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NOTA EXPLICATIVA

Este volume corresponde & parte B inteira do tratado
intitulado «Elementos da Teoria da Medida com relevo para a
Teoria da Probabildade». A proposito, pode repetir-se tudo
quanto se disse na nota explicativa posta no principio dos fas-
ciculos primeiro e segundo da parte A do mesmo tratado, com
as duas alteracdes seguintes: O volume presente é o segundo
duma série apresentada pelos servigos universitirios de Lu-
anda e, desta vez, a bibliografia encontra-se colocada no fim
do préprio volume.

H4, porém, uma incidéncia que pede um esclarecimento.
Muito naturalmente, o leitor perguntara porque se publicam
esta parte B e a parte subsequente C do tratado antes de se
ter completado a parte A, de que se saltaram os fasciculos fi-
nais. Ora, por um lado, ndo nos pareceu prudente reter um tra-
balho j4 impresso e nio meramente rotineiro para além dum
minimo de tempo condicionado pelas circunsténcias e, por outro
lado, as referéncias necessirias para a leitura consciente das
partes B e C também figuram, correcta e equivalentemente, nu-
ma versido encurtada da parte A gue se publicou, por volta
de 1958, sob a designacio de «Introdugdo ao estudo dos limites
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de somas de variaveis casuais independentes», paginas 165 a
244 do volume I do Curso de Mateméticas Superiores Professor
Mira Fernandes, Editorial Império Limitada, Lisboa, existin-
do uma. separata paginada de 1 a 84.

Antes de prosseguir, cumpre-nos avisar o leitor de que
na linha 5 da pagina 3 deste volume a passagem «do mesmo
tipo» deve ser corrigida para «que resultam dela por transla-
cao».

Posto isso, faltariamos & nossa responsabilidade de autor
dum trabalho cientifico se olvidassemos a situagio daqueles lei-
tores que necessitam apoiar-se nas referéncias aos fasciculos
da parte A ainda nfo publicados e que nio dispSem das refe-
réncias equivalentes da «Introdugio ao estudo dos limites de
somas de variaveis casuais independentes», um tanto dificil de
obter. Para beneficio desses leitores, estabelece-se a seguir uma
tabela de correspondéncias, em matéria de refer&ncias, pratica-
mente completa, na qual i.d., v.c., fm.,, f.d. e f.c. é abreviatura
respectivamente de infinitamente divisivel, variavel casual, fun-
cio mensuravel (*), funcio de distribuicdo e funcio caracte-
ristica e onde y e A representam livros muito divulgados, res-
pectivamente «Limit distributions for sums of independent
random variables » de B. V. Gnedenko e A. N. Kolmogorov e
«Probability theory» de M. Loéve, o primeiro publicado por Ad-
dison Wesley Publishing Company, Inc., Cambridge 42, Mass.,
1954, e o outro publicado por D. Van Nostrand Company, Inc.,
New York, 1955. Eventualmente, os leitores que se encontram
nas condicbes aludidas terio vantagem em fazer preceder a
utilizacdo da dita tabela dum estudo de partes de 11.2, de 11.3
e de 12.2 do livro A, a fim de ficarem devidamente assimilados
os conceitos, muito invocados, de convergéncia fraca (também
chamada essencial) e de convergéncia completa e a fim de evi-
tar dificuldades no recurso aos tdo necessarios teoremas deno-
minados de Helly-Bray. A proposito das convergéncias fraca e
completa, pode consultar-se também, até certo ponto, o nimero

(*) Talvez convenha recordar que uma Vv.C. é uma f.m. definida num es-
pago de probabilidade.
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40, paginas 231-251, dos fasciculos da parte A deste trabalho
que j& se encontram publicados.

A, $3 (sem mais indicacOes), alude & truncada [ou res-
tricio] duma f.m. (que pode ser v.c.) por [ou a] um conjunto
mensuravel do espaco respectivo, quer dizer alude ao produto
da f.m. considerada pela indicatriz do conjunto referido, conjun-
to este que pode ser, por exemplo, o transformado inverso (isto
é, pela funcdo inversa) do intervalo fechado formado pelos va-
lores da funcdo compreendidos entre dois miimeros reais simé-
tricos.

A, entre I e II de §3, corresponde ao principio de 5.2 de
A, onde se definem as partes positiva e negativa duma funcéo
numérica (que pode ser f.m.), e ao teorema A ou da mensura-
bilidade de 5.3 de A, onde se prova a mensurabilidade de cada
uma dessas partes na hipétese de se tratar duma f.m..

A, III de §3, corresponde & primeira igualdade da ter-
ceira pagina do texto de 5.3 de A, quer dizer corresponde ao
facto de toda a f.m. ou v.c. ndo-negativa poder igualar-se ao li-
mite duma sucessdo néo -decrescente formada por f.m. ou v.c.
simples e ndo-negativas.

A, VI e VII e IX de §3, corresponde ao teorema A ou
da mensurabilidade de 5.3 de A, quer dizer corresponde ao facto
de a classe das f.m. ou v.c. (finitas) ser fechada com respeito
as operacdes usuais da Anélise.

A, 9) de §4, corresponde & terceira igualdade no princi-
pio de §11 de vy ou ao grupo I das propriedades A ou elemen-
tares de 7.1 de A, como quem diz corresponde & propriedade li-
near ou aditiva das esperancas matematicas.

A, 12') de §4, corresponde & parte final de 1.° de IV de
9.1 de A, como quem diz refere o facto de a esperanca matemé-
tica duma v.c. reduzida a uma constante ter o valor dessa cons-
tante.

A, 13) de §4, corresponde & segunda relacdo do grupo II
das propriedades A ou elementares de 7.1 de A, quer dizer
corresponde & propagacdo duma desigualdade entre f.m. ou
v.c. aos integrais respectivos, supostos existentes.

A, I de §4, corresponde a segunda relacdo do grupo III
das propriedades A ou elementares de 7.1 de A, quer dizer cor-
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responde ao facto de ser integravel toda a f.m. cujo médulo nio
possa exceder uma funcéo integravel fixa.

A, IT de §4, corresponde ao teorema A ou da conver-
géncia mondtona de 7.2 de A, quer dizer corresponde ao facto
de a convergéncia duma sucessdo ndo-decrescente formada por
f.m. ou v.c. nfo-negativas implicar a tendéncia dos integrais
dessas f.m. ou v.c. para o integral da funcio-limite.

A, nota a demonstracdo de III de §4, recorda, muito
simplesmente, og significados dos simbolog lim min e lim max,
quer dizer limite minimo e limite méaximo.

A, IIT de §4, corresponde ao teorema C ou da convergén-
cia majorada (ou de Fatou e Lebesgue) de 7.2 de A, quer dizer
corresponde ao facto de a convergéncia duma sucessdo de f.m.
ou v.c. dotadas de moédulos majorados por uma funcio integra-
vel fixa implicar a convergéncia dos integrais dessas f.m. ou
v.c. para o integral da funcao-limite.

A, III, de §4, corresponde a 1.° a seguir ao teorema C
ou da convergéncia majorada de 7.2 de A, quer dizer correspon-
de ao facto de a continuidade duma f.m. ou v.c. em relacdo a
um parametro real implicar a continuidade homédloga do in-
tegral dessa