definida em Y, como densidade relativa as rectas
possiveis em X, desde que a fungdo ¢ tome o valor zero para
¥2<0, para <0 e para ¥ 2. Por outro lado, consideragtes

() O simbolo Y a que vamos recorrer em seguida ndo deve confun-
dir-se com o Y do estudo precedente.
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elementares mostram que qualquer transformacéo linear orto-
gonal wy=ay 1 27 F a0 %5° + By X2 == ag 1 2 +as,2 %5° + 2 trans-
fere O para o ponto O* de coordenadas x;=0; e xe=Ffs, faz
rodar o semieixo positivo das abcissas, no sentido positivo,
dum angulo ¢ de coseno igual a oy,; € de seno igual a a1, €
ou deixa de ser seguida da mudanca do sentido de percurso
sobre o eixo das ordenadas conforme tivermos uma transfor-
macdo indirecta ou directa, como quem diz conforme tiver-
mos cy,1=—™d2,2, % ,2=%,1 ou @ ,1==0dg 9, *1,2= %2 1, e converte
as coordenadas pluckerianas v, e y: respectivamente em y:* €
y5*, ficando R com a nova equagdo x*-cosy* +xs - senyif —
—y# =0. Dai e da equacdo primitiva de R tiramos, sem difi-
culdade, as igualdades

cos y* sen y{ 5

1 = Ji = > = constante,
cos(yi—¢) T sen(yi—¢) ye—fu cosyi—fiz-seny

onde vale o sinal 4+ ou — conforme a transformacio for

directa ou indirecta e onde o quadrado da constante toma
o valor 1, pelo que toda a regido de continuidade conjunta
das derivadas 9y /dy.(n,p=1,2) abribui a J9(y¥,y5*)/d (91,%2)
a forma (dyi* [dy))- (£1)~0-(dys* [ dy1), com dy*[dy, igual a +1
ou a —1 conforme o tipo da transiormacio.

Consequentemente, uma transformacio linear ortogonal
efectuada em X da invariancia numérica simultineamente
para densidades ¢(x) relativas a pontos de X e para densi-
dades ¢ (y) relativas a rectas de X, ambas referidas a con-
juntos de continuidade apropriados, comodidade esta que
confere muitas vezes cardcter de preferéncia as coordenadas
pluckerianas y; e y. em questdes concernentes a medidas
(com densidade) de rectas situadas em X.

#*

Na ultima parte desta sec¢do vamos tratar das operagdes
da restrigio, da marginagdo, do corte e da multiplicacdo de
medidas com densidade.

Para comegar, dado o espaco de Borel [X (%), B(5)] a
N1 dimensées, suponhamos que ¢(x) € uma densidade de
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medida, corrente ou generalizada e definida em X represen-
temos por py (B) a (inica) medida que o(x) determina em &
(aqual é continua e de Lebesgue-Stieltjes), designemos por ¢ a
subclasse principal de & e notemos que as formulas 1) e N 14)
e as propriedades dos conjuntos pertencentes a @ permitem
reduzir qualquer unifo finita ou numeravel de conjuntos
Cre@(p=1, 2, 3,..) auma soma de conjuntos Cge €(g=1, 2, 8,...),
saindo a unifio dos fechos dos (, igual a unifo dos fechos
dos (7. Nestas condi¢des, se o conjunto X'CcX for dalgum
tipo V" dos referidos no enunciado de XLIV, o mesmo sucede
a intersecgdo de X' com o fecho D do conjunto genérico Ce@
e, portanto, a fun¢io ¢'(x|X") que € igual a o(x) para xe X' e
igual a 0 para xe X' resulta uma densidade de medida defi-
nida em X, a qual nio sé verifica a relagio

96) “loo x1X)dr="[ s 03 dx £ oo,

como determina também uma (e uma s6) medida p/(5), medida
esta que fica continua e de Lebesgue-Stieltjes e cuja restri¢do
a classe € coincide com o primeiro membro de 96). Por outro
lado, a proposicgo XLIV for¢a a medida p, (B|X")=¢,(BNX"),
dada por 36), a satisfazer a relacédo ‘

97) oy (BIX)="[ 5 0 @) dx

todas as vezes que BnX' for um campo de integragdo dalgum
tipo V acima citado. Entdo, como a alinea 4) de N XXXIII
torna continua a medida p,(5) que tem um valor igual a
u, (B X") para cada B, as relagbes 96) e 97) e a proposicio
XL' ddo py (C)y=p,(D|X")=p,(C), de modo que nio pode
deixar de haver identidade entre as duas medidas g (B) e
u,(B). Em face do exposto torna-se plausivel que considere-
mos a fungfio ¢'(x¥| X") como sendo uma densidade da medida
e (Bl X") e que lhe chamemos restricdo da densidade ¢ (x) ao
subespago mensuvdvel X' ou (densidade) o (x) dado X' ou (den-
sidade) o (x) na hipotese (de se verificar) X' ou ainda (densi-
dade) o(x) sob a condicdo (de se verificar) X'.
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Acrescentamos ao dito que a medida p; (8|X") sai sem-
pre finita-s [XLI' e XI] e sai nula, significativa, finita ou

infinita juntamente com gefX, o(x)dx [97), N9) e N XXXV

Consideremos agora N>>1 rectas de Borel [ X, (%,), 8. (5,)]
(n=1, 2,..., V), com produto igual a [X(x), & (B)], tomemos um
numero finito e positivo P e uma densidade de medida a &V
dimensles (corrente ou generalizada), seja o (x1, ¥2,...,%y)=
=9 (x), cindamos a colec¢do dos valores # possiveis em duas
coleccées parciais ndo-vazias, uma de elementos 4, 1> 4, j>1,...
e a outra de elementos s, #>>s, #>1¢,..., estabelecamos a con-
vencdo® [X'(«), B (B)]= a (X (%4), Bu(Bax)), repre-

n==S,t,t,...

sentemos por C' o conjunto genérico da classe @ coincidente
com a subclasse principal do corpo &', suposto a V' dimen-
soes, e interpretemos cada C' como a base dum cilindro C de
geratrizes paralelas a X, X;, X;,.... Nesta conformidade,
se designarmos por y, a medida determinada pela densidade
¢ e se designarmos por p0% a restricdo a ¢ da medida margi-
nal pp;, de g, no espago X' de valor prefixado igual a u(X)/P,
entdo, seja qual for €', a formula 66) e a proposicio XLIV ou
XLIV' conduzem a igualdade

98) P s0u(C)=" 7 o1, %2,..., %) d: dics....dy.

Por outro lado, se admitirmos que pode definir-se uma funcio
r?' do ponto x' ou, equivalentemente, das variaveis s, xs, Xu,...
pela relagido

® KiyX2yeny X
99)  PY'(Xs, Xsy Hiyorn)= wdx;,dx;dag...,
o XK XK X< e P

entdo, caso a fun¢do definida resulte uma densidade de medida
a V' dimensbes, corrente ou generalizada, cujo integral esten-
dido a qualquer conjunto (' terd um valor necessariamente

()} O simbolo X’/ a que vamos recorrer em seguida nada tem que
ver com o subespaco X’ usado no estudo da resiricio duma densidade.
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finito, valor este que supomos igual a 1/P vezes o integral
de o(x) estendido ao cilindro C correspondente a C', caso
suceda isso, concluimos de 98) que a medida designada por
ptte Possui uma densidade confundida com a fun¢io p9), a
qual func¢io ¢ denominada densidade marginal de o, tomada
nas variduels Xsy, Xy, Xu,.. € vedusida na proporcdo de P para 1,
e se considera obtida por marginacdo de o com respeito as

varidvels xy, X;y %;,... ¢ ao factor de escala P.

LExemplo 72. Se upo(B) for a medida de Lebesgue a
3 dimensdes, deduzimos, no exemplo 69, que podemos supor
o(%1,%2,%3)=1 em X. Entdo, quaisquer indices 4, 7,... tornam
ge./dX,,xXix_,,l - dxy dx;... =40, pelo que ndo pode haver den-
sidade marginal de 9, tomada nas variaveis x;,%;,... € redu-
zida na propor¢io dalgum P para 1. Todavia, dados os nume-
ros reais finitos as e 63>as, se igualarmos 7, (B) ao valor da
restricdo de py (B) ao subespago X< Xo>< a3 L x3203], obtemos
uma medida com densidade ¢ (x1,%,43) igual a 1 ou a 0 con-
forme x; estiver ou deixar de estar situado em |asLx32bs,
confundindo-se a constante 1 com a densidade marginal de 4,
tomada nas varidveis %, e 4» e reduzida na propor¢io de b3—as
para 1 [veja-se 99)]. O resultado que acabamos de mencionar
estda ligado ao assunto tratado na observacio terminal da
primeira parte da secgio n.° 31.

Posto isso, conservemos a notagio usada no texto prece-

dente, acrescentemos a conveng¢ido X' (x'")= ¥ X (%),
n="h,i,f...

escolhamos arbitrariamente (V—J/V') numeros reais finitos

Eny biy Ejye.. € Tepresentemos por @ (%1, Xsy..., 24)/(Eny Eiy Ejyers)

ou, abreviadamente, por ¢(x,, %, ¥u,...; tny &, &j,...) Ou, ainda
mais simplesmente, por ¢(x'; &) a fun¢io em que se trans-
forma a densidade % (x) quando se substituem nela as varia-
veis %n, %;, %j,... pelos numeros &z, &, &;,.... Ora, caso exista
e seja finito o integral de Riemann (/V'-multiplo corrente ou
generalizado) da funcdo ¢(«'; £"), estendido a qualquer con-
junto C's£0, caso suceda isso, a fun¢fo integranda fica insti-
tuida em densidade de medida (a V' dimensdes) e o integral
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admite uma e uma sé extensido a uma medida definida em
(X', '), extensdo esta que vamos indicar pelo simbolo
(‘L@(B>/(Eh9 E-i) E—j"") ou por po (B’r E—h: Zl’; Ej’) ou ainda por
po(B'; £'). Chegados a este ponto, como N XXVII identifica
(X', 3" com o corte feito em (X, ) pelo ponto £"e X", € natu-
ral que chamemos a densidade ¢(x'; &) corfe feito na densi-
dade o(x) pelo ponto &' e que consideremos a medida py (B £")
como um'®) corte feito na medida po(B) pelo ponto E'. Escusado
serd dizer que a medida ue(B’'; £) toma, em geral, valores
numéricos bem distintos dos da medida (nula) obtida por res-
tricio de po (B) a interseccdo de X e dos planos caracteriza-
dos pelas equagdes x,=%;, 4, =06;, 45 =E7,. . . .

Chamamos a aten¢do do leitor para o facto de, dada uma
medida dotada de densidades, o corte feito por um ponto fixo
poder variar ou até esvanecer quando se altera a densidade
escolhida para determinar a medida. Exemplifiquemos com a
medida de Lebesgue plana, no caso de ser 2=2,s=1 e £ =0,
escolhendo primeiro a densidade (&1, x5)==1, depois »(x, ¥2)
igual a 1 ou a 0 conforme tivermos x:==0 ou #,=0 e, por fim,
¢(x1, x2) igual a 1 para x,=~0, igual a 1/|x;| para x:=0 e x;5£0
e ignal a 0 para x=x,=0.

Terminamos a seccdo n.° 42, considerando dois ou malis
numeros naturais N', V"> /N, etc., tais que o ultimo seja igual
a /V, e admitindo que as fungbes ¢/, 9", etc. sio densidades
de medida correntes ou generalizadas, a primeira nas varia-
veis #1,...,%,, a segunda nas varidveis Xy41,...,%y", €tc.
Entdo, a fun¢do ¢ do ponto x ou das /V varidveis «, definida
pela relagdo

100) ? (F1yeeny xA[)= ?’ (#1400 xz\l’) : q,’” (xN’+1 ooy xA[”)' .-
resulta uma densidade de medida a /V dimensdes, porque: Pri-

meiro, a funcfio 9 é finita e ndo-negativa em X; segundo, aos

(7 Escrevemos um corte e nfio ¢ corte por um motivo que veremos
algumas linhas mais abaixo.
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diversos valores de # correspondem numeros reais finitos ¢, g,
constituindo colecgdes finitas, de modo tal que cada factor do
membro direito de 100) sai limitado em qualquer intervalo de
fecho isento de pontos com alguma coordenada igual a algum
numero g, ., propriedade esta que se transmite ao respectivo
produto ou seja ao membro esquerdo de 100); terceiro, sabe-se
da teoria do integral de Riemann, corrente ou generalizado,
que quaisquer 2/V numeros reais finitos @, e 6, a, sujeitam

os intervalos C= 1 ja,£x,<6,,C'= 1 |a,ZLx,<b.},
1=n<N 1=u=N'

C'= ] la, £x,<b,], etc. a relagdo

N4 1N/
. R 1 1" d ({

100') . C[? (xla' coEy) (Xnrg1y. 'ny”)‘ cdx. . XY=

R , n
=" oy ) dry dy -
-R " i
: \_ f 00 (AN 41y ooy X)Xy ... deu] cii F= o0,
Mas, se designarmos por ue, ws, pe,... as medidas de densi-
dades respectivamente ¢, ¢/, 9",..., entéo o integral do primeiro

membro de 100"), com numeros a, e b, a, arbitrarios, nio
s6 sai igual 4 restricio a @ da medida po, isto devido as
propriedades das densidades, como também sai igual a res-
tricdo a @ do tnico produto das medidas uy, we/, etc., isto
devido a proposi¢io XXII. Pois bem, as considera¢des que
acabamos de efectuar e a observacdio posta a seguir a XXII
provam a proposi¢io seguinte:

XLV) «Se ¢, o, etc. forem densidades de medida em
namero finito e tais que quaisquer duas entre elas ndo tenham
varidveis comuns, entio existe um sé produto das medidas
correspondentes a %', ¢, etc,, o qual admite uma densidade
igual ao produto (vulgar) de ¢/, 9", etc..»

43. Extremantes de certas medidas definidas em espacos de
Borel com um ndmero finito de dimensdes. Nesta sec¢fio vamos
introduzir alguns conceitos que se revestem, por vezes, duma
certa importancia teérica e pratica.
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Consideremos uma medida p(B), definida no espago de
Borel [ X (x), #(B)] com um numero finito /> 1 de dimensobes,
e suponhamos que é ndo-vazio o conjunto Y formado pelos ponios
yelX tais que 0<p (]9])<p(X). Quanto aos pontos (eventuais)
xeY ", pomo-los de lado no estudo subsequente, isto porque
nio havera qualquer possibilidade de especulac¢io a respeito
dos factos de p({#{)=u (X) nio ser excedido por e de g ({x{)=0
nio exceder nenhum outro valor da fungio p.

Nesta conformidade, se existir um ponto geY que torne

101) e(fzh>e(yl)  [ou p(l=DLe(lyh)]

para qualquer y, diremos que p({g]) é um (valor) mdximo [ou
minimo| absoluto da medida considerada e que esta admite 2
como ponto maximigzante [ou minimizante] absoluto, também
chamado ponto de medida (absolutamente) mdxima [ou minima).
Além disso, da-se o nome comum de (valores) extremos abso-
lutos aos maximos e minimos absolutos, ficando os pontos
maximizantes e minimizantes absolutos com a designacio
comum de pontos extremantes absolutos ou ainda de ponfos
de medida (absolutamente) extrema. Note-se que os dois extre-
mos absolutos existem todas as vezes que Y for um con-
junto finito. '

Posto isso, representemos por %, v, € 2, (n=1, 2,...,V)
as coordenadas respectivamente de x, ¥ e z. Entdo, obtemos
uma ampliacio util das defini¢des acima dadas se conside-
rarmos um zeY e se admitirmos a existéncia dum conjunto
Zc X tal que z pertenca a Z, que a desigualdade 101) tenha
lugar para qualquer ye Z e que Z satisfaca as seguintes con-
di¢bes adicionais: Escolhidos arbitrariamente os valores dos
pariametros reais e ndo conjuntamente nulos a,, tome-se uma
variavel positiva t e represente-se por x(#) o ponto mével
(Zitart,..., 2y +a,t); entdo, se x(¢)e Y para cada ¢, ponha-se
x(¢)eZ” também para cada e, se x(¢)e Y para certas determi-
nagdes 7 de ¢, seleccione-se uma dessas determinacées (quanto
menor tanto melhor), seja 7, e ponha-se x(¢)e Z para £Z7.
Nestes termos, p(|g]) resulta um (valor) extremo {[maximo ou
minimo] relativo da medida considerada e o ponto z diz-se
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tanto extremante [maximizante ou minimizante] relativo, como
também de medida (velativamente) extrema[maxima ou minimal.
Claro que podemos obter conceitos de extremos ainda mais
restritos caso limitemos a arbitrariedade dos parimetros a,
 acima referidos.

Mencionamos, de passagem, que ha quem chame modas
aos pontos de medida (absoluta ou relativamente) maxima e
chame antimodas aos pontos de medida (absoluta ou relati-
vamente) minima, muito embora estas designacdes costumem
reservar-se para o caso em que a medida p. é normada.

Observagdo. Um caso particular frequente das nossas con-
sideragdes é o de Y tomar a forma dum conjunto vazio, finito
ou numeravel. E o que sucede, em particular, quando p é
uma medida elementar [veja-se a defini¢do respectiva na pri-
meira parte da sec¢fo 41], quando p é uma medida de Lebes-
gue-Stieltjes [iguale-se X ao somatério dos possiveis produtos

0o lk,—1Lx,<k,|, definidos do modo indicado no texto

1=n=N

intercalado entre 58) e 59), e atenda-se a defini¢do de medida
de Lebesgue-Stieltjes e a proposicdo N XXXVI] e ainda
quando p é a soma duma medida elementar com uma medida
de Lebesgue-Stieltjes [veja-se N XXXIV]

Exemplo 13. Faca-se N=2 e retome-se a medida p do
exemplo 45. Entdo, ¥Y'={(1,1), (2,2)] e logo se vé que cada
um dos pontos (1,1) e (2,2) é simultineamente maximizante
e minimizante (absoluto e relativo).

Na segunda parte desta seccio vamos retomar o enqua-
dramento da primeira parte estabelecendo, porém, a hipétese
de que a medida ¢ (5) admite uma densidade ¢ (%1,..., %,)=0 (),
corrente ou generalizada. Entdo, como a medida p resulta
continua, a proposicdo XL e a alinea &) de N XXXIII dio
Y=0, pelo que o estudo precedente se torna inoperante
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A fim de facilitarmos a chegada a conceitos uteis, vamos
supor que X se reduz 2 soma (finita ou numeravel) de campos
de integracio, no sentido de Riemann, cada um dos quais €é
um conjunto de continuidade da fungio ¢ e € formado por pontos
interiores, eventualmente acrescidos de pontos de acumulagio
dos primeiros. Estas condicoes determinam a densidade o univo-
camente, isto por causa de 94) para pontos interiores e devido
a passagens ao limite para os pontos restantes que houver.
Assim, esquivamo-nos & indeterminagio de 9 no caso geral.

Posto isso, suponhamos que é ndo-vazio o conjunto 9f for-
mado pelos pontos ye X tais que 0<9(y). Quanto aos pontos
(eventuais) xe 97, pomo-los de lado no estudo subsequente,
isto porque ndo haverd qualquer possibilidade de especulagio
a respeito do facto de o(x)=0 ndo exceder nenhum outro valor
da funcdo o. Entdo, podemos retomar as consideragbes da
primeira parte desta sec¢ido, com 7 em lugar de p, com 9/ em
lugar de Y e com supressdo do simbolo | | junto as letras z
e v, salvaguardando, porém, a diferenga que consiste em que
o conjunto 97 nio pode ser finito, ao contréario de ¥, e em que
a existéncia dum < (positivo) minimo agora leva, por conve-
niéncia, a excluir de Z todos os pontos x(¢) admissiveis (>>0).
Nestes termos, transcrevem-se as definicbes e as designacdes
anteriormente introduzidas, concernentes a extremos (abso-
lutos ou relativos), sob a reserva de ser preferivel substituir o
substantivo «medida» pela expressdo «densidade de medida»
ou, abreviadamente, pela palavra «densidades.

QObservacdo. Como € 6bvio, o estudo dos extremos aqui
delineado pode tornar-se mais facil, ocasionalmente, em
regides onde a densidade em causa tenha propriedades de
derivabilidade adequadas. !

Exemplo 14. Faga-se N=2 e retome-se a densidade
o(x)=x2+ 42 do exemplo 70, a qual é continua no plano de
Borel inteiro e admite ai derivadas parciais continuas de
todos os tipos. Entdo, o conjunto dos pontos de positividade
da fungdo ¢ é X—{(0,0){, pelo que nio existe qualquer moda
ou ponto de densidade maxima. Quanto ao ponto (0,0), o
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unico ponto que anula ¢(x), nio é abrangido pela nossa defi-
nicdo de antimoda ou ponto de densidade minima, o que
evidentemente nio quer dizer que esse ponto deixa de ter
importancia para o estudo da medida determinada por ¢.

44, Momentos de medidas elementares e de medidas com
densidade. Nesta sec¢fo vamos fazer um estudo apenas provi-
sorio do assunto que figura em epigrafe, porque o tratamento
circunstanciado dos momentos das medidas referidas e dou-
tras medidas exige que se disponha duma teoria da inte-
gracdo em espacos de medida arbitrarios.

Para comecar, suponhamos que é elementar a medida
n(B), definida na recta de Borel [ X (x), 8 (B)], representemos
por {5] (p=1, 2, 3,..) os conjuntos elementares |x| (eventuais)
tais que p atribui um valor positivo a cada um deles, igua-
lemos, para cada p, a grandeza p(l§,!) a p,, fixemos arbitra-
riamente um numero real ¢ e um numero finito #>.0, introdu-
zamos as convengdes «-0=0 e 0=1, admitamos que (£,—¢c)"
pode assumir um valor real para cada p e escolhamos o valor
positivo de (§,—c)” nos casos em que esta poténcia possui
dois valores reais. Entdo, se (e so6 se) for finito o somatério
2(pp - |&p—c]|], chama-se momento (ordindrio) da ordem v ou
#

v-ésimo momento (ordindrio), centrado no ponto ¢, da medida 1
ao numero 2|y, - (§,—¢)"], certamente também finito, e da-se
?

o nome de momento absoluto da ordem v ou r-ésimo momento
absoluto, centrado no ponto ¢, da medida p. ao valor do primeiro
dos dois somatoérios escritos, este finito por hipétese. Na pra-
tica omite-se correntemente a indicagdo «centrado no ponto ¢»
quando ¢=0 e da-se frequentemente a preferéncia aos nume-
ros >0 inteiros (quase sempre menores do que 5).
Escolhido o ponto ¢ e considerada a recta de Borel
[X*(x%), $*(B*)] de ponto genérico x*=x-—¢, é Obvio que
cada um dos momentos ordinarios e absolutos acima referi-
dos pode igualar-se ao momento homénimo da mesma ordem,
subentende-se centrado no ponto 0, da nova medida p*(5%)
definida pelas relagdes p} = p*(}%}|)=u,, para cada p, e
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p*(1EF,2%,...,7)=0, medida esta que ¢ também elementar e
a que se chama desvio da medida p com respeito ao ponto c.
Evidentemente, o momento (ordindrio ou absoluto) da
ordem 0, centrado no ponto ¢, da medida p vale p(X) ou deixa
de existir conforme p for uma medida finita ou infinita. Mais,
caso exista o momento da ordem 1 ou primeiro momento,
centrado no ponto ¢, da medida ¢, ele denomina-se também
quer valor médio (proporcional)®), centrado no ponto ¢, ou espe-
ranca matemdtica (proporcional)*”), centrada no ponto ¢, da
medida v, quer valor médio (proporcional)*) ou esperanca male-
mdtica (proporcional)) do desvio de n com respeito a c.
Quando existe a esperanca matematica, subentende-se
centrada no ponto 0, da medida u, esperanca esta que é cos-
tume representar pelo simbolo £, recorre-se muitas vezes aos
momentos ordindrios e absolutos, centrados no ponto £, da
medida g, os quais se confundem com os momentos homologos
do desvio da medida p. com respeito d sua esperanca matemdtica,
desvio este que ¢ costume designar abreviadamente por desvio
da medida p. Em particular, caso existam quer o valor médio
(proporcional), quer o primeiro momento absoluto quer o
segundo momento do desvio de p, estas grandezas denomi-
nam-se respectivamente desvio médio, desvio médio absoluto ou
desvio médio linear e varidncia ou dispersdo da medida y, sendo
6bvio que as duas ultimas grandezas resultam nfo-negativas
e sendo frequente chamar-se desvio médio quadrdtico ou des-
vio-padrdo a raiz quadrada nfo-negativa da ultima grandeza.

() A escolha da designa¢ido usada no texto deriva do facto de a

hipétese 0<p (X )<<+oco instituir 2[u, . (5, —¢)]/u(X) em média ou valor
)

médio dos numeros t,—¢ dotados dos pesos u,|v (X) (ou seja afectados dos

coeficientes positivos p,/p (X) de soma igual a 1). Em particular, se p
tiver um tdltimo valor P e se u,=1/P para cada p, entdo fica (1/P).2(§,~o¢),
k4

como quem diz @ média aritmética ou o valor médio aritmético dos mime-
ros kE,—¢.

(*) A escolha da designacio usada no texto explica-se como segue:
Suponha-se que um jogador disputa um jogo em que pode ganhar uma e
uma s6 das quantias £,—¢ tais que {,—¢>0 ou pode perder uma e uma sé
das quantias —(%,—¢) tais que %,—¢<?0. Se for 0<u (X)<<+oo e se cada
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Devemos observar que muitos autores reservam as desi-
gnacdes de desvio, de esperan¢a matemadtica e de variancia
ou dispersdo para a hipétese de a medida g ser normada.

Posto isso, escolhido um ntumero natural 7, a férmula do
binémio de Newton, bem conhecida da Algebra elementar,
permite exprimir o momento da ordem #, centrado no ponto ,
da medida p através da relagdo

7!
102) f[!ﬂb (Ep—o)]= 0<§<r|: (o f(iﬁb Z;)]

—_—
ol(r—p)!
todas as vezes que existam os momentos das ordens 0, 1,...,r-1,7
da medida ¢. Em especial, se existirem os momentos das
ordens 0 e 1 da medida p, entdo o desvio médio de g, seja £/,
satisfaz a relacdo

102") E=E. [1—p(X)]

e, se existirem os momentos das ordens 0, 1 e 2 da medida g,
entdo a variancia ou dispersido de p, seja V, fica ligada ao
segundo momento de g, seja F, pela relagdo

102" V=F+E? [p(X)—2].

Passamos a supor que a medida u(B), definida em (X, ),
é continua e de Lebesgue-Stieltjes linear e admite densidades
correntes ou generalizadas, entre elas as densidades ¢ (%) e
¢ (x). Entdo, se ¢ (x) for uma fungdo continua e nio-negativa
em X, a teoria dos integrais de Riemann ensina-nos que os
produtos §(x) - ¢(x) e $(x)- ¢ () resultam ambos densidades
de medida correntes ou generalizadas, pelo que existem os

integrais generalizados gefW b(x)o(x)dx e gefW b (%)-9 (%) dx,

u,/u. (X) juntar ao seu significado habitual o de ser a medida que o conjunto
{£,—¢! tem em relagdo ao jogador, entdo a grandeza X[p,-(£,—¢)]/u(X),
»

suposta existente, pode representar, em certo sentido (que nos abstemos
de especificar aqui), a quantia que o jogador tem o direito de esperar como
resultado pessoal do jogo, considerando-se a quantia ganha se ela for
positiva e perdida com o sinal trocado se ela for negativa.
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com W a significar um conjunto ilimitado (arbitrario) e igual
a unido duma sucessfo ascendente formada por campos de
integragio elementares, estes definidos no texto anterior a 84).
Além disso, se a func¢do continua ¢ (¥)X0 for monétona, os
dois integrais escritos saem forgosamente iguais, porque
no caso contraditério podiamos encontrar um intervalo
D={a<x2b} tal que as funcbes o e 3 se apresentassem con-
juntamente limitadas em D e que se verificasse a relagdo

0F [543 2@ ds—", 4@ s (x)dx=
[, (0 - [o(9)—2 (1)) dx,

uma situagdo incompativel com o teorema da média devido
a O. Bonner, teorema este que faz corresponder 2 hipétese do
nio-crescimento da func¢io 4(x) um conjunto D'={aLxLb'|cD
com a propriedade de tornar

gefo ¢ (x) - [9 (%) —p ()] dx—
=¥ (a)- LQfD’ o(x)dx— gefD/ 5(%‘) dx]: 0

e que faz corresponder a hipétese do nio-decrescimento da
fungdo ¢ (x) um conjunto D'=\a'LxLb{C D com a propriedade
de tornar

Ly 4 () - [g ()= (x)] de—
@) [*[pe@dx—"[, % x)dx]=0.

Em suma, vale a regra seguinte: «Seja ¢ (x) uma funcio
continua e nio-negativa na recta real, seja ¢(x) uma densi-
dade de medida, corrente ou generalizada, e seja p a medida
determinada por . Entfo, existe o integral de Riemann do
produto ¢ (x) - ¢(x), estendido a qualquer campo de integra-
¢do W do tipo acima referido. Além disso, caso a fungdo ¢ (x)
seja monoétona, tal integral resulta insensivel a substituicéo
de ¢ (x) por outra densidade representativa de p.»
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Posto isso, mantemos os significados dos simbolos ¢ e 7,
bem como a convenc¢ido 0°=1, admitimos que (x—c¢)” sé6 pode
deixar de assumir valores reais para pontos x situados em
intervalos significativos onde ¢ tenha integral nulo e esco-
lhemos o valor positivo de (x—c¢)” nos casos em que esta
poténcia possui dois valores reais. Entdo, se (e s6 se) for

.- . R . .
finito o integral [X |x—c¢|" - 9(x)dx, integral este indepen-
dente® da escolha da densidade o representativa de g, cha-

mamos momento (ordindrio) da ovdem v ou r-ésimo momento
(ordindrio), centrado no ponto ¢, da medida p. ao nimero
gefX (x—c)" - ¢ (x) dx, também finito e independente® da esco-
lha da densidade representativa de p, e damos o nome de
momento absoluto da ordem r ou r-ésimo momento absoluto,
centrado no ponto ¢, da medida p. ao valor do primeiro dos dois
integrais escritos.

Analogamente ao caso das medidas elementares, também
aqui, escolhido o ponto ¢ e considerada a recta de Borel
[X* (x*), B* (B*)] de ponto genérico #* =x—¢, podemos definir
o desvio da medida p (B) com respeito ao ponto ¢, agora igual
a medida p* (B*) determinada pela fun¢io ¢*(x—c)=9(x), fun-
cdo esta que claramente resulta uma densidade.

Nestes termos, estamos aptos a transcrever as conside-
racbes desenvolvidas a propésito duma medida p elementart*»
até chegarmos a relagio 102), a qual se modifica para

102" gefX (x—e¢) - o(x)dx =

. a R g
= & (=)t 2. o (; .
o_s;?éf'[ ol (r—o)! (=) fX # g () x],

ficando inalteradas as formas das rela¢Ges 102') e 102").

(*} A independéncia alegada no texto pode reconhecer-se igualando
o campo de integracio ¥ da regra precendente primeiro a je<ao<+oo| €
depois a | —co<<x<lc]|.
() Agora, na nota™ da pagina 290, o produto de [1/u(X)] por
R ; /- (7. .
fX (x—¢).o(x)dx & a média ou o valor médio dos nimeros x—¢ dotados
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Suponhamos agora que é ¢lementar a medida p(B), defi-
nida no produto [X(x), $B(B)] das N>1 rectas de Borel
[(Xou(#0), Bn(By)] (n=1, 2,...,N<+ o), representemos por
1Bl =11, 152, pye - oy Eav, )] ($=1, 2, 3,...) 0s conjuntos elemen-
tares |{x| (eventuais) tais que p atribui um valor positivo a
cada um deles, igualemos, para cada p, a grandeza p(J§!) a
s, fixemos arbitrariamente um ponto c¢=(c1, ¢a,..., cx)eX
e N numeros finitos 7,20, conservemos as convencoes co.0=0
e 0°=1, admitamos que (%, ;—¢.)» pode assumir um valor
real para cada par de indices # e p e escolhamos o valor posi-
tivo de (£.,,—¢x)» nos casos em que esta poténcia possui
dois valores reais. Entdo, se (e s6 se) for finito o somatério
2O, p—cul™], chama-se momento (ovdindrio) da medida p,
j) k4

centrado no ponto ¢, da ovdem global 2 v, e da ordem v, em
n
relagdo a recla X, para cada n, ao namero 2{p, -1 (&, ,—c, )],
P #

certamente finito, e da-se o nome de momento absoluio da
medida p, centrado mno ponto ¢, da ordem global Zr, ¢ da

n
ordem r, em relacdo @ recta X, para cada n, ao valor do pri-

meiro dos dois somatérios escritos, este finito por hipétese.
Na pratica omite-se correntemente a indicag¢do «centrado no
ponto ¢» quando ¢,==0 para cada n e preferem-se em geral
numeros 7,0 inteiros (quase sempre de soma menor do que 5
ou até menor do que 3). Acrescentamos que os momentos se
classificam, muitas vezes, em misfos ou puros conforme 7,
for ou deixar de ser positivo com mais do que um valor
de n e que, repartida a colec¢do dos /V valores # por duas
colecgdes parciais ndo-vazias, uma de elementos %, i> 4%, 7 >,...
e a outra de elementos s, £>s, u>4,..., feito isso, se da o
nome de momento marginal com respeito a X< X; < X;><...

das densidades (locais) 2 (x)/v.(X) [que conduzem, por integragio ao longo
de X, ao nimero 1] e, na nota™’ da pagina 290, nfo s6 a quantia x—¢
toma o lugar de {,—¢, como também a densidade ¢ (x) /v (X) toma o lugar
da medida 31,17/514 (X).
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ou marginal tomado em X< X;>< X, ><... a qualquer momento
tal que 7, =0 para cada » diferente de s, ¢ «,....

Ora, escolhido o ponto ¢ de coordenadas ¢, e considerado o
produto [ X *(x¥),B*(5*)] das N rectas de Borel [ X} (x} ), Bk (BX)]
de pontos genéricos a2} = x, — ¢, € Obvio que qualquer um
dos momentos ordindrios e absolutos acima referidos pode
igualar-se ao momento homénimo [subentende-se centrado
no ponto (0, 0,...,0)], da ordem global Z », e da ordem 7, em

n

relagdo a X} para cada #, que se obtém substituindo u (B) pela
nova medida p*(B*) definida pelas relagbes pj =p*(185 =pu;,
para cada p, e p*(|Ef, £ ,...{7)=0, medida esta que é também
elementar e a que se chama desvio da medida . com respeito
ao ponto c.

Evidentemente, o momento (puro) ordinario ou absoluto
de p, centrado no ponto ¢ e da ordem global 0 é um momento
que vale p(X) ou deixa de existir conforme  for uma medida
finita ou infinita.

Além disso, caso exista o momento (ordindrio) puro de g,
centrado no ponto ¢, marginal tomado em X, e da ordem glo-
bal 1, ele denomina-se também quer valor médio (proporcional)
ou esperanca matemdtica (proporcional) de p., marginal tomado
ou tomada em X, e centrado ou centrada no ponto cs, quer valor
médio (proporcional) ou esperanca matemdtica (propovcional)
marginal tomado ou tomada em X,, agora ambas as coisas do
desvio de p com wespeito a ¢. Caso a grandeza definida exista
quando se pde ¢,=0, entio vamos representéd-la pelo sim-
bolo E e, caso exista o ponto (£y, Es,..., £ ,)=F, vamos cha-
mar-lhe valor médio (proporcional) ou esperanca matemdtica
(proporcional) de p, subentende-se centrado ou centrada no
ponto (0, 0,...,0).

Sempre que possivel, é frequente recorrer-se aos momen-
tos ordinarios e absolutos de ¢ centrados no ponto £, os
quais se confundem com os momentos homologos do desvio
da medida p com vespeito d sua esperanca matemdtica, desvio
este que em geral se designa abreviadamente por desvio da
medida p. Em particular, quando existe o momento (ordina-
rio) do desvio de p que ¢ da ordem global 2 e da ordem 0
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em relacio a cada uma das rectas (eventuais) X, de indices #
diferentes de s e ¢ representamo-lo por V; ; (ou V;,:) se ele for
da ordem 2 em relacdo a X (ou X)) e por V.=V s se ele for
da ordem 1 em relacdo a X e a X;, chamamos ao momento
(marginal) puro V5, (ou V; ,), 0bviamente n&o-negativo, variin-
cia ou dispersio marginal de p, tomada em X (ou em X,), cha-
mamos ao momento mixto Vs ; (ou V,,,) covaridncia (marginal
se N>2) de p em relacdo ao par de rectas X, e X, (ou X; e X,),
definimos, na hipotese V5 -V, >0, as grandezas ¢,; € ¢,
pela igualdade

103) fs, 1= Vs,f/(“{“/Vs,s'Vt,t):\ot,s

e intitulamos as grandezas definidas coeficientes de correla-
¢do (marginais se N>2) de p em relagdo aos pares de rectas
respectivamente X;, X, e X, X,. Por fim, caso exista a
matriz quadrada de elemento genérico V,, .(m,n=1, 2,...IV),
evidentemente simétrica e de elementos diagonais principais
ndo-negativos, é costume atribuir-lhe o nome de matriz das
varidncias e covaridncias da medida p.

Devemos acrescentar, como anteriormente, que muitos
autores reservam para a hipétese de a medida p ser normada
as designacdes de desvio, de esperanca mateméatica (marginal),
de variancia ou dispersdo marginal e de covariancia e de coe-
ficiente de correlagdo em relagio a um par de rectas.

Ora, dado p, admitamos que existem o momento da ordem
global 0 e a grandeza £, para um certo #. Entdo, um calculo
muito simples permite exprimir a esperanca matemadtica de g,

marginal tomada em X,, e centrada no ponto E,, seja £, atra-
vés da relagio
104') Ey=E, - [1—p(X)],

a qual se apresenta muito semelhante a 102’).

Posto isso, tomemos um numero natural m<Z/N e admi-
tamos que existem os momentos de ¢ mencionados a propo-
sito de 104'), mais a esperan¢a matemadtica marginal £, na
hipotese m == #»n e ainda o momento da ordem global 2, seja
o momento £, ,=F, ., que tem a ordem 2 em relagio a X,
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se m=n e que tem a ordem 1 em relacdo a X,, e a X, se
m==n. Entdo, outro cdlculo também simples conduz a relacéo

104:”) V;ﬂz,nz w0 + Em 'Eu . {‘u (X)"' 2];
esta semelhante a 102"),

Passamos a supor que a medida p(B) € de Lebesgue-Stielt-
jes a N>1 dimensdes e admite densidades correntes ou gene-
ralizadas, entre elas as densidades 9(%;, #2,...,24,) =0 (%)
e o(%1, ¥e,..., ¥y)=0(x). Entdo, se 4 (%1, %,...,%,)=0(x) for
uma func¢io continua e n&o-negativa em X, concluimos,
como no caso V=1, que existem os integrais generalizados

gefW J(x)-0(x)dx e gefW U (%) - 9(x)dx. Além disso, se cada

uma das fungdes o(x) e g(x) for moderadamente descontinua,
quer dizer continua no espago X inteiro com excepgio possi-
vel dum numero finito de planos paralelos aos planos coorde-
nados®), nesta hipotese os dois integrais escritos resultam
forcosamente iguais, porque no caso contraditério podiamos

encontrar um intervalo D=1l{a, £ %, £b.] tal que ¢ e 9 sais-
n

sem conjuntamente continuas em [ e que se verificasse a
relacio

@ o@art"[, 4 (@) 3@ dx,

situagio esta incompativel com o facto de o resultado expresso

através de 94) fazer coincidir v e 3 em todos os pontos inte-
riores a D.

Em suma, vale a regra seguinte: «Seja ¢ () uma funcio
continua e nio-negativa no espago real a N>1 dimensdes,
seja ¢ (x) uma densidade de medida, corrente ou generalizada,
e seja 1 a medida determinada por ». Entdo, existe o inte-
gral de Riemann do produto ¢ (x)-9(x), estendido a qualquer
campo de integragdo /7 do tipo acima referido. Além disso,
caso a funcéo o(x) seja moderadamente descontinua, tal inte-

(*) Esta defini¢do serve também para N=1 conduzindo, entdo, a um
nimero maximo finito de pontos de descontinuidade.
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gral resulta insensivel a substituicdo de o(x) por outra den-

sidade moderadamente descontinua e representativa de p.»

Chegados a este ponto, mantemos os significados dos sim-

bolos n, X, By, X.., ¢, 6n, 7» € 0° sSupomos que ¢ (%1, %2,..., Ly)

¢ uma densidade moderadamente descontinua e representa-

tiva da medida p.(B), admitimos que (%, —¢c.)» s6 pode deixar
»”

de assumir valores reais para pontos x situados em produtos
de intervalos lineares significativos onde ¢ tenha integral nulo
e escolhemos o valor positivo de (x, —¢,)» nos casos em que
esta poténcia possui dois valores reais. Entdo, se (e s6 se) for

. . ®
finito o integral fX [0 2n—aln] 0 (%1y Xz yery Xy) %1 A% ... dZy
n

integral este independente da escolha da densidade ¢ mode-
radamente descontinua e representativa de p, chamamos
momento (ordindrio) de v, centrado no ponto ¢, da ordem glo-
bal 3 v, e da ordem v, em welacGo d recta X, para cada n,

n

. R
a0 numero fx [T (%, — cn V2] @ (%1, %2ye. oy y) Ay .. .dxy,
i

também finito e independente® da escolha da densidade
moderadamente descontinua e representativa de p, e damos
o nome de momento absoluto de p, centrado no ponto c, da

ordem global 2 1, ¢ da ordem r, em velacdo a X, para cada n,
n

ao valor do primeiro dos dois integrais escritos.
Analogamente ao caso das medidas elementares, também
aqui pode definir-se o desvio da medida p (B) com respeito ao
ponto ¢, que agora se identificard com a nova medida p *(B%)
determinada pela densidade o*(a}, 2§ ,..., #) == (%1, 2., XN),
onde, convém lembra-lo, vale x5 = x,— ¢, para cada z. Em
consequéncia disso, estamos aptos a transcrever as conside-
racbes desenvolvidas a proposito duma medida p. elementar e
definida no espaco de Borel a V>>1 dimensdes, ficando inalte-
radas as conclusdes expressas através das relagdes 104') e 104").

(y Caso se tenha ll (x,—¢,)"* <0 numa parte de X, a independéncia

alegada no texto pode "reconhecer-se por um processo semelhante ao
usado na nota(+) da pagina 293.



TEORIA DA MEDIDA E DA PROBABILIDADE 299

Ed

Na ultima parte desta sec¢io vamos tomar /V>1 e vamos
tratar de trés questdes suplementares,

1. Consideremos uma medida g de densidade ¢ (#1,%s,...,xn),
admitamos que existe a matriz das varidncias e covariancias
de p, formada a custa de o, recordemos os significados dos
simbolos X, E, e V,,» (m,n=1,2,...,V) e introduzamos N
varidveis auxiliares reais z,. Entfo, podemos estabelecer
a relacdo
105) 2 (Vm,n B 2,,)2

1=m,n= N

= { qufX(xn—En)2 0 (X1 y K yeeny Xn) Ay dta. . .de] '23;}‘*“

R
+2- 2 { |: fX (xm‘—Em) . (xn'_En) ' (continua)

1smm<{n=<N
1
co(Xy, Xy, Ay) day ds . .de] B B =

R
= f),; 2 (e Eu) 8] P 9%, X2y X)) Ay doe . L dXn 0.
1=n=N

Em seguida, reconhecemos que a desigualdade entre os mem-
bros extremos de 105) permanece valida para uma medida ¢
elementar, bastando, para o efeito, lembrar os significados
dos simbolos p, e %,,, e substituir em 105) cada integral de
Riemann (absolutamente convergente) do tipo

R
fX«{J(xl,xg,...,xN)~go(xl,xg,...,xN) dxidxs. . .dxy
elo correspondente somatério (absolutamente convergente
p P g
‘3 [HP : "I') (EI)P ¥ 2271’ 3oy EAFyP)J N

Em face do exposto, podemos afirmar que a forma qua-

dratica 2 (Vn,n2m2n), suposta existente, é semidefinida
1=Z=m,n==N

positiva nas varidveis 23, isto quer no caso duma medida ele-
mentar quer no caso duma densidade de medida. Portanto, em
qualquer dos dois casos é impossivel ficar negativo algum
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menor principal extraido do determinante de elemento gené-
rico V., .; em particular, dados dois inteiros s e ¢ tals que
l£s<t£N, tem-se a desigualdade [, - V,,,—V‘ﬁ,,;o ou
ainda, na hipétese Vi ;-V; >0, a desigualdade equivalente
[os,¢/]£1 [veja-se 103)]. Enfim, vale a conclusdo seguinte:

XLVI) «Ficam compreendidos entre —1 e +1, extremos
incluidos, todos os coeficientes de correlacdo que podem for-
mar-se a partir duma matriz das variancias e covariancias
correspondente a uma medida (definida num espaco de Borel
a muitas dimensdes) que seja elementar ou que possua den-
sidades.»

9. Consideremos uma medida u definida no espaco de
Borel a /V dimensées, recordemos os significados dos simbo-
los X, Cny #» € 0° repartamos a colec¢do dos /Vvalores #n pos-
siveis por duas colec¢des parciais ndo-vazias, uma de elemen-
tos 4, i>h, j>1,... e a outra de elementos s, £>s, u>14...,
e representemos pOTI if,s.,... a medida marginal de ¢ no
espago X;><X;<X,><-.-=X' de valor prefixado igual a p (X).
Se p for uma medida elementar e se £=(%1,E2,...,En) for o
ponto genérico dum conjunto finito ou numeravel YC X com
a propriedade p (Y )=0, entdo a definicio da medida 1ps,4,4,...

faz corresponder a valores £,%,%4,. . . arbitrariamente fixados
a igualdade
1.“5,1,1;,...({(ES,E;,EM--~)f):— 2 M(g(al,EQ,...,ZN)E)

SRy SEyBiye

e, portanto, as propriedades dos somatérios, juntamente com
a convencio de atribuir o valor 0 a um produto de ntumeros
com algum factor nulo, conduzem a férmula

SO 0 G (G ey )=
(15805 Ex)  m=S,t,%,...

= 2 [ I (G aps,men. (1Gsy &y Baye s D]
(Es)gngw"') n=37t7u)"'

ou & férmula analoga com |&,—c,|» em lugar de (§,—¢,), a
qualquer uma delas todas as vezes que o seu primeiro mem-
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bro se apresentar absolutamente convergente; por outras pala-
vras, caso exista o momento ordinirio ou absoluto do desvio
da medida elementar x com respeito ao ponto (¢y,¢62,...,cn),
marginal tomado em X' e 'das ordens 7,7,7,,... em relacio
a respectivamente X;,X;, X.,,..., ele é também o momento
homoénimo do desvio da medida marginal jus,s,.,... cOm res-
peito ao ponto (¢s, ¢, Cuy. ..), das ordens #s,7s,7u,,... em rela-
¢do a respectivamente X,, X,,X,,.... Tal sobreposicdo de
momentos ocorre também na hipétese de p ficar determinado
por uma densidade ¢(x1,%2,..., ¥y), desde que exista a densi-
dade marginal de ¢, tomada em x,,4%:,%,,... e reduzida na
propor¢do de 1 para 1, e desde que o integral /V-multiplo
igual ao momento marginal possa ser calculado por duas
integracbes consecutivas, a primeira em X, < X; < X;>< ... e
a outra em X'; pois, as condigbes postas e a relagio 99) per-
mitem escrever a igualdade

R
fX[n.—; I (Kp—cCu)™] - 0 (X1, X2 yu ooy Xn) dy d2s. o dxy=

Sydythyaae

R
= fXFn O (%—Cu)™] 19 (Ksy Xy Xuye ) dXs AR d %y

=8,4,%,...
ou a igualdade analoga com |x,—c,[» em lugar de (x, — ¢, ).

3. Suponhamos agora que se verifica a situagdo apre-
sentada através da relacdo 100). Entdo, as propriedades dos
integrais de Riemann e as convengdes®™ X'=X;><...><Xpy,
X"=Xng1><--><Xnry--- permitem escrever a igualdade

R 7, Y .
X X [(xl-"cl) 1. (le—CN/) N (continna)
. (xN/+1—cN,+1)rp‘v:+1 s (xNu-—cN,,)Kwu . ¢P’ (x1 Yoo ,xN’) . (continua)

.q;"(xN,+1’...’xN,,)...]dxl "‘de’de/—}'l codxyneo=

—[*[ e oy —ew )™ g (1, 2w ) s - dity |

() O simbolo X' posto a seguir nada tem que vér com o simbolo
analogo usado no estudo precedente.



302 PEDRO BRAUMANN

R
. [ [X” (xN/+1~ch+1)”N'+t oo (xNV'/'—‘CNH)rA‘\"' . (continua)
" d d 1 -
@ (xN’+1;"'ny”) KN4 - xN,,J .

[ou a igualdade andloga com |x,—c.| em lugar de (x.—¢u),
isto para cada #] todas as vezes que os factores do segundo
membro forem absolutamente convergentes. Portanto, a pro-
posicdo XLV, as propriedades das fun¢des moderadamente
descontinuas e o facto de gqualquer momento duma medida
com densidades moderadamente descontinuas ser indepen-
dente da escolha de tal densidade, tudo isso prova a regra
seguinte:

«Se tivermos medidas p/, ", etc., em namero finito, pos-
suindo as densidades moderadamente descontinuas ', ¢', etc., a
primeira definida no produto X' das rectas de Borel Xj,..,X»
a segunda definida no produto X" das rectas de Borel
Xniitye.y Xwo, ete, entdo a hipotese de a ¢’ corresponder um
momento ordinario [ou absoluto], centrado no ponto (61y..,6n7)
e da ordem 7, em relacdo a X, para 1LnZN', de a ¢" corres-
ponder um momento ordinario [ou absoluto], centrado no
ponto (cyrii,...,cnv) € da ordem 7, em relagio a X, para
N+1zLus N, etc., esta hipotese ndo s6 implica que a
densidade moderadamente descontinua 9'-¢".... corresponde
um momento ordinario [ou absoluto], centrado no ponto
(CLyer oy CNy C/itye oy ENryo o) € da ordem 7, em relagdo a X,
para n=1,.,N,N'+1,.,N"..., como implica também que o
momento referido em ultimo lugar pertence ao (inico) produto
p'><u"">< .., resulta da multiplicagdo (aritmética) dos momen-
tos restantes e fica insensivel a substituicio de ¢',¢", etc. por
quaisquer outras densidades moderadamente descontinuas
das medidas ¢/, v, eteo

Outra regra semelhante a4 anterior € a seguinte:

«Se tivermos medidas elementares p', p''y etc,, em numero
finito, a primeira definida no produto X'das rectas de Borel
Xi,...,Xn e tal que Z'=(%,...,Ex) € o ponto genérico dum
conjunto finito ou numerdavel Y'C X' com a propriedade
¢ (Y'7)=0, a segunda definida no produto X" das rectas de
Borel Xui1yyXyn € tal que &'=((nig1,...,Ea) € 0 ponto geneé-
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rico dum conjunto finito ou numeravel Y"c X" com a pro-
priedade p"(Y"-)=0, etc., entdo a hipotese de existir o
momento ordinario [ou absoluto] de p/, centrado no ponto
(61, cnv) € da ordem 7, em relagdo a X, para 1LnLV, de
existir o momento ordindrio [ou absoluto] de p", centrado no
ponto (cyiiy...,6yr) € da ordem 7, em relacdo a X, para
N'+1ZnZ N, etc., esta hipotese ndo s6 implica que existe o
momento ordindrio {ou absoluto] do (tnico) produto p'>u'><.- -,
centrado no ponto (61,...,¢x7yCn41y.-+yCn74...) € da ordem 7,
em relagdo a X, para n=1,.,N', N'+1,.,/N" .., como implica
também que o momento referido em ultimo lugar resulta da
multiplicacio (aritmética) dos momentos restantes.»
Prova-se esta regra pondo em lugar da igualdade entre
integrais acima escrita a igualdade entre somatorios

(” E/‘?“’ )[(gl _ 51)7’1 . Z:N’—‘ CN/)VN’ X (continua)
AP AP

c(Evpr—enga) ¥ e Eyn— oy )N w (e - e (8" )=
= @ [Er—e)t - G =) (JED]) -

(B v e ()

[ou a igualdade andloga com |£.,—¢.| em lugar de &, —¢,,
isto para cada ] e tomando em conta que gualquer produto

p><p!'><-.. ndo pode deixar de atribuir o valor p'(J£)-
-¢"({g"})--- a todo o conjunto elementar formado por um
ponto £=(,&"... )=, ..., EnyEng1y. .y byi,...) € o valor

zero ao complementar do conjunto dos pontos £ possiveis
[veja-se a relagdo de inclusdo 9)].

Observacdo. As regras acima dadas podem adaptar-se
ao caso em que os factores de X', X", etc. ndo se sucedem
pela ordem natural, recorrendo-se, para o efeito, a corres-
pondéncia biunivoca existente entre X e o espaco que resulta
de X por uma permutagio das coordenadas (do ponto gené-
rico) convenientemente escolhida.
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¢) Espacos de probabilidade

45, Generalidades. A seguir vamos analisar, em porme-
nor, o caso particular do estudo feito nas alineas ¢) e 4) que
corresponde as fungoes aferidoras normadas, caso este suma-
mente interessante dos pontos de vista tedrico e das aplica-
¢oes. Para este efeito, convém recordar rapidamente algumas
nogdes expostas no principio da secclo 21.

Dados um espago Q(w) e uma classe & de conjunto gene-
rico AcQ tal que Qe &, chamamos normada a toda a fungdo
aferidora ¢(4) sujeita a igualdade »(Q)=1. Entre as fun¢oes
aferidoras normadas merecem destaque os conteudos e os con-
tevidos-o normados, no caso de & ser um corpo, e as quase-me-
didas e as medidas normadas, no caso de @ ser um corpo-s.
Em lugar de quase-medida normada diz-se também quase-pro-
babilidade e em lugar de medida normada diz-se também
probabilidade.

Se a medida ¢ (A) estiver definida no espagco mensuravel
[Q(w),@(A4)] e for uma probabilidade, muitas vezes se afigura
conveniente assinalar esta situagdo peculiar substituindo a
letra p por P. Ento, todo o conjunto mensurédvel fixo 4, fica
com um valor ou uma medida ignal ao namero P(4,), nimero
este a que € uso chamar probabilidade de A,. Nesta confor-
midade, podemos chamar fun¢do probabilidade a probabili-
dade P(A), variavel com A, desde que queiramos estabelecer
a distin¢do verbal entre probabilidades interpretadas como
funcdes e probabilidades interpretadas como valores.

Caso mergulhemos a (fungdo) probabilidade P(A), abre-
viadamente P, no espago mensuravel acima referido, consti-
tuimos o terno [Q(w),a(A),P(A)], abreviadamente (2, &, P),
ao qual damos o nome de espago de medida normado ou, pre-
ferivelmente, de espaco de probabilidade.

Atendendo a grande importancia do conceito de probabi-
lidade, vamos retomar a sua defini¢io desde o principio: Uma
probabilidade é uma fungdo aferidora normada, aditiva-s e defi-
nida num corpo-a ou, talves melhor, definida num espaco men-
surdvel. Por outras palavras, dado o espago mensuravel
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(@ (), (A)], a fun¢io de conjunto P(A4) é uma probabilidade
se (e so se) ela tiver as propriedades seguintes:

1.2 P(A)>0 para qualquer conjunto 4e@.—2.* P(Q)=1.
—3.* Qualquer colecgdo finita ou numeravel formada por con-
juntos A4y, As,...,Ay,...eQ, disjuntos dois a dois, impde a
igualdade P(Ai+ o+ +Ap+ - )=P(A)+P (o) + - +P(4u)+ -

O caso especial dos espagos de probabilidade ¢ o mais
relevante no ambito geral dos espagos de medida.

Passamos a apresentar um exemplo simples duma proba-
bilidade ou, equivalentemente, dum espago de probabilidade.

Exemplo 75. Dados os numeros 1, 2 e 3, considerem-se o
espago Q=11, 2, 3| e o corpo-¢ mais amplo que pode definir-se
em Q, seja @, formado pelos oito conjuntos contidos em
[vejam-se o exemplo 20 e a proposi¢do N XVII]. Entdo, a fun-
¢do de conjunto P sujeita as igualdades 2.-P(|2])=P (|3{)=1/3
define uma e uma s6 probabilidade no espaco mensuravel
(2,@), a qual atribui os valores 0, 1/2, 1/2, 2/3, 5/6 e 1 aos con-
juntos O, {1{,12,3},11,2{,11,3| e , tomados pela ordem indicada.

#
% k3

Dado um espago de probabilidade [Q(w), & (4), P(4)), a
nomenclatura habitual relativa a espacos de medida arbitra-
rios costuma substituir-se por outra exc/usivamente reservada
ao caso particular em consideragio e escolhida de modo que
os termos usados correspondam o melhor possivel a nume-
rosas situagdes ocorrentes em problemas praticos.

Chama-se casos possiveis ou, abreviadamente, casos aos
pontos » e também aos conjuntos elementares |w|.

Os conjuntos mensuraveis 4 denominam-se acontecimen-
fos, considerando-se o acontecimento 4 possivel ou impossivel
conforme for 4=+0 ou A=0 e certo ou incerto conforme for
A=0Q ou 4=Q [veja-se a propriedade 18 @)]. O complemento
A~ de qualquer 4 diz-se acontecimento complementar ou con-
traditorio de 4, saindo 4 complementar ou contraditério de
A” [vejam-se a condig¢do 2.* da defini¢do dum corpo-s e a
propriedade N 5)].
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As relacoes ne A e we. 4 exprimem-se classificando o
caso w respectivamente como favordvel a A e como des favord-
vel a A. Evidentemente, um caso € favoravel a um aconteci-
mento quando e s6 quando for desfavoravel ao acontecimento
contraditério e um acontecimento € possivel ou impossivel
[incerto ou certo] conforme houver ou deixar de haver casos
favoraveis [desfavoraveis] a ele.

Quando os acontecimentos 4 e A' satisfizerem as duas
relacdes equivalentes 4'c 4 e 4D A, todo o caso favoravel
a A [desfavoravel a A] resulta favoravel a 4 [desfavoravel
a A'] e costuma dizer-se, indiferentemente, que A é um acon-
tecimento particular em relagio a A4 ou que 4 é um aconteci-
mento geral em relagio a A'. De qualquer modo, quer se tenha
A'c A quer nio se tenha esta relacio, a dilerenca A—4,um
acontecimento por causa de 18 &), recebe o nome de aconteci-
mento A sem A'.

Dada uma coleccio finita ou numeravel de acontecimen-
tos A,(n=1, 2, 3,..), o conjunto A= .4, resulta um aconteci-

#

mento, isto por causa de 18 ¢), sendo uso chamar a A compo-

sicdo dos A, e a estes acontecimentos componentes. Por outro

lado, o conjunto A'= U 4, resulta também um acontecimento,
n

isto devido a condicdo 3.* da definicio dum corpo-g, podendo
considerar-se cada 4, uma forma de A' e podendo classifi-
car-se A' como (pelo menos) um dos acontecimentos A, Ja que
um caso é favoravel a A4' se e s6 se for favoravel a (pelo
menos) um dos 4,.

A (fungio) probabilidade P(A) ou P chama-se também
lei de probabilidade ou, abreviadamente, lei. Se a lei P atri-
buir um valor nulo, positivo, menor do que 1 ou igual a 1 ao
acontecimento A, este diz-se respectivamente guase-impossi-
vel, nitidamente possivel, nitidamente incerto ou quase-certo. Nesta
conformidade, o acontecimento impossivel [certo] € quase-
-impossivel [quase-certo], um acontecimento quase-impossivel
[quase-certo] escusa de ser impossivel [certo], um aconteci-
mento nitidamente possivel pode ser também nitidamente
incerto, um acontecimento quase-certo [quase-impossivel] €
nitidamente possivel [nitidamente incerto], etc.
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Dois acontecimentos 4 e 4', ambos situados em &, decla-
ram-se iuncompativeis ou compativers conforme forem ou dei-
xarem de ser disjuntos, quer dizer conforme tiverem uma
composi¢ido impossivel ou uma composi¢do possivel [veja-se
N III}. Além disso, 4 e A' declaram-se quase-incompativeis se
tiverem uma composicdo quase-impossivel e declaram-se nits-
damente compativeis se tiverem uma composi¢do nitidamente
possivel. Quando os acontecimentos 4 e 4’ forem incompati-
veis, quase-incompativeis, compativeis ou nitidamente com-
pativeis, também se diz que eles se excluem, quase se excluem,
ndo se excluem ou nitidamente nido se excluem. Nesta conformi-
dade, tem-se U4,=2 4, quando e s6 quando os aconteci-

" ”

mentos A4, forem incompativeis dois a dois ou, equivalente-
mente, se excluirem dois a dois.

Em face do exposto, podemos reformular as trés proprie-
dades caracteristicas duma lei (de probabilidade) P(4), defi-
nida no espago mensurdvel [Q(w), @(A4)], como segue:

1.2 Qualquer acontecimento tem probabilidade ndo-negativa.

2.2 O acontecimento cevto tem probabilidade igual a 1.

8.2 Primeira versdo: Escolkhida qualquer coleccdo finita ou
numerdvel de acontecimentos incompativers dois a dois, a soma
das suas probabibidades sai sempre igual a probabilidade de
(pelo menos) um entre eles.

Segunda versdo: Quando um acontecimento admite uma
coleccdo finita ou numerdvel de formas incompativeis duas a
duas, a probabilidade do acontecimento sai sempre igual d soma
das probabilidades das suas formas.

A propriedade 3.2 atribui a lei &(4) qualidades que lhe
pertencem por defini¢cdo e, portanto, qualquer das duas ver-
sbes dessa propriedade deve ser classificada de axioma. Tal
axioma costuma denominar-se das probabilidades totais.

Exemplo 76. Na pratica aparecem muitas vezes situacgées
em que ¢ dado um espago mensuravel [Q (), &(4)] dotado
duma lei P(4) perfeitamente caracterizada, parcialmente
conhecida ou totalmente ignorada e em que o0s casos » se
encontram suficientemente materializados para que possa-
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mos proceder a separagdo efectiva dum deles usando, para
tal efeito, um critério julgado conveniente na ocasido. E uso
chamar ao processo de separac¢do adoptado prova conducente
a um caso ou observacdo dum caso, feita em (2, @, P) segundo
o critério escolhido. Quanto ao caso separado, diz-se caso
observado. Em geral, é possivel fazer outra observagdo dum
caso num espaco de probabilidade igual a (Q, &, P), mais uma
vez segundo um critério apropriado, isto ou porque dispomos
desde o inicio duma repetico de (Q, &, P) ou porque este
espaco deixa reconstituir-se, por reposic¢do do caso observado
em primeiro lugar®. Em seguida, € corrente poder fazer-se
outra observacdo dum caso em condi¢des analogas as da ante-
rior e assim consecutivamente. Nesta conformidade, se VX1
for o numero total de observacdes feitas, a cada acontecimento
A fica correspondendo o inteiro 7 (A4) igual ao numero de
casos observados situados em A4, numero este que denomi-
namos frequéncia ou, mais explicitamente, frequéncia abso-
luta de A nas N observagdes, reservando-se para a fungio
W (A)JN o nome de frequéncia relativa de A nas NV observa-
coes. Posto isso, a fun¢do P determinada, para gualquer 4,
pela igualdade P (A4)=y7(A)/V resulta uma probabilidade
definida em (Q, @), porque primeiro ,#(A)>0 para qualquer
A, depois ,7(Q)=WN e, finalmente, quaisquer acontecimentos
Ay, As,...,Ayn,... incompativeis dois a dois ddo a relacdo
3 7 (An)=yr (2 4,). Evidentemente, a lei ,P, uma lei cons-
" "

truida a partir das observagdes feitas, s6 excepcionalmente
coincidira com a lei inicial P e costuma ser influenciada por P,
pelo valor de NV e pelos critérios seguidos nas observagdes
sucessivas (muito embora esta ultima influéncia ndo venha
declarada nos simbolos 7 e ,P). Assim se explica o facto de
observagdes intencionalmente orientadas poderem conduzir
a leis P mais ou menos pré-fabricadas, com alguma despreo-
cupacio pela lei auténtica P. Eis porque muitos que néo con-

() Nas aplicacbes sucede, por vezes, que a separacdo dum ponto de
(,q,P) produz ountro espago de probabilidade igual ao primeiro sem
erro sensivel.
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seguem ou nio desejam aperceber-se do facto apontado podem
ser manejados de vdrias maneiras por pessoas que o conhe-
cam de qualquer modo (possivelmente intuitivo sem ser cien-
tifico). Cabe a ciéncia chamada estatistica a procura de valores
de IV e de critérios de observacio respeitadores da lei P que
permitam construir uma lei P apta a dar, com margem de
seguranca razoavel, uma aproximacido da lei P suficiente-
mente rigorosa para os fins em vista.

Vejamos agora algumas propriedades das probabilidades,
todas decorrentes da defini¢do respectiva e obtidas por par-
ticularizacido de propriedades homdlogas relativas a medidas

-arbitrérias.

Para comegar, consideremos a proposicio N XXXIII, omi-
tamos nela a alinea ¢) (equivalente ao axioma das probabili-
dades totais) e mudemos a letra da alinea &) para ¢). Fazendo
isto tudo, resulta a proposi¢dc que passamos a enunciar.

XLVII) «Dado um espago mensurdvel, toda a probabi-
lidade P(A) nele definida possui as propriedades seguintes:

@) P(0)=0ou, equivalentemente, o acontecimento impos-
sivel tem probabilidade nula.

&) Dados dois acontecimentos 4 e A, a relagdo A'c A
implica P(4)«£P(4) e P(4—A)=P(A)—P(A4) ou, a mesma
coisa dita por outras palavras, se o primeiro acontecimento
for geral em relagio ao segundo, a probabilidade deste nio
pode exceder a do primeiro e a probabilidade do primeiro
acontecimento sem o segundo sai igual a diferenga entre as
probabilidades do primeiro e do segundo. Em particular,
qualquer acontecimento .4 satisfaz as relagbes P(4)<L1 e
P(A)=1—P(A4"), quer dizer tem uma probabilidade que nfo
pode exceder o numero 1 e que ¢ igual a diferen¢a entre esse
nimero e a probabilidade do acontecimento contraditério.

¢) A desigualdade P(U4.)L2 P(A4.) é correcta para

quaisquer acontecimentos A4,(z=1, 2, 3,...) formando uma
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colec¢do finita ou numerdvel. Esta propriedade admite duas
versbes verbais, a saber:

¢') Escolhida qualquer colecg¢io finita ou numeravel de
acontecimentos, a soma das suas probabilidades ndo pode
ser excedida pela probabilidade de (pelo menos) um entre eles,

¢") Quando um acontecimento admite uma colecgéo finita
ou numerdvel de formas, a probabilidade do acontecimento
nio pode exceder a soma das probabilidades das suas formas.»

De N XXXIV, de N XXXV’ e de 24) tiramos a proposi¢do
seguinte:
XLVI) «Considere-se o espago mensuravel [Q(w),Q (4))
e escolham-se arbitrariamente constantes ¢,20(g=1,2,3,...),
formando uma colecgdo finita ou numeravel. Entdo, dadas
quaisquer leis P, (A4), a funcido 2 ¢, P, (A) serd uma medida e,
q

dadas quaisquer medidas p,(A4), a funcdo 2c,p,(A) [sujeita
q

a convengio 0-co=0] serda uma lei se e s6 se tiver lugar a
igualdade 2 ¢, p, (2)=1.
q

Em aditamento, dada qualguer medida finita-c e significa-
tiva, suponhamos p(4), a finitude da fun¢io p institui p.(A4)/p(Q)
em probabilidade e a infinitude de p permite escolher con-
juntos mensurdveis 4,, formando uma colec¢do numeravel,
disjuntos dois a dois, de medidas finitas e positivas, sujeitos
aigualdade p((2 4,)7)=0 e tais que p(A)=2u(4,) P,(A4), onde,

q g

seja qual for ¢, a fun¢do P,(4) significa a probabilidade igual
a (AN A (A

De N XXXVI tiramos a proposicdo seguinte:

XLIX) «Dado um espago de probabilidade, ¢ impossivel
a existéncia duma infinidade n3o-numeravel de acontecimen-
tos nitidamente possiveis e incompativeis dois a dois.»

De N XXXVII e de N XXXVII' tiramos a proposicido
seguinte:

L) «Considere-se uma sucessio de quase-medidas
0,(A) (=1, 2, 3,...), todas definidas no mesmo espago men-
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surdavel (2,&) e tais que existe lim ¢,(A)=3(A4). Entio, a
q—>oo

quase-medida ¢ (A4) sera uma quase-probabilidade quando e
s6 quando lim ¢, ({2)=1.Verificada esta condi¢do, resulta v (4)
g—>w

uma probabilidade se a sucessio dos ntmeros g contiver
uma subsucessio ao longo da qual as fun¢des ¢, (A4) sdo medi-
das ndo-decrescentes.»

De II tiramos a proposicio seguinte:

LI) «Dado um espa¢o mensurdvel, toda a probabilidade
P(A) nele definida resulta uma funcédo aferidora inferiormente
¢ superiormente continua. Por outras palavras, qualquer
sucessdo monotona de acontecimentos 4, (n=1, 2, 3,...) veri-
fica uma das duas relagbes P(A,)1P(UA.) e P(4,)IP(NA.),

com limite igual & probabilidade de (pelo menos) um dos A4,
se a sucessfio considerada for ascendente e com limite igual
a probabilidade da composi¢iao de todos os 4, se a sucessio
considerada for descendente.»

A matéria tratada em LI, II, IV, N XXXIII e na obser-
vagdo final da secgdio n.° 25 conduz & proposi¢io seguinte:

LII) «Dado um espaco mensurdvel, qualquer quase-pro-
babilidade Q(4) nele definida resulta uma probabilidade
gquando e s6 quando ela verificar uma das duas condicdes
seguintes:

a) Q(A) é uma quase-probabilidade inferiormente con-
tinua.

6) Seja qual for a sucessio de conjuntos mensuridveis
A,(n=1, 2, 8,...), disjuntos dois a dois, a hipdtese #ntoo
implica a relag¢o Q(Aui1+Aduse+--) 1 0»

Suponhamos agora que P(4) é uma probabilidade e que
sdo dados /N< 4o acontecimentos A, (n=1, 2,...,/V). Nesta
conformidade, a formula N 15) e a aditividade de P dio

1<n=N 1=p=2V—

106,) P( U 4d.)= 2 1P(A‘.?,),
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onde os 4} sido os acontecimentos formalmente diierentes
que resultam de substituir em N B, cada simbolo B, ou

1<n<N

por A, ou por A, e de suprimir, em seguida, A, das

. 1=n=N
composi¢Bes assim obtidas.
Por outro lado, evita-se o recurso a acontecimentos con-
traditérios, adaptando a férmula 25), que toma agora o aspecto

106) P( U A=

1=n=N

= 2 N[(— 1)"_1 . -2 P (Am, ﬂ Amg n e n AW’);)}'

1 1, el <t =V

Caso queiramos, podemos fazer corresponder a 106) um
enunciado verbal, que é conhecido pelo nome de feorema das
probabilidades totais e que admite duas versdes as quais pas-
samos a apresentar.

LUL) «Primeira versdo: Dada uma colecgéo finita for-
mada por /V acontecimentos, a probabilidade de (pelo menos)
um entre eles é a soma das probabilidades dos acontecimen-
tos considerados, menos a soma das probabilidades das com-
posicées dos acontecimentos tomados dois a dois, mais a
soma das probabilidades das composi¢des dos acontecimentos
tomados trés a trés, menos a soma das probabilidades das
composi¢des dos acontecimentos tomados quatro a quatro,
mais etc., terminando a operagdo com a adicdo ou subtrac-
¢do, adi¢io se IV for impar e subtracgdo se /V for par, da pro-
babilidade da composicdo dos acontecimentos tomados todos
duma s6 vez.

Segunda versdo: Quando um acontecimento comporta um
namero finito NV de formas, a probabilidade do acontecimento
¢ a soma das probabilidades das formas consideradas, menos
a soma das probabilidades das composi¢des das formas toma-
das duas a duas, mais a soma das probabilidades das com-
posices das formas tomadas trés a trés, menos a soma das
probabilidades das composicdes das formas tomadas quatro
a quatro, mais etc., terminando a operagio com a adi¢do ou
subtracgio, adi¢do se V for impar e subtrac¢io se V for par,
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da probabilidade da composicdo das formas tomadas todas
duma s6 vez.»

Na hipétese de ser dada uma sucessio de acontecimen-
tos A.(n=1, 2, 3,...), podemos reproduzir as consideracdes
que nos levaram de 25) a 27) para alcancarmos a férmula

106') P( U 4=
I=nl»n
=i 2 — 1yt 2 P Am Am
J\}g % 1=n=N [< ) I=m <ol =N ( : ﬂ n ”)] ; ’

a qual poderia enunciar-se sob a forma dum aditamento ao teo-
rema das probabilidades totais, aditamento este correspondente
ao caso-limite duma colecgio numeravel de acontecimentos
ou de formas.

As féormulas 106) e 106') ou as proposi¢des corresponden-
tes simplificam-se notavelmente quando os acontecimentos
A, forem quase-incompativeis dois a dois. Em tal caso, a
alinea 6) de XLVII dd P(4,.,,N 4.0+ NAy)=0 para nX2
e, portanto, vale o seguinte corolario do teorema das probabi-
lidades totais ¢ do sen aditamento :

LIT') «Primeira versGo: Dada uma colecgio finita ou
aumerdvel de acontecimentos quase-incompativeis dois a
dois, a probabilidade de (pelo menos) um entre eles sai igual
a soma das probabilidades dos acontecimentos considerados.

Segunda versdo: Quando um acontecimento comporta um
namero finito ou uma infinidade numeravel de formas quase-
-incompativeis duas a duas, a probabilidade do acontecimento
sai igual a soma das probabilidades das formas consideradas.»

Observacdo. O axioma das probabilidades totais é o caso
particular do coroldrio LIII' em que a quase-incompatibili-
dade se reduz 4 incompatibilidade.

ES

Tomemos o espaco de probabilidade [Q (), &(4), P(4)].
Vimos, na sec¢do n.° 27, que o corpo-¢ completivo de @ com
respeito a lei ou probabilidade P € a classe @p formada pelos
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conjuntos AU, onde V significa um subconjunto arbitrario
de qualquer acontecimento quase-impossivel. Na mesma
seccio ainda vimos que a fungido P(AUN)=P(A4) é uma
medida definida no espago mensuravel [Q(w), @p(4AUN)],
como quem diz no espago mensuravel completivo de (@,&)
com respeito a P. Como P(Q)=P(QU 0)=P(Q)=1, a medida P
fica normada® e, por isso, é uso chamar-lhe /ei completiva ou
probabilidade completiva de P. Finalmente, o espago de proba-
bilidade (Q,&s,P) considera-se completivo de (2,4, P).

Nesta altura talvez convenha recordar ao leitor que
P(A4)=P(A4) para todo o 4 e que a propriedade de qualquer
conjunto AV ser também um conjunto 4 se constitui em con-
dicdo necessaria e suficiente ndo s6 para que P coincida com
P, como também para que (Q,ap,P) coincida com (2,&,P).

Ora, o espaco (2,&,P) e a fungio P dizem-se completos ou
incompletos conforme coincidirem ou deixarem de coincidir
com os seus completivos.

Exemplo 11. Retome-se o exemplo 36 e substitua-se ai
o numero 7 pelo numero 1.

Fechamos esta ultima parte da secgfio n.° 45 adaptando as
proposices V e V' e a nota respectiva 2 situa¢do presente.

LIV) «Dados um espago de probabilidade (2,&,P) e o
seu completivo (Q,@p,P), verifica-se a igualdade P(4)=
—P(Q)=P(4;) todas as vezes que O for um conjunto extraido
de Q e enquadrado por dois acontecimentos 4, e A:DA,
ambos situados em & e tais que P lhes confere a mesma pro-
babilidade. Além disso, o espago de probabilidade (Q,a,P) ¢
completo e admite como acontecimento qualquer conjunto
enquadrado por dois dos seus acontecimentos que tenham
igual probabilidade.»

() A afirmacio feita no texto esta também contida em VL
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4.6, O problema da extensidoc de fungdes aferidoras a proba-
bilidades. A hip6tese dos casos igualmente provaveis. Aqui estu-
damos o problema referido em epigrafe apenas nos casos que
podem obter-se por particulariza¢io das consideragdes feitas
nas sec¢bes n.° 28 e 29.

Para comecar, suponhamos que o espago mensuravel
[Q(»),&(A)] admite a decomposicdo irredutivel igual a classe
D=4y, As,..., Au,...} e tomemos uma fun¢io ¢ que seja
aferidora aditiva definida na classe 9+ |0} e que satisfaca
também a relacio 24 (A,)=1. Como a alinea @) de N XXXI

da ¢ (0)=0, concluimos que a funcio ¢ fica determinada em,
toda a classe 9+{0/| desde que conhecamos os seus valores
nos conjuntos de 2 a excep¢io dum.

Evidentemente, qualquer medida ¢ (4) que estenda a fun-
cdo b a classe @ tem de satisfazer a p(Q)=2p(4)=29(4,)

e, portanto, ndo pode deixar de ser uma probabilidade.(")
Consequentemente, as consideracbes feitas i volta de 29)
ddo uma e uma s6 medida que estende ¢ a & e que é uma
probabilidade P(A4), a qual verifica a igualdade

107) P (A"1+A7l-z+"'+A”ﬂ+"')=d{ (Am)‘l"w" (‘4”2)+"'+"1L (A"ﬂ)—i_"'

para toda a colec¢do de indices #y,7s,...,#4,,... e€xtraida da
coleccio dos valores # possiveis. Claro que a lei definida
por 107) resulta incompleta se e s6 se algum dos aconteci-
mentos A, for quase-impossivel sem se reduzir a um caso.

Exemplo 718. Seja Q o espago formado pelos ntmeros

1,2,...,7,... e seja & o corpo-¢ mais amplo que pode insti-
tuir-se em . Entdo, o espaco mensuravel (Q,Q) admite a
decomposi¢do irredutivel @=1{}1}{,|2},...,!n|,...| e podemos

tomar ¢ (|n])=1/[n(n+1)] para cada #, ja que 2{1/[n(n+1)]{=
=2 {[1fn]—[1/(n+ 1)]{=1. '

(«» Caso se tenha 2¢(4,)=1, qualquer medida u (4) nas condi¢des

do texto encontra-se, evidentemente, impossibilitada de ser uma proba-
bilidade.
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Adaptemos agora o exposto na primeira parte desta sec-
cdo a um tipo particular que, além de ser muito frequente
nas aplicacles, tem um interesse histivico elevado, isto porque
foi através dele que se encarou pela primeira vez com leis
de probabilidade.

O tipo em questdo é o seguinte: Cada A, é um con-
junto elementar ju,| do espago & e Y (}»,|) ndo depende do
valor atribuido ao indice #. A hipdtese posta obriga a proba-
bilidade P definida por 107) a tomar o mesmo valor para
cada um dos casos (possiveis) e, por isso, € conhecida pelo
nome sugestivo de /hipdtese dos casos igualmente provaveis.
Também se fala, embora com um pouco menos de proprie-
dade, da hipdtese dos casos igualmente possiveis.

Quando se verifica a hipétese referida, a relagdo o6bvia
2P (|w.})=1implica que cada probabilidade P (o, |) saiaigual a
n

1 a dividir pelo nimero de casos situados em Q. Nesta confor-
midade, é forgoso que exista um tultimo valor /V de #, porque
de contrario ficava a igualdade absurda 0404 -.-+40+4...=1.
Portanto, ndo s6 resulta & igual ao corpo-s mais amplo que
pode instituir-se em & [veja-se NXIV] como também resulta
P(lon|)=1/V para cada », 0 que mostra que a probabilidade P
é completa e que todos os seus 2% valores [veja-se N XVU]
ficam determinados pelo valor comum dos /V casos possiveis,
este por sua vez ligado dum modo facil ao namero /. Enfim,
estamos em presenca do maximo de simplicidade que pode
alcancar-se na caracterizagio duma lei com o auxilio de conhe-
cimentos parciais relativos a ela.

Uma vez admitida a hipétese dos casos igualmente pro-
vaveis, escolhamos arbitrariamente um acontecimento 4 que
supomos formado por casos w',0’,..., em numero igual a
fax0. Comod=|o'|+|o"|+--, a igualdade 107) d4 a férmula

108) P(A)=fa|N

e, portanto, vale a proposicido seguinte:
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LV) «Quando se verifica a hipétese dos casos igualmente
provaveis, a probabilidade de qualquer acontecimento 4 sai
igual a razdo entre o numero de casos favordveis a 4 e o
nimero total de casos igualmente provaveis.»

Observacdo. Quando se considera a férmula 108) como
tgualdade de definicdo da fun¢do P(A4), esta fica dotada das
duas primeiras propriedades caracteristicas duma lei de pro-
babilidade, referidas na segunda parte da sec¢do n.° 45, e fica
dotada também da terceira dessas propriedades caracteristi-
cas, porque, se os acontecimentos A, (m=1,2,3,...) forem
incompativeis dois a dois e se cada 4, tiver f,X0 casos
favordveis, sai igual a 2 f,, o numero de casos favoraveis

m

a 2 4, e, portanto, a relacdo ébvia (2 f,.)/V=2( f,./IV) resulta

1

equivalente a P(2 4,,)=2P (4.,). Por outras palavras, a razio
q p ’

e kil

falN pode servir para definir um conceito rudimentar de pro-
babilidade, ao qual falta muito para abarcar o conceito geral.

-
k] #

Apresentdmos a hipétese dos casos igualmente provaveis
recorrendo a uma certa particularizacio da teoria geral da
probabilidade. Dada a comodidade dessa hipétese, pode enca-
rar-se como circunstancia feliz o facto de numerosas questdes
préaticas ligadas a espacos finitos inculcarem a dita hipétese
como sendo a mais adequada, muito embora ndc a imponham
como necessidade absoluta. Alids, a natureza nunca ordena a
utilizagdo de nenhuma teoria determinada, mas consente, por
vezes, no emprego de vdarias teorias que conduzem todas a
resultados proveitosos. E quando ha possibilidade de escolha
sem prejuizo dos beneficios a tirar, a teoria preferida costuma
ser a menos complicada, nas condi¢cdes presentes a que cor-
responde 4 hipétese dos casos igualmente provaveis.

Vejamos agora alguns exemplos.

Exemplo 719. Uma moeda diz-se perfeita se for de constru-
¢cdo simétrica com respeito as suas duas faces, a face chamada
cara e a chamada c¢ruz, e um lancamento de uma ou mais
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moedas perfeitas diz-se imparcial ou casual se for isento de
qualquer premeditagdo. Nas condi¢es usuais, caso conside-
remos um lancamento casual duma moeda perfeita, ndo € de
prever outro resultado sendo cara ou cruz e, portanto, pode-
mos trabalhar no espago Q cujos pontos sio as N=2 faces
da moeda. Entdo, se @ for o corpo-c mais amplo que pode
instituir-se em , o espa¢o mensuravel (Q,&) fica com a
decomposicdo irredutivel finita 9={4,,4.!, onde 4, e A4,
significam os conjuntos elementares correspondentes as faces
respectivamente cara e cruz. Atendendo a situagdo apresen-
tada, 2 hipotese dos casos igualmente provdveis conduz a pro-
babilizacio mais indicada para (Q,&). Assim vale 1/2 qual-
quer das duas probabilidades P(A4,) e P(A:), sendo P(A4;) a
probabilidade duma cara e P(4.) a probabilidade duma cruz.
—Mais geralmente, se 21 for um nimero natural e se con-
siderarmos um lancamento casual (simultdneo) de » moedas
perfeitas ou » lancamentos casuais (consecutivos) da mesma
moeda perfeita, ndo é de prever outro resultado senfo um
determinado agrupamento ordenado de # faces, correspon-
dendo cada face agrupada a uma certa moeda ou a um certo
lancamento, e, portanto, convém-nos trabalhar no espago Q
cujos pontos sdo os N=2" agrupamentos possiveis, espaco
este igual ao produto I Q, cujo factor n.° m € o espago

I=m=n
formado pelas 2 faces da m-ésima moeda ou do m-ésimo lan-
camento. Entdo, se @ for o corpo-¢ mais amplo que pode ins-
tituir-se em , a hipdétese dos casos igualmente provaveis
conduz a probabiliza¢do mais indicada para o espago mensu-
ravel (Q,a). Portanto, a formula 108) atribui a qualquer acon-
tecimento 4 do espaco de probabilidade resultante um valor
P(4)=fa4/2", onde f, significa o numero de casos favoraveis
a A4; por exemplo, a probabilidade de # faces iguais entre si
sera 1/2#73, visto ter-se f4=2.—Em tudo isso, quando se diz
ocasionalmente que P () é a probdabilidade da realizacdo de A,
pretende-se assinalar que o espago de probabilidade (2,4, P),
de inicio imaginado abstractamente, se val concretizar, per-
mitindo a realizacdo (material) de 4, em virtude de proce-
der-se efectivamente a um langamento casual (simultaneo)
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de » moedas perfeitas ou a # langamentos casuais (consecuti-
vos) da mesma moeda perfeita.

Exemplo 80. Um dado (para jogar) diz-se perfeito se for
de construcdo simétrica com respeito as suas seis faces, deno-
minadas ds, duque, lerna, quadra, quina e sena conforme se
tratar da face com respectivamente 1, 2, 3, 4, 5 e 6 pontos, e
um langamento de um ou mais dados perfeitos diz-se impar-
cial ou casual se for isento de qualquer premeditagio. Nas
condicdes usuais, se #>1 for um numero natural e se consi-
derarmos um lancamento casual (simultaneo) de » dados per-
feitos ou # lancamentos casuais (consecutivos) do mesmo
dado perfeito, ndo é de prever outro resultado sendo um
determinado agrupamento ordenado de # faces, correspon-
dendo cada face agrupada a um certo dado ou langamento,
e, portanto, convém-nos trabalhar no espago Q cujos pontos
sdo os /N=6" agrupamentos possiveis, espaco este igual ao
produto II  Q, cujo factor n.° m é o espago formado pelas

1=m=n
6 faces do m-ésimo dado ou lancamento. Entdo, se @ for o
corpo-¢ mais amplo que pode instituir-se em Q, a hipétese
dos casos igualmente provaveis conduz a probabilizacio mais
indicada para o espaco mensuravel (2,&). Portanto, a for-
mula 108) atribui a qualquer acontecimento 4 do espago de
probabilidade resultante um valor P (A)=f4/6" onde f, signi-
fica o numero de casos favordveis a 4; por exemplo, a pro-
babilidade de 7 faces iguais entre si sera 1/6"}, visto ter-se
fa=6.Também aqui, quando se diz ocasionalmente que P(A4)
¢ a probabilidade da realizacdo de 4, pretende-se assinalar
que o espaco de probabilidade (,&,P), de inicio imaginado
abstractamente, se vai concretizar, permitindo a realizacio de
A, em virtude de proceder-se efectivamente 2 um lan¢camento
casual (simultaneo) de » dados perfeitos ou a » langamentos
casuais (consecutivos) do mesmo dado perfeito.—Posto isso, se
A significar a presenca de menos duma sena ou, equivalente-
mente, a auséncia de senas, sal f4=5" donde P(4)=(5/6)"
Mais, se A, significar a presenca de pelo menos uma sena,
quer dizer de uma ou mais senas, tem-se A4;=A4", pelo que
a alinea &) de XLVII torna P(4,)=(6"—5)/6". Depois, se 4
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significar a presenca de wma sena, quer dizer de exactamente
uma sena, basta pér 4»=2 A4, onde, dado m, o aconteci-
ke

mento A}, indica a presenca duma sena no dado ou lanca-
mento n.° m e a auséncia de senas nos dados ou lan¢camentos
restantes, basta fazer isso para que primeiro a férmula 108) dé
P (4,)=>5""1/6", com cada m, e para que em seguida o axioma
das probabilidades totais conduza ao resultado P(A4s)=n-5""1/6".
Por outro lado, se A; significar a presenca de mais duma
sena ou, equivalentemente, de pelo menos duas senas, sal
As=A4;— As, com A.c Ay, pelo que a alinea 5) de XLVII
implica P(As)=[6"—(n+5)-5*1]/6". Por fim, se A, significar
a presenca de guando muito wmna sena, quer dizer de uma ou
menos senas, tiramos de Aiy=A; que P(4y)=(n-+5). 5"7/6".

Exemplo 81. Considerem-se duas lotarias, a primeira
com a emissio de L bilhetes numerados de 1 a L, a outra com
a emissdo de M bilhetes numerados de 1 a M e cada uma
com um unico prémio. Quem comprar dois bilhetes, um de
cada lotaria, encontra-se em face do espaco { formado pelos
N=L.M pontos que sio os pares de nimeros possivelmente
premiados. Nas condi¢bes de sorteio usuais, a convengdo de
designar por & o corpo-c mais amplo que pode instituir-se
em Q inculca a hipotese dos casos igualmente provaveis
como o caminho mais apropriado para probabilizar o espaco
mensuravel (,&). Entéo, escolhido um acontecimento 4, a
sua probabilidade P(4) é dada por 108). Caso o jogador esteja
interessado materialmente no resultado dos sorteios relativos
as duas lotarias, como sucede usualmente, a situagdo propor-
ciona-lhe um motivo excelente para encarar P(A) como a pro-
babilidade da realizacio de 4.—Posto isso, atribuamosa 4 o
significado da presenca de pelo menos um prémio no par de
bilhetes adquiridos. Se pusermos A= 4, 4., onde, dado o
indice 2 (#=1,2), o acontecimento A4, indica a incidéncia
dum prémio no bilhete correspondente 2 lotaria n.° » (acom-
panhada seja do que for na outra lotaria), se fizermos isso,
primeiro a f6rmula 108) da P(4.)=M|(LM), P(As)=L|(LM)
e P(ANA)=1/(LM) e depois a férmula 106) conduz a
P(A)=P(A4)+P(4)—P(ANA)=(L+M—1)/(LM).—Em ter-
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mos de maior generalidade, considerem-se agora p(1£p<+co)
lotarias, a n-ésima (#=1,2,...,p) com a emissdo de V, bilhe-
tes e cada uma com um unico prémio, e suponha-se que um
jogador compra p bilhetes, um de cada lotaria. Entio, Q sera

formado pelos N= I /N, agrupamentos ordenados de
I=n<p

numeros possivelmente premiados e a exposicio seguird os
mesmos moldes acima descritos. Em particular, se 4 signifi-
car a presen¢a de pelo menos um prémio no agrupamento
dos p bilhetes adquiridos, interprete-se A4,, para cada #,
como a incidéncia dum prémio no bilhete correspondente a
lIotaria n.° # (acompanhada seja do que for em qualquer lota-

ria com numero diferente de #). Entdo, ter-se-a A= U 4.,
i=wp

a igualdade 108) dard P(A4,,,nAm.N--0NA0) =1/ Ny, + Ny, - N,)
sempre que for 1. Zm<<me<.. <m,Zp e a férmula 106), com
p em lugar de &, conduzird a

P(A)=

fiA

P (_ 1>n—1 . s 1 )
nzZp 1= el <t p Ny N oo N,

O calculo pode fazer-se, porém, por um caminho mais sim-
ples, se tomarmos em conta que o ntimero de casos favoraveis

a 4 ¢ 1 (N,—1), pelo que a alinea 4) de XLVII e a

1=n=p

igualdade 108) permitem escrever P(A)=1— 11 (1—1/V,).
1=ns=p

Vamos agora particularizar, para a conjuntura presente,
o teorema VII ou teorema fundamental sobre a extensio de
contetidos-¢ a medidas. Resulta a seguinte proposi¢do, a que
podemos chamar feoreina fundamental sobre a extensdo de con-
teidos-c normados a probabilidades.

LVI) «Dados um espago &, um corpo @ de conjunto gené-
rico GCQ e um conteudo-o normado, seja o (), considere-se
a func¢ido ®(C) que se obtém fazendo corresponder a cada
conjunto CCQ a relagio
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a) ®(C)= inf 29¢(G,), onde o infimo se refere a todas
uG:,oC n

as coleccoes finitas ou numeraveis de conjuntos G,e§

tais que UG,DC.
»n

Entfo, constitui-se em corpo-s¢ a classe & daqueles conjun-
tos AcQ que satisfazem a relagéo

b) ®(C)x®(ANC)+2(A4 NC) para qualquer C.

Além disso, a restricdo da fungdo ®(C) a classe & resulta
uma probabilidade completa, seja P(4), a qual coincide com
a unica medida que estende a funcdo ¢(G) a classe &.»

Observacdo. Caso se tome para ponto de partida um con-
teado-o nido-normado, a desigualdade ¢ (Q) =1 [veja-se 17 a)]
impede de ser uma probabilidade qualquer medida que
estenda ¢ a um corpo-s.

Posto isso, o mesmo caminho que nos levou de VII para
VIII, VIII' e IX vai-nos levar agora de LVI para a proposi-
¢do seguinte:

LVII) «Atribua-se a cada um dos simbolos Q,@,9(G), &
e P(4) o mesmo significado que no enunciado de LVI e
suponha-se que a classe J¢ de conjunto genérico K € um
corpo-¢ com a propriedade §C H Q. Nesta conformidade,
nfio s6 a fun¢do P(X) é uma probabilidade tal que a sua
completiva coincide com P (4), como também cada conjunto 4
determina dois conjuntos K particulares, digamos K' e K",
que satisfazem simultaneamente as duas relagbes K'cACK”
e P(K)=P(A)=P(K"). Em aditamento, se a classe <5 de con-
junto genérico /A for o corpo-c gerado por @, tem-se HCT &
e a probabilidade P (/) resulta a unica medida que estende
o(G) a H>

Observacdo. Escolbido o corpo-¢ designado por &, de
conjunto genérico X, no enunciado de VIII, entdo u(K) é a
unica medida que estende a funcio o(G), suposta finita-c e
signi ficativa, 2 uma medida definida em % conforme pode
ver-se aplicando a 4.* fase da demonstragdo de VII, em par-
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ticular, aos conjuntos .4 e g% Logo, atendendo a proposi¢do X
e 2 observacio anexa, podemos afirmar, em face de LVII,
que a func¢éo p(K) acima referida coincide com uma soma de
produtos de constantes positivas por probabilidades que sio
as unicas extensdes de certos conteudos-¢ normados a medi-
das definidas em &.

47, Combinatéria. Esta seccio ¢é intercalar e destina-se
a facilitar a solugdo de certas questdes relativas a contagem
de ntmeros de casos, as quais questdes aparecem em varios
problemas, por exemplo quando se verifica a hipdtese dos
casos igualmente provaveis e se recorre a proposicio LV
para o cdlculo da probabilidade dum acontecimento.

Vamos partir dum conjunto finito e ndo-vazio com diga-
mos # pontos, pontos estes que representamos abreviada-
mente por 1,2,...,7 e que denominamos também objectos,
isto porque sdo literalmente objectos em numerosas aplica-
¢cdes a problemas concretos fornecidos pela pratica.

Caso queiramos efectuar um ntmerc finito de tiragens
ou extrac¢des consecutivas dum ponto ou objecto do conjunto
dado, ha trés maneiras de proceder: Primeiro, por tiragens sem
reposigdo, quer dizer deixamos de fora cada objecto extraido,
de modo que uma eventual tiragem seguinte se fard dum con-
junto com menos um ponto; depois, por fragens com reposi-
¢do, quer dizer repomos cada objecto extraido antes de qual-
quer nova tiragem, de modo que todas as extraccbes se fazem
do conjunto inicial; finalmente, por #iragens mistas, quer dizer
repomos certos objectos extraidos e ndo repomes outros.

Seja qual for a técnica usada nas tiragens consecutivas,
forma-se uma colec¢do de objectos extraidos a que podemos
chamar coordenacdo, se quisermos usar un termo andlogo ao
que se emprega em espanhol. Uma coordenacgio diz-se sim-
ples e também sem repelicdo, completa e também com repeticio
ou mista conforme tiverem sido sem reposi¢do, com reposi-
cdo ou mistas as tiragens que lhe deram origem. Em geral,
dedica-se atencdo especial as coordenagdes simples e com-
pletas, procurando-se obter as mistas por associagdo conve-
niente das outras.
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Escolhida uma coordenagio, cada objecto que nela entra
recebe o nome de elemento da coordenacdo. Chama-se grau
duma coordenacio ao numero dos seus elementos. Por uma
questdo de conveniéncia, admite-se a existéncia duma e duma
s6 coordenacio sem elementos ou do grau zero, a qual se con-
sidera simultaneamente simples e completa. Nesta conformi-
dade, se uma coordenacio for simples, o seu grau £ ¢ tal que
0<k<n e os seus elementos resultam todos diferentes. Por
outro lado, se uma coordenagdo for completa, o seu grau %
é tal que 0£Lk< 4o e os seus elementos podem repetir-se.

As coordenacdes mais empregadas sdo os arranjos, as
permutagdes e as combinac¢des, cabendo a estas um papel de
relevo. Por isso, a teoria das coordenagdes é conhecida tam-
bém pelo nome de comébinatiria. Foi este nome o escolhido
para o titulo da secgdo.

Observacdo. Seja C o conjunto com # objectos donde
partimos e seja Q@ um espago onde C estd contido. Entdo, o
conceito de subconjunto de C formado por £ objectos deter-
minados ndo conta com qualquer compromisso quanto a
ordem desses objectos, ao passo que o conceito de coordena-
cdo simples formada por % objectos determinados extraidos
(um a um) de C faculta a liberdade de atender &4 ordem dos
objectos tirados. Por outro lado, admitindo agora que kX1, se
cada ntmero natural j</k determinar um conjunto C; com a
constituicdo de C e um espaco {; com a constituicio de O,
toda a coordenacic completa formada por 2 elementos dis-
postos por ordem corresponde-se reciprocamente com o ponto
do conjunto Cix<Cox<- < G Q<Qp><--- <y cujas coorde-
nadas sio os % elementos considerados, dispostos sem altera-
¢do da sua ordem. Em face do exposto, afigura-se perfeita-
mente compreensivel, em primeira andlise, que muitas vezes
se recorra a coordenacdes para efeitos de contagem de casos
(talvez igualmente provdveis).

*
* £

Em primeiro lugar, vamos tratar das coordenagdes sim-
ples correntes. O assunto € conhecido dos cursos elementares
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e, por isso, limitamo-nos a apresentar, sem demonstracgio,
0s seus aspectos mais importantes.

Dado um conjunto com #>>0 objectos, chama-se arranjo
simples ou arranjo sem repeticdo ou ainda, abreviadamente,
arvanjo dos n objectos tomados k a k a toda a coordenagdo
simples do grau % cuja identifica¢do se faz a partir dos ele-
mentos que a constituem e, cumulativamente, a partir da
ordem por que se sucedem esses elementos. Assim, se n=4 e
k=3, o arranjo de elementos 1, 2, 4 difere do arranjo de ele-
mentos 2, 4, 1, isto apesar de estarmos na presenca de duas
coordenacgdes formadas pelos mesmos elementos.

Usaremos o simbolo ,4; para representar o numero total
de arranjos (simples) de » objectos dados tomados 2 a £ Se
fizermos 0!=1 e se interpretarmos a unica coordenac¢do do
grau 0 como o unico arranjo (simples) dos # objectos consi-
derados tomados 0 a 0, entfo tem-se 0LkZn e verifica-se,
para qualquer %Z admissivel, a igualdade bem conhecida

109) adi=n']/(n—Fk)!.

O caso particar 2=#» merece uma mencido especial. Os
arranjos (simples) de # objectos dados tomados # a #» dizem-se
também permutacies (simples) desses n objectos. Evidente-
mente, o seu namero € ,4,=n!.

Exemplo 82. Dados os numeros naturais a, 4, # e » tais
que a+b=n e kLa, consideremos uma urna com # bolas ou
esferas, de que @ sdo brancas e 6 pretas, suponhamos as bolas
perfeitamente iguais entre si salvo na cor e pensemos em £4
tiragens ou extrac¢des casuais consecutivas, sem reposicio,
de uma bola da urna. Aqui, quando classificamos de casual
uma tiragem, pretendemos exprimir que ela deve ter igual
acesso a todas as bolas ainda disponiveis na urna e que a
escolha da bola a extrair ndo deve ser influnenciada pela sua
cor. Nestas condigdes, o mais natural € partirmos do espago Q
formado por todos os arranjos (simples) das # bolas tomadas
% a k e probabilizarmos em seguida Q, dotado do corpo-¢ mais
amplo, por intermédio da hipotese dos casos igualmente pro-
vaveis. Logo a probabilidade P(4) de [eventualmente, da
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realizacio de] qualquer acontecimento 4 serd dada por 108),
com N=,A4,. Entdo, se A significar a extrac¢do de % bolas
brancas, sai f4=.d4:, donde, atendendo a 109), o resultado

P(A)=[a! - (n—k)!]|[(a—F)! -nl].

Dado ainda um conjunto com #>0 objectos, chama-se
combinacdo simples ou combinacdo sem repeticdo ou ainda, abre-
viadamente, combinacdo dos n objectos tomados k a & a toda a
coordenacio simples do grau £ cuja identifica¢do se faz ape-
nas a partir dos elementos que a constituem, sem atender &
ordem por que se sucedem esses elementos. Assim, se n=4
e £—38, a combinacio de elementos 1, 2, 4 nfo se distingue
da combinacdo de elementos 2, 4, 1, isto apesar da diferenca
na disposi¢do dos elementos.

Usaremos o simbolo ,C; e, por vezes, também o sim-
bolo (i), este devido a Newton, para representar o nimero
total de combinacdes (simples) de # objectos dados tomados £
a k. Se interpretarmos a tnica coordenacio do grau 0 como a
tnica combinacio (simples) dos # objectos considerados toma-
dos 0 a 0, entdo tem-se 0Lk <n e verifica-se, para qualquer £
admissivel, a igualdade bem conhecida

110) WCrom=n (B (n—B) V)=, Al = (7).

Chamamos a atenc¢do do leitor para a férmula de sime-
tria ,C,=,C, € para a férmula de recorréncia ,Cy=,_1C+
+41Cie, a primeira valida sem restricdo e a outra valida
para n>1 e 1Lk<n. As duas férmulas aqui referidas facul-
tam uma explicagdo comoda da construcdo do chamado #ridn-
gulo aritmético ou tridngulo de Pascal que regista, como o lei-
tor sabe, quaisquer ntimeros de combinac¢des de »n objectos,
com # a percorrer os primeiros numeros naturais até ao
limite fixado para o dispositivo.

Exemplo 83. Tomemos duas varidveis x ¢ ¥ e um nimero
natural arbitrario #. Entdo, a bem conhecida formula do
binomio ou de Newton

(x+yyr= 2 G- ok
g

=k=n
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da, pondo x=y=1, a igualdade ,Co+,Ci+ ...+ ,C, = 2%, a
qual prova que é igual a 2” o numero total de combinacées
(simples) que podem formar-se com # objectos dados, resul-
tado este de que ja nos servimos algumas vezes, por exemplo
na primeira parte da secg¢do n.° 11. Por outro lado, se fizermos
—X=p»=1 e se usarmos o simbolo J(z) para representarmos

o maior inteiro contido no ntmero real z, fica 3 wCor=
0= (n[2)

= 2 #Cory1, pelo que a convenc¢io de considerar 0
0=k T(n-1)f2)

como um numero par conduz a igualdade entre o ntmero
total de combinag6es de # objectos dados com qualquer grau
par € o numero total de combina¢bes dos mesmos objectos
com qualquer grau impar.

Exemplo 84. Consideremos uma urna com M1 bolas
ou esferas, numeradas de 1 a J/ e perfeitamente iguais salvo
na numeragdo, e pensemos em M extrac¢bes casuais conse-
cutivas, sem reposi¢do, de uma bola da urna. Aqui, a defi-
nicdo de extrac¢io casual é a mesma que no exemplo 82,
desde que se leia «pela sua numeragdo» em vez de «pela sua
cor». Portanto, o mais natural é partirmos do espaco Q for-
mado por todas as permutag¢des (simples) das M bolas e pro-
babilizarmos em seguida Q, dotado do corpo-¢ mais amplo,
mediante a hipétese dos casos igualmente proviveis. Logo a
probabilidade P (4) de qualquer acontecimento .4 sera dada
por 108), com N=/M/ Posto isso, chamemos encontro a toda
a coincidéncia entre o numero duma extrac¢io € o numero
da bola extraida correspondente. Ent4o, o acontecimento 4,
caracterizado por pelo menos um encontro nas M extracgdes
tem M formas A,, (m=1,2,.., M), com A,, a significar um encon-
tro na extrac¢do niumero . Seja qual for m e sejam quais forem
os m inteiros I, /ls,...,/, tais que 1ZLh<b<---<l,£ZM, a
composi¢io A, NA,N---NA;, tem tantos casos favoraveis
quantas aquelas permutag¢ées dos M primeiros naturais em
que cada um dos // ocupa o lugar de nimero igual ao / con-
siderado e os restantes J/-m elementos podem distribuir-se
livremente pelos lugares ainda disponiveis. Portanto, as for-
mulas 108) e 106), a segunda com /, m e M em lugar de respec-
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tivamente m, n e N e com yC,, parcelas iguais a (M—m)/|M!
para cada escolha de s, ddo

M/! (M —m)!
— 3 [(—1)yt. : -
P ()= 1=m=M (=0 ml! (M —m)! M!
- 3 (—1yml]

1=m=M

ou seja um ntmero que valores de J/ nio muito grandes

aproximam notavelmentede X  [(-1y*fm/]=1~1]e. Eisa
1=m oo

solucdo do problema de achar P(A4,), conhecido pelo nome de

problema do encontro.

Posto isso, vamos tratar das coordenagdes completas mais
usadas.

Dado um conjunto com 7>>0 objectos, chama-se arranjo
completo ou arranjo com repeticdo dos n objectos tomados k a k
a toda a coordenacgio completa do grau £ cuja identificacdo
se faz a partir dos elementos que a constituem e, cumulati-
vamente, a partir da ordem por que se sucedem esses ele-
mentos. Assim, se #=3 e £=4, o arranjo completo de ele-
mentos 1, 2, 2, 3 difere do arranjo completo de elementos 2,
9, 3, 1, isto apesar de estarmos na presenca de duas coorde-
nacdes formadas pelos mesmos elementos.

Usaremos o simbolo ,4, para representar o numero total
de arranjos completos de 7 objectos dados tomados £ a ke
interpretaremos a tnica coordenagio do grau 0 como o unico
arranjo completo dos 7 objectos considerados tomados 0 2 0.
Entdo, € 6bvio que wAr=nA, para kL1 e que wA >, A para
£>1. Por outro lado, escolhido qualquer £>1, os arranjos com-
pletos de # objectos dados tomados £ a £ sdo tantos quantas
sio as colecgbes ordenadas com % numeros que podem for-
mar-se em % passos consecutivos, cada um dos quais consiste
em seleccionar arbitrariamente um dos #» primeiros natu-
rais. Consequentemente, tem-se, para cada £x0, a igualdade

111) A= n".
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Aqui o caso particular 2=, correspondente as permuta-
¢bes completas ou permutacies com repeticdo de n objectos dados,
nao oferece interesse de maior, ja que £ pode exceder .

Exemplo 85. Retome-se o exemplo 82 substituindo, porém,
as tiragens casuais consecutivas sem reposi¢fo por outras com
reposi¢do. Entdo, Q sera formado por todos os arranjos com-
pletos das # bolas tomadas £ a 4. Logo N=,4, e fu=.A4, da,
atendendo a 108) e a 111), o resultado P (A)=(a/ny>[a/(n—Fk)!]/
Jlla—R)YIn!].

Dado ainda um conjunto com >0 objectos, chama-se
combinacdo completa ou combinacGo com vepeticdo dos n objectos
tomados & a % a toda a coordenag¢io completa do grau £ cuja
identificacdo se faz apenas a partir dos elementos que a cons-
tituem, sem atender 4 ordem por que se sucedem esses ele-
mentos. Assim, se #=3 e k==4, a combinagio completa de
elementos 1, 2, 2, 8 nido se distinge da combina¢ido completa
de elementos 2, 2, 3, 1, isto apesar da diferenc¢a na disposicdo
dos elementos.

Usaremos o simbolo ,,C;, para representar o ntmero total
de combinagdes completas de # objectos dados tomados £2a 4
e interpretaremos a tnica coordenacgfo do grau 0 como a inica
combinacio completa dos # objectos considerados tomados
0 a 0. Entdo, é obvio que ,C.—,C; para 2-1, que ,Ci>,.Ch
para £>1 e que ;(;=1 para todo o 4.

Posto isso, servimo-nos da Zécnica das coleccbes ordenadas
formadas por letras a fim de calcularmos o valor de 2 Ci, para
n>1 e k>0 arbitririos. Incidentemente, a técnica referida
resulta cémoda ndo sé no caso presente, como também em
varios outros problemas de combinatéria.

Escolhida arbitrariamente uma combinag¢io completa de
n>1 objectos dados tomados £ a &, com £>0, tomem-se n—1
letras a, faca-se anteceder o primeiro a de tantas letras &
quantos os elementos da combinacio iguais a 1, coloquem-se
a seguir ao ultimo @ tantos & quantos os elementos da com-
binagdo iguais a # e intercalem-se entre as letras ¢ nume-
ros 7 e »+1, com 1ZLrZLn—2, tantos & quantos os elementos
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da combinagdo iguais a »+1. Procedendo do modo indicado,
forma-se uma coleccdo ordenada abrangendo n+4/%—1 letras,
das quais #—1 coincidem com a e as % restantes coincidem
com b. Por exemplo, se =3, a combinag¢do completa de ele-
mentos 1, 2, 2, 3 determina a colec¢do ordenada formada pelas
letras &, a, b, b, a, b.

Iaversamente, escolhida arbitrariamente uma colec¢do
ordenada formada por #-+4—1 letras, das quais 7—1>>0 coin-
cidem com « e as restantes £>>0 coincidem com &, podemos
fazer corresponder aquela combina¢do completa de # objec-
tos dados tomados % a £ que tem tantos elementos iguaisa 1
quantos os 4 anteriores ao primeiro @, que tem tantos ele-
mentos iguais a # quantos os & posteriores ao ultimo a e que
tem tantos elementos iguais a »4-1, com 1ZLr<Ln— 2, quantos
os b intercalados entre as letras ¢ numeros # e -+ 1. Por exem-
plo, se n=4, a colecgdo formada pelas letras a, , 6, 6, 6, b, b, a
determina a combinacdo completa de elementos 3, 8, 8, 3, 3.

Como as duas correspondéncias descritas sdo reciprocas
uma da outra, estamos aptos a afirmar que as hipdteses #>1

e £>0 tornam o numero #Cr igual ao numero de maneiras por
que n—1 letras a e £ letras & podem dispor-se em colecgdes
ordenadas diferentes. Este facto, a f6rmula 110) e os resulta-
dos anteriores relativos as hipdteses #=1 e £=0 provam que
vale, em todos os casos, a igualdade

112) wCro=nira Co=(n+k—1)1/[E! (n—1)I].

Assim, existem 15 combina¢des completas de 3 objectos
dados tomados 4 a 4.

Exemplo 86. Considere-se uma funcéo f das » variaveis
reais xy,%s,...,%, € suponham-se continuas, num ponto deter-
minado, todas as derivadas da ordem % que podem formar-se
a partir de f. Entdo, o numero maximo de derivadas distin-
tas da ordem % coincide com o numero total de combinacdes
completas das » variaveis consideradas tomadas £ a %4 Em
particular, se #=2, esse numero mdximo sai igual a £+1 e,
se k=2, o dito numero sai igual a n(z-+1)/2.
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£ *®

Fechamos esta sec¢io tratando dum tipo de coordenacées
especiais que podem obter-se quando se igualam entre si
certos pontos do conjunto finito e ndo-vazio donde se parte.

Dado um conjunto com 7>>0 objectos, suponhamos que
estes se dividem em ¢>0 classes tais que a classe numero
p(p=1,2,...,9) fica com 7,20 objectos, que se consideram
iguais entre si todos os objectos pertencentes 2 mesma classe
e que se distingue entre quaisquer objectos situados em clas-
ses diferentes. Nesta conformidade, chama-se permutacio por
classes dos n objectos dados a toda a coordenagio simples do
grau n cuja identificacdo se faz a partir dos tipos de classe
dos elementos que a constituem e, cumulativamente, a partir
da ordem por que se sucedem esses tipos de classe.

Por exemplo, dado um conjunto de 7 bolas, suponhanios
que cada uma estd marcada com uma letra que ¢ um g em 3
das bolas, um & noutras 8, um ¢ na tltima e um & em bola
alguma. Se convencionarmos considerar iguais entre si bolas
marcadas com 2 mesma letra, as permutacdes (simples) das
bolas dadas cedem o lugar a permutagdes por classes, resul-
tando #="7, g—=4, 1 =mns=38, n3=1 e 7124=0. Entéo, escolhidas
trés permutagdes (simples) distintas, a primeira de elemen-
tos 1, 2, 3, 4, 5, 6, 7, a segunda de elementos 3, 2, 1, 5,4, 6, 7
e a terceira de elementos 1, 4, 2, 5, 7, 6, 3, as duas primeiras
determinam a mesma permutagio por classes, a formada
pelas letras a, a, @, 6, b, b, ¢, e a ultima determina uma per-
mutag¢do por classes diferente da anterior, a formada pelas
letras a, b, a, &, ¢, b, a.

Representemos pelo simbolo ,/2,, ., ..., 0 DUmMero total
de permutagdes por classes de »# objectos dados que se divi-
dem em g classes segundo as condicbes acima referidas. Evi-
dentemente, tem-se

7'Z=%1+112—]—~-‘+7’lq € nPn,,ni,...,nqénAn,

verificando-se o sinal de igualdade da ultima relacdo quando
e s6 quando #;<£1 para todo o p admissivel. Por outro lado,
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se uy, #s,...,n, forem os inteiros 7, positivos, entdo o numero
total em causa resulta igual ao nimero de maneiras diferen-
tes por que #; simbolos todos iguais a 1, #; simbolos todos
iguais a 2, etc. e #, simbolos todos iguais a # podem distri-
buir-se por # lugares numerados de 1 a #, nimero de manei-
ras este que vamos determinar pela técnica da marcacdo de
lugares numerados (a qual nio €& privativa do problema
presente).

De inicio ha ,A4,/#:! modos de marcar #{ dos » lugares
disponiveis para os #j simbolos fodos iguais a 1, a seguir ha
weri Aup/nt! modos de marcar #; dos #—mn} lugares restantes
para os # simbolos fodos iguais a 2, etc. e, por fim, ha
wertiz...—nt_Au/n,! modos de marcar os n, lugares sobrantes
para os #, simbolos todos iguais a r. Dai e de 110) tiramos
a igualdade

11 3) nPn,,n,,. g R Cni ® n—nj Cn’_: e e — Ty Cn£ .

Portanto, se recorrermos mais uma vez a 110) e se tomarmos
em conta a convencio 0!=1, obtemos a nova igualdade

nl

114) nPn,,n,,...,nq: 1’11./'7’2-/"'”q! ‘

Em particular, tem-se 1Pss,1,0=71/(3!-8!.1!.0l)=140.

Exemplo 87. Tomemos g2 variaveis x1, &z,...,%; € um
ntimero natural arbitrdrio ». Entdo, sejam quais forem os
inteiros nio-negativos i, #2,...,1,, tomados pela ordem da
sua escolha e com soma igual a n, o desenvolvimento da
poténcia de expoente # e de base x +a:+---+%¥; contém 0
monémio x% -x™..-a% um nimero de vezes igual ao nimero
de permutacdes por classes de » varidveis dadas quando
estas se dividem em ¢ classes tais que a classe ntmero
p(p=1,2,..,9) fica com 7,20 varidveis todas iguais a x, €
que se faz a distingdo entre quaisquer varidveis portadoras
de indices diferentes. Como o desenvolvimento referido con-
duz a um polinémio homogéneo do grau » nas variaveis x,,



TEORIA DA MEDIDA E DA PROBABILIDADE 333

concluimos de 114) que se verifica a férmula

(FitXat - xy) =

n!
= 2 I R R AR A
it gt - n =n nl./-ng/---nq/ - 7

4

a qual é conhecida pela designagfio de fdrmula do multinomio
e se reduz a férmula do binomio, dada no exemplo 83, se
pusermos g=2, n;==&, x1=% € x;=y e se atendermos a igual-
dade 110). Na pratica sdo fundamentais as colec¢bes forma-
das por ¢ inteiros ndo-negativos, considerados sem atender
4 sua ordem e tendo uma soma igual a #, visto o coeficiente
numérico n/f(m/ ny!-.-n,/) se mostrar insensivel a qualquer
permutacdo por classes das grandezas #,, supostas fixadas e
divididas nas n+1 classes que se obtém tomando sucessiva-
mente os 7, iguais a 0, os iguais a 1, etc. e os iguais a #.
Além disso, se atribuirmos o valor 1 a cada uma das varia-
veis x, da formula do multinomio, tiramos o valor ¢” para o
ntmero total de permutag¢bes por classes que podem cons-
truir-se a partir de » objectos dados dividindo-os, dos diver-
sos modos possiveis, em ¢ classes (compreendendo classes
vazias) tais que se consideram iguais entre si todos os objec-
tos da mesma classe e que se consideram distintos quaisquer
objectos situados em classes diferentes.

48. Espacos de probabilidade obtidos por marginagéo e por
multiplicacdo de espagos de medida. Na primeira parte desta
sec¢do vamos adaptar o estudo feito na secgfo 81 ao caso par-
ticular em que o ente marginal é uma probabilidade ou um
espago de probabilidade.

Seja (2,@,p) um espaco de medida e suponhamos que Q
€ o produto dum ntmero finito ou duma infinidade numera-
vel de espagos Q,(n=1, ¢, 3,...). Se « denotar um ntmero
finito e positivo e se repartirmos a colec¢io dos indices
admissiveis por duas colec¢bes parciais ndo-vazias, uma for-
mada pelos numeros %4, >4, j>14,... € a outra formada pelos
numeros 7,s>7,4>s,..., entdo a igualdade a=y(Q), impossi-
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vel caso ¢ seja uma medida infinita ou nula e sempre possi-
vel caso ¢ seja uma medida finita e significativa [N XXXV],
constitui-se em condicio necessaria e suliciente para que a
medida marginal ,u,i,j,...)=atsns,s,..., definida por 87), resulte
uma probabilidade, a qual representaremos suprimindo, no
simbolo respectivo, o indice esquerdo «, dbviamente supér-
fluo. Evidentemente, o exposto aplica-se ao caso particular de
a medida inicial ¢ ser uma probabilidade, caso este em que
a nossa condicio necessaria e suficiente toma a forma a=1.

Nesta conformidade, suponhamos que a medida g, defi-
nida em (Q,Q), € finita e significativa ou, em particular, € uma
probabilidade P, representemos por C o cilindro mensuravel
genérico ou, em particular, o acontecimento cilindrico gené-
rico, de geratrizes paralelas a Q,,Q;,Q;,..., e escrevamos
Ci,irjr.y=Crs,e,... para referir a base de C em Qg,sj..0=
=Q, ... Entéo, a fun¢io definida em (Q, Qi = Dhrs ...
através da relagio

115) 2 ivg (Ol g ) = Fays, by (Crsye,)=p(C) ()

ou, em particular, através da relagéo
115 Pin, iy (Cinirgy ) =Pr syt (Crrsyr,. )=P(C)

é a Gnica lei ou probabilidade que resulta da marginacdo de v
ou, em particular, de P com respeito a Q¢ y=%n,, ;... € que
denominaremos, muito naturalmente, lei ou probabilidade mar-
ginal de p ou, em particular, de P, tomada no espaco Ly i,...
Corresponde um espa¢o de probabilidade que representa-
mos por (Q,&,mn,iz..0=,@,u)ss,s,... OU, em particular,
por (,&,P)s,i,j..)=(2,&,P)s,1,..., que consideramos resul-
tante da marginacdo de (X, Q,p) ou, em particular, de (2,8,P)
com vespeito a Qy, ;... € a que chamamos espago de probabi-
lidade marginal de (Q,Q,p) ou, em particular, de (2,8&,P),
tomado em Q, s 1,....

Evidentemente, se tomarmos numeros positivos «,, a,...
tais que o produto « - «;- ... resulte absolutamente conver-
gente e de valor igual a #(Q), entdo o espago de probabilidade
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proveniente da marginacio de (Q,&,p) com respeito a Quij,...
pode obter-se por marginacdes simples consecutivas tais que
a primeira elimina Q, e introduz o factor de escala «,, a
segunda elimina Q; e introduz o factor de escala «;, etc. No
caso particular supramencionado acresce que pode tomar-se
ap=a;=..-=1, eventualidade esta em que todas as margina-
¢Oes parciais conduzem a espacgos de probabilidade. Em qual-
quer dos casos, as marginagdes simples possuem as proprie-
dades comutativa e associativa.

Semelhantemente ao que se viu na observacio da
pagina 138, pode utilizar-se 115) para partir dum primeiro
membro confundido com uma probabilidade, substituir em
seguida a grandeza 1 (Q) do segundo membro por um ntimero
finito e positivo que se queira escolher e alcancar assim uma
medida p(C) finita e significativa que resultard uma proba-
bilidade se e s6 se o numero escolhido tiver sido a unidade.

Observacdo. Pode exprimir-se a esséncia de 115') através
do enunciado abreviado seguinte: «A probabilidade de qual-
quer acontecimento cilindrico é igual 4 probabilidade mar-
ginal da sua base.»

Vamos acrescentar duas proposi¢des relativas ao assunto
em estudo.
Para comegar, temos a proposicdo seguinte:

LVIII) «Para que um espago de medida ou de probabi-
lidade seja completo, temos a condi¢io necessaria, embora
insuficiente, que resulte completo qualquer espago de pro-
babilidade proveniente da margina¢do do espago de medida
inicial.»

Demonstracdo de LVIIL. A condi¢do necessiria do enun-
ciado € uma consequéncia imediata da proposi¢do XII. Pode
vér-se que a mesma condi¢do € insuficiente retomando a
fung¢do p do exemplo 41 ou substituindo essa fungdo pelo
seu dobro.
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A outra das proposigdes anunciadas é a seguinte:

LIX) «A propriedade dum espago de probabilidade de
satisfazer a hipétese dos casos igualmente provaveis € uma
condicio suficiente, embora desnecessdria, para que a mesma
hipétese se verifique simultdneamente em todos os espagos
de probabilidade que possam obter-se por margina¢do do
primeiro.»

Demonstracdo de LIX. Suponhamos que Q é o produto
dos espacos Q, e que o espago de probabilidade (2, a,P)
satisfaz a hipétese dos casos igualmente provaveis. Entao,
os textos que precedem 108) e N VI obrigam { a ter um
ntmero finito de pontos N=I1 V,,, onde, dado #, o simbolo /V,

representa o numero de pontos de Q,.® Logo, escolhidos arbi-
trariamente valores dos indices 7, s, 4,..., 0 espaco Q, ;...
fica com N, N, -N,.... pontos e qualquer conjunto elemen-
tar extraido de Q, . ,,... confunde-se com a base dum cilindro,
extraido de Q, que tem NV, -/N;-/N;-... pontos e que pertence
ao corpo-s designado por &. Nesta conformidade, seja qual
for o ponto (@,,0s,0:,...)€ L 5 4,..., a relagdo 115') da

Ny NioNje oo 1

Pr,syf,-n(%((‘)Mwsyc"h"')}): N = NoN-N
y*AVYs®LVyg® -

e, portanto, estd provado que se verifica a hipétese dos casos
igualmente provaveis em todos os espagos de probabilidade
marginais (Q,@,P)s,,....

Posto isso, consideremos os dois espagos Q; e Qq, qual-
quer deles formado pelos dois pontos 1 e 2. Entédo, se & for o
corpo-s mais amplo que pode instituir-se em Q=Q;><Q;,, a pro-
babilidade P definida, em (Q,&), pelas igualdades P({(1, 1){)=
—P(j(2, 2)N=1/3 e P(}(1, 2))=P(](2,1)})=1/6 da probabilida-
des marginais P,(r=1, 2) tais que P,.(J1{)=P,.(j2|)=1/2 para

() Imediatamente se reconhece que a desigualdade V,>>1 s6 é possi-
vel para um numero finito de valores do indice #.
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cada 7. Portanto, ¢ perfeitamente possivel que um espaco de
probabilidade n&o satisfaca a hipotese dos casos igualmente
provaveis quando esta se verifica em todos os espa¢os de pro-
babilidade que possam obter-se por marginacio do primeiro.

Por fim, retomemos o quadro sinéptico dado na parte
final da sec¢do 81 e vejamos as acomodagbes a fazer para
que surja a particularizagdo presentemente adoptada.

Evidentemente, dada a medida p finita e significativa ou,
em particular, dada a probabilidade P, cada um dos nume-
ros £ e y ndo pode deixar de tomar o valor x(Q) ou, em par-
ticular, o valor 1 e os indices esquerdos podem suprimir-se,
por se tornarem supérfluos.

Exemplo 88. Tomemos os espagos Q) e Q», o primeiro
formado pelos numeros 1, 2 e 3 e o outro formado pelos
numeros 1 e 2, interpretemos & como o corpo-¢ mais amplo
que pode instituir-se em Q=0;><Q, e consideremos os cilin-
dros B={1{>xQs, B'={2{<Q, B"={3{><Q, C=0,<|1] e
C'=0:><{2|. Nesta conformidade, se partirmos duma lei par-
ticular definida em (Q, &), o quadro sinéptico acima referido
pode tomar o aspecto que passamos a apresentar.

\ . B B B Q

e \

P(BNC)=0 |P(B'NC)=1/10| P(B'NC)=1/5 | P, (11{)=3/10

C' |P(BNCH=3/10| P(B'NC")=2/5] P(B'NC)=0 |P,(|2))=7/10

Q P.(111)=3/10 | P (121)=1/2 P, (131)=1/5 P(a)=1

Aqui a linha e a coluna marginais do quadro sio intei-
ramente suficientes para definir as probabilidades ou leis
marginais, respectivamente P; e P,.
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Passamos a adaptar o estudo feito na sec¢do 32 ao caso
particular em que o produto € uma probabilidade ou um
espago de probabilidade.

Para comegar, vejamos a nova forma da proposi¢do XIII
e do texto que a precede.

LX) «Dado um numero finito de espagos de medida
(D (0), D (An)y 10 (Aw)] (7=1, 2,..., V), eles ndo podem admi-
tir nenhum produto igual a um espago de probabilidade se
tiver lugar a desigualdade I e (Q,)=~1 e, em particular,

1I=n=
se alguma das medidas p, for nula ou infinita.
Pelo contrario, caso se tenha II  p,(Q,)=1 ou, em

1=n=N
particular, caso cada medida p, seja uma lei P,, entdo os
espacos de medida dados admitem um e um s6 produto con-
fundido com o espaco de probabilidade [Q(w),&(A4),P(4)],
onde (Q,@)= 1l N(Qn,@ln) e onde P significa o inico produto
1=n=

A

das medidas u, o_u, em particular, das leis P,. A lei P atribui

a qualquer conjunto da forma II 4, uma probabilidade
1=n=N

igual ao produto (aritmético) das medidas ou, em particular,
das probabilidades dos conjuntos A, e atribui ao conjunto
genérico 4 uma probabilidade dada pela relacio

a) P(d)= inf 3 (g1 (Auy)- 2 (Aon,2) e 1 (Ao, )y

H(AmJXAm,QX...xAm,N)DA m

onde os diversos simbolos p, devem substituir-se por P, no
caso particular referido e onde o infimo diz respeito a todas
as coberturas de A4 formadas por unides finitas ou numera-
veis cuja parcela numero 7 seja um produto de conjuntos
A€ Qi

Em aditamento, para que o produto P ou (2,&,P) fique
completo, é condig¢do necessaria, embora insuficiente, que
todos os seus factores sejam completos.»
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Demonstracdo de LX. Quanto a parte introdutéria do
enunciado, veja-se N XXXV e a igualdade 40), na qual a
funcdo ® nio pode deixar de ser a restri¢do comum de todos
os produtos das medidas g, a classe dos conjuntos 11 4,,. Na

parte central do teorema, trata-se do aproveitamento duma
parte de XIII. Quanto ao aditamento ao enunciado, basta
atender a parte final de XIII e ao contraexemplo seguinte:

Seja @ o corpo-o gerado pelo conjunto {1, 2} =4,CQ=
=11, 2, 8, 4} e seja @ o corpo-¢ mais amplo que pode insti-
tuir-se no espaco Q;=11, 2|. Entdo, se P, for a probabilidade
completa definida em ({, &) pela igualdade P, (A4;)=1/2 e se
P. for a probabilidade completa definida em (Q,,Q,) pela
igualdade P;({1])=0, a lei P=P,><P; atribui o valor 0 ao pro-
duto 4=4,>|1}, o qual contém o conjunto M={1}>{1}. Por
outro lado, como 9,={4;, A7} é uma decomposi¢io irreduti-
vel de (Q;,@), isto por causa de N XVI, inferimos primeiro
a impossibilidade da relacio {1}e @; e inferimos em seguida,
atendendo a N XXVII', aimpossibilidade da relacdo Me @;<Qe.
Portanto, a lei P resulta incompleta [veja-se o texto da sec-
¢do 45 que precede o exemplo 77].

Segue uma proposicdo que adapta X VI a situacio presente.

LXI) «Dada uma infinidade numeravel de espacos de
probabilidade [, (0,), @ (A4n), Pu(4n)](n=1, 2, 3,...), eles
admitem um e s6 um produto confundido com o espaco de
probabilidade [Q(w),Q(4),P(A4)), onde (Q, @)= 0 (Q,,a.)

1=nl+w
e onde P significa o tnico produto das leis P,. A lei P atri-

bui a qualquer conjunto da forma II 4, uma probabili-
1=nl+w

dade igual ao produto (aritmético) das probabilidades dos

acontecimentos 4, e atribui ao conjunto genérico 4 uma

probabilidade dada pela relagdo

a) P(4)=
= inf 2[P1(Aumy) - Po(Aumg) ... Pu(Ap)...],

U(dm X 2X e« XAy X .. )D A4
m

onde o infimo diz respeito a todas as coberturas de 4 forma-
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das por unides finitas ou numerdveis cuja parcela numero m
seja um produto de conjuntos A, ,eQ, tals que A F Qu
quando muito um ntimero finito de vezes.

Em aditamento, para que o produto P ou (2,&,P) fique
completo, € condigio necessaria, embora insuficiente, que
todos os seus factores sejam completos.»

Demonstracdo de LXI. Na parte principal do teorema,
tome-se em conta o enunciado de XVI, a defini¢io da classe @
considerada no texto a seguir a 52) e a parte do primeiro
trecho da 3.> fase da demonstra¢cio de XVI onde se alude a
relacio 49). Quanto ao aditamento ao nosso teorema, basta
atender a parte final de XVI e ao contra exemplo seguinte:

Tomem-se os mesmos espa¢os de probabilidade completos
(Q,,@1,P)) e (2, @, Ps) usados na segunda parte da demons-
tracio de LX e acrescentem-se infinitos espagos de probabi-
lidade (Q,Q.,P.) (=3, 4, 5,...), todos iguais a (Qz, Gs,P2).

Entdo,a lei P= [ P, atribui o valor 0 ao produto 4A=4,x<
1=#l+o .
><f1]><]1]><---><{1}><---, 0 qual contém o conjunto M=|1{x
> 1><j1f><--><j1j><---. A relagio Me 1 &, torna-se

1=ul4o

impossivel e, portanto, a lei P resulta incompleta.

Separamos as proposi¢ées LX e LXI, apesar de serem
bastante semelhantes, porque na altura pretendiamos discri-
minar os casos dum numero finito e duma infinidade nume-
ravel de factores. Todavia, deixaremos de fazer tal distin¢io
nas proposices restantes desta secgéo.

Posto isso, tiramos de XIV e de XVII a proposigdo
seguinte:

LXII) «Quando se trabalha com um nidmero finito ou
com uma infinidade numeravel de factores, a propriedade
associativa da multiplica¢do vale todas as vezes que o pro-
duto for uma probabilidade ou um espago de probabilidade.»

Semelhantemente, tiramos de XV e de XVIII a proposi-
¢cdo seguinte:
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LXII) «Dado um ntumero finito ou uma infinidade nume-
ravel de espagos de probabilidade (Q,,@.,P,) (=1, 2, 8,...),
considere-se qualquer colec¢do nfo-vazia que seja formada
por nameros 4,7>/4,7>17,... e que seja extraida da coleccio
dos valores » possiveis sem coincidir com ela. Entdo, a margi-
nag¢do do (unico) produto de todas as probabilidades P, [ou de
todos os espagos de probabilidade (Q,,&.,,P.)] com respeito ao
espaco Q,>Q,><Q;><... (e ao factor de escala 1) da o (unico)
produto daquelas probabilidades P, [ou daqueles espacos de
probabilidade (Q,,Q,,P.)] para as [ou os] quais #==24,1,7,... .»

Acrescentamos uma proposicio relativa a hipétese dos
casos igualmente provaveis, a saber:

LXIV) «Dado um ntmero finito ou uma infinidade
numerdvel de espacos de probabilidade, considere-se o seu
(dnico) produto e suponha-se finito o nimero de pontos do
espaco em que se encontra definido esse produto. Entfo, para
que o produto satisfaca a hipétese dos casos igualmente pro-
vaveis, é condi¢do necessdria e suficiente que a mesma hipé-
tese se verifique em cada um dos seus factores.»

Demonstracdo de LXIV. Representemos por (2.,@u,Px)
(n=1, 2, 8,...) os espagos de probabilidade dados, designemos
por (2,Q,P) o seu (unico) produto e indiquemos pelo sim-
bolo Vo numero (finito) de pontos de Q. Nesta conformidade,
se Q, tiver /V, pontos, o texto que precede N VI da a igual-
dade numérica N=IIV, [a propésito da qual pode repetir-se

a nota a demonstragﬁo de LIX].

Admitamos agora a hipétese dos casos igualmente pro-
vaveis em cada um dos espacos de probabilidade dados. Entio,
escolhido arbitrariamente um valor admissivel de », qual-
quer ponto w, €, permite escrever P, (jw,})=1/N,. Logo todo
0 ponto w=(w;, ws, w3,...)€e£ da a relagdo

116) V=T P, (jon|)=P (I jon|)=P (j]),

a qual prova que (2, @, P) satisfaz a hipétese dos casos igual-
mente provaveis.

Acabamos de deduzir a condicdo suficiente referida no
enunciado. Quanto a condi¢cdo necessaria, ela ¢ uma con-
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sequéncia imediata das proposi¢des LIX e LXIIL Fica assim
terminada a demonstracido de LXIV.

Observacdo. A relagdo 116) vale, sem duvida, se (2, &, P)
satisfizer a hip6tese dos casos igualmente provaveis. Nesta
conformidade, se a dita hipétese falhar num factor de (2, @, P)
de indice digamos m, podemos escolher pontos w, e, tais
que P,(jwn})<L1/N, para cada n, com o smal < para n=m,
donde a relagdo absurda 1/N=(1//V,,) A (1/N,,)>H P, (Jom).

Eis uma alternativa (bastante elementar) para a dedu(;ao da
condi¢io necessaria de LXIV.

Fechamos a sec¢do com a seguinte proposic¢do, por vezes
bastante util:

LXV) «Dados os espagos de probabilidade (Q., @, Px)
(n=1, 2, 3,...) formando uma colecgdo finita ou numerivel,
admita-se que cada um deles satisfaz 2 hipétese dos casos
igualmente provaveis e que o espa¢o Q=I1Q, tem um ntmero

finito de pontos. Entdo, se (2, @, P) for um espaco de proba-
bilidade satisfazendo a hipétese dos casos ignalmente prova-
veis, ndo pode deixar de ter lugar a igualdade (Q, @, P)=
=H(Qn, (.G/Zn, Pn)'»

Demonstracdo de LXV. Como Q= HQ e como LX e LXI
asseguram a existéncia e a unicidade de (H Q.. H A, HPn), s0
falta deduzir as igualdades = Han e P= HP

Em primeiro lugar, se os simbolos N'e N, conservarem
os significados referidos na demonstragio de LXIV, entdo
cada Q, terd um numero finito de pontos ®,, 4, (Pr=1,..., M)
e Q terd um numero finito de pontos w, (p=1,..., ). Por
outro lado, o texto anterior a 108) mostra que &=2?e que
@,=29 para cada ». Dai e da nota a demonstracdo de N XXVI
concluimos que &= |}wi},...,jon}|*=T}{oy, 1}y 0 j0u, m =11 .

#n 2

Posto isso, seja qual for #, escolhamos arbitrariamente um
acontecimento 4, e @, e designemos por f, o numero de casos
favoraveis a 4,. Entio, a defini¢cdo da multiplica¢do de medi-
das e a relagio P(NA4,)=~11,)/(IN,)=10P,(A4,) permitem

terminar a nossa demonstragdo.
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jacobiano das derivadas  276-278
Letra K
Kappos, D.A. 2
Kolmogorov, A.N. 2
Letra L
Lado dum paralelogramo ou
rectangulo 87
langamento casual ou impar-
cial 318
lei 306
— completiva 314
— de probabilidade 306
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lei marginal 334
lema de Heine-Borel-Lebesgue 169
limite completo 251
— de contetidos 103-105

—- de funcdes aferidoras adi-
tivag 103-105
— de quase-medidas
103-105, 310, 311
— essencial ou fraco 235, 236
— lateral direito duma fun-

¢80 medidora 202, 203
-— maximo 248
— minimo 248
Limites de somas de variiveis
casuais independentes 3
linha marginal 142, 337
Letra M
Mais duma sena 320
marginacido dum cilindro 39, 74, 335
— dum corpo-¢ 73
— dum espagc de medida
137, 334

~— dum espago mensurivel 74
— duma classe 72, 73
— duma densidade 282, 283
— duma func¢io de intervalo
196-199
— duma fungic medidora
199-202, 220
—~ duma medida
137, 196-202, 334
marginatividade do produto
83, 84, 159, 164, 341
Mass und Integral und Ihre Al-

gebraisierung 2
matriz das varidncias e covorian-

cias 296
maximal 157
maximo absoluto 286

— relativo 286

média aritmética de ntimeros 290
— de ntimeros com densida-

deg 292, 293
— de niimeros com pesos 290
mediana 230
medida 97, 288

medida-factor (significativa)
143, 155

medida-produto (normada)

143, 163

medida associdvel a numeros
dadog 259

Pag.
medida completa 117
— completiva 116, 117
- continua 252, 264, 270
— dado um subespa¢o men-
surével 135
— de Lebesgue 261
— de Lebesgue a N dimen-
soes 261
— de Lebesgue completa 261
~- de Lebeggue linear 261
— de Lebesgue plana 261

— de Lebesgue-Stieltjes 254
— de Lebesgue-Stieltjes a N

dimensdes 254
— de Lebesgue-Stieltjes com-
pleta 254
-— de Lebesgue-Stieltjes fi-
nita 260
-— de Lebesgue-Stieltjes li-
near 254
- de Lebesgue-Stieltjes pla-
na 254
— degenerada 252
- descontinua 252
—- determinada por uma fun-
cdo quase-medidora 232
-— discreta 252
- dum conjunto 98
— elementar 252, 289, 294, 302
- exterior 125
-— extrema 286, 287
— improépria 252
— incompleta 117
—— marginal 137, 196
— méaxima 286, 287
— maximal 166
-— minima 286, 287
— néo-degenerada 252
— néao-discreta 252
— néo-elementar 252
— nao-simpleg 252
— normada 175, 304
- parcial (discreta ou con-
tinua) 256
— propria 252
— simples 252
medidas numeéricamente iguais 160
menos duma sena 319
minimo absoluto 286
- relativo 286
moda, 287

moédule da primeira diferenca 242
moeda. perfeita 317
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momento (ordindrio)
: : 289, 293, 294, 298

— absoluto 289, 293, 294, 298
-— marginal 294, 295
- misto 294
— puro 294
mudanca de niimeros associados
224, 225
— de variaveig em integrais
277-279
multiformidade da multiplica-
cao 157
multiplicagdo cartesiana 29
— de classes arbitrarias 76
— de conjuntos 29
—- de corpos-o 76
-— de espagos 29

-— de espacos de medida
(normados) 143, 160, 338-342
— de espagos de probabili-
dade 143, 160, 338-342
— de espacos mensuraveis 76
— de densidades 284, 285
— de medidas ou probabili-
dades
143, 160, 175-177, 284, 285, 338-342

— maximal 157
Letra N

-n-ésima coordenada 28
n-ésima parcela 13
n-ésimo conjunto secante 16
n-ésimo factor 29
na hipétese (de se verifi-

car) 27, 69, 135, 281

Nocdeg varias relativas a es-
pacos de medida e de probabi-

lidade 4
nomenclatura relativa a quan-
tis 230
— reservada para probabilida-
des 365
nonil 230
nimero de grandezas nio ex-
cedentes 276
nameros finitos dados 5
Letra O
Objectos . 323
observacdo dum caso 308

pag.
octil 230
Cliveira, J. T.- 157
operagao completiva 116, 117
-— de corte 42
-— inversa da marginacic
39, 138, 335

ordem dum momento
: 289, 293, 294, 298

—— dum gquantil 226, 228-230
Letra P

Paralelipipedo : 87
paralelogramo 87
parcela - 13
parte continua 256

— discreta ] 256
partes duma medida 256
particio dum espago mensura-

vel 55
pela sua cor 327
pela sua numeragio 327

pelo menos um acontecimento 306

— menos um prémio 320, 321
— mMenos uma sena 319
pentil (quintil) 230
permil 230
pertencer 10, 13, 16

permutabilidade de opera-

cOes 28, 33, 40, 44, 75
permutacio 329
— com. repeticdo 329
-— completa 329
— por clasges 331
— simples 325
plano coordenado 1211
-— de. Borel : 87
— de Lebesgue 261
— de Lebesgue-Stieltjes 254
-— paralelo a um plano co-
ordenado 211, 217
— real 34
ponto 9
— de descontinuidade ligado
211, 216-218
— extremante 286, 287
— maXximizante 286, 287
-— minimizante 286, 287
— situado num espago de
conjuntos . 45
poténcia dum corpo-¢ 59, 60
primeira coordenada 28

-— parcela 13
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primeiras propriedades da res-
-~ trigdo duma medida 135, 138
-— propriedades das funcdes

aferidoras aditivas 94
- propriedades das medidas
continuag 252-254
-— propriedades das quase-
-medidag 97, 98
— propriedades dos contel-
dos 96
—- dos -corpos 47, 48
— dog Corpos-o 49, 50
— duma funcido medidora
185-187
— duma medida marginal
138-140
-~ duma probabilidade 309, 310
primeiro conjunto secante 16
— factor 29
probabilidade 2, 304
— completa 314, 316
— completiva 314
— da realizacio 318
—- definida sobre uma decom-
posicio irredutivel 315
— dum acontecimento (cilin-
drico) 307, 335
— dum conjunto mensura-
vel 304
— dum prémio 320, 321
— duma unifo 311, 312
— incompleta 314
— marginal 334
problema do encontro 328
produto absolutamente conver-
gente 137
— cartesiano 29
— completo 156
-— de classes 76
— de conjuntos 29
— de corpos-¢ 76
— de densidades 285
-— de espacgos 29
— de espacog de medida
(normados) 143, 160,338-342
— de espagos de probabili-
dade 338-342

— de espagos mensuriveis 76, 77
— de funcgdey medidoras 194, 195
— de medidas (normadas)
143, 155, 160, 338-342
- de probabilidades 338-342
— dum ntmero finito de me-
didas de Lebesgue 262

pag.

produto incompleto . 156
— maximal 157, 178
produtos digjuntos 78
projecgdo do conjunto vazio 35
— dum conjunto 35
— duma clazse 72

propagacio de (des)continui-
dades duma funcido medidora

204, 205
propriedade aditiva finita 93
— aditiva generalizada 93
— aditiva simples 93
-— aditiva-¢ 93
- ggsociativa 14, 15, 18, 30
-— comutativa 14, 15, 17, 18, 30
— distributiva 20, 21,
27, 28, 31, 32, 37, 40, 41, 44, 45
— involutiva 13
— modular 12, 14, 15, 17
— multiplicativa dos momen-
tos 302, 303
— reflexiva 11
—+ simétrica 11
— transitiva 11

prova conducente a um caso 308

Letra Q

Quadra 319

quadro sinéptico da marginacio
141, 337
quando muito uma sena 320
quantil da ordem O 229
— da ordem 14 226
— da ordem 1 229
— impréprio 229
— principal 228
— proéprio 229

— relativo a um factor dum
intervalo 226

— tirado dum intervalo fe-
chado 228
quartil 230
quase-continuidade no interva-
lo vazic ) 165
quase-medida (normada) 97, 304
quase-probabilidade 304
quina 319
quintil (pentil) - 230
Letra R

r-ésimo momento . 289, 293
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razdo entre nimeros de casos
316, 317
recta de Borel 65, 86, 157, 178
— de Lebesgue 261
-— de Lebesgue-Stieltjes 254
— real 33
rectangulo 87
reducdo dum cilindro a um
produto . 41
regra dos integrais de densida-
des 292, 297
— dos quantig 228
relacOes algébricas entre fungdes
de intervalo 178-183
-— algébricas entre integrais
de Riemann 275
— de inclusio 10
— de Morgan 19, 90
renumeracio de conjuntos 148
Rényi, A, 2
restricio a um conjunto nio-
-vazio 121
— dum conjunto 27
— dum corpo-¢ 69

- dum espago de medida 135
— dum espago mensurdvel 69
— duma classe 69
— duma densidade 281
— duma funcio de conjunto 121
— duma medida 135, 136, 165, 193
Richter, H. 184

Letra S

Salto duma. funcdo medidora 204

segunda coordenada 28
— parcela 13
segundo conjunto secante 16
— factor 29
— uma direccéo 35, 72
gena 319
septil 230
sextil 230
significado das partes duma
medida 256-259
simbolo de Newton 326
simbolog de inclusio 10

sob a condi¢do (de se verificar)
27, 69, 135, 281

sobreclasse 46
sobreconjunto (imprépric ou
préprio) 10

‘soma dag classes associadas a

pag.
uma decomposicdo 56
— de conjuntog 14, 15, 62

— extraida duma decompo-

sicdo 78
-~ vazia, : 15
subclasse (principal) 46, 165
subconjunto (impréprio ou pro-
prio) 10, 56, 67
- mensuravel 56
subespaco 26
subsucessio convergente
237, 246, 247
Strukturtheorie der Wahrschein-
lichkeitsfelder und-raeume 2
subtraccdo de conjuntos 12
-— simétrica 16
Letra T

Técnica da marcacéo de lugares

numeradog 332
— dag colecgbes ordenadas
formadas por letras 329
tendéncia obrigatéria dum in-
tegral 278
teorema das probabilidades to-
tais 312, 313

— fundamental sobre a ex-
tensfo de contetdos-¢
(normados) 123, 321

— fundamental sobre a mul-
tiplicacdo de medidas (nor-

madas) 143, 144 160, 338, 339

11

— NI

— NII 13
— NIV 15
— NIIX 16
— NIV 17
— NV 24
— NVI 29
— NVII 32
— NVIIIX 38
— NIX 43
— NX 46
— NXI 51
— NXII 52
— I 53
— NXIII 56
— NXIV 57
— NXV 58
— NXVI, NXVII 59
— NXVII', NXVIIL 60
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— NXIX
- NXIX' NXIX''
— NXX
— NXXI
— NXXIT
— NXXIIX
— NXXIV
— NXXV
— NXXVI
— NXXVII

— NXXVII', NXXVII"”

— NXXVIII
— NXXIX
— NXXX, NXXX'
— NXXX"
— NXXX'*
— NXXXI
— NXXXII
— NXXXITI
— NXXXIV
— NXXXV
— NXXXV’
NXXXVI
NXXXVIL
NXXXVII’
II

IIX

v

A\

VI

VI

VII

VIIL
VIIT

X

X

X1

XI1

XIII

X1v

Xv

XVI
AVII, XVIIX
XIX

XX

XXI
XXIiI
XXIIX
XXIV
XXv
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XXVI
XXV
XXVIIIL

80, 81

167
174
175
185
187
189
194
196
199
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teorema XXVIIY 201
— XXIX 203
— XXIX', XXIX'! 204
— XXX 205
— XXX 208
— XXXI 209
— XXXII 212
— XXXIII 220
— XXXIV 221
— XXXV 233
— XXXVI 236
— XXXVII, XXXVIII 237
— XXXVIIT 246
— XXXVIIT'' 247
— XXXIX 248
— XL, XL/ 252
— XLI, XLI’, XLI" 255
— XLIT 256
— XLII1 262
— XLIV 268
— X1IV’ 273
— XLV 285
- XLVI 300
- XLVIL 309
-~ XLVIII-L 310
— LI, LIT 311
— LIII 312
— LIIT 313
— LIV 314
- LV 317
~— LVI 321
— LVII 322
- LVIII 335
— LIX 336
— LX 338
— LXI 339
-— LXIT 340
— LXIII, LXIV 341
— LXV 342
teoria da medida 1
-— da probabilidade 1
— elementar do integral 266

terceira propriedade duma fun-

¢do (quase-) medidora 193, 242
tercil t23
terna 319
Théorie des Fonctions 267, 277

tiragem casual (ou fortuita) 325
— com reposicio 323
- mista 323
— Sem reposicio 323

transfermada duma densidade 278
tridngulo aritmético cu de
Pascal 326
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Letra U pag.
Um de variog acontecimentos ' 306
uma sena 320
unido de conjuntos 13, 15, 62
— vazia 14
unicidade da decomposicdo ir-
redutivel 58
—- do limite essencial ou fra-
co 236
uniformidade da prcjeccio 36
— da marginacioc ] 39
univaléncia da marginagéo 39
Letra V
Valiron, G. 267, 277

valor admissivel para um coe-
ficiente de correiagio 300
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valor confundido com a 4rea 261

— confundido com o compri-

mento

— confundido com o volume
— considerado igual ao hi-

pervolume
— considerado igual ao vo-
lume
- dum conjunto
— extremo
-~ maximo
— mediano
— médio (proporcional)
290, 292, 293,
— minimo
varidncia (marginal) 290,
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261
261

261
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286
286
230

295
286
296
217
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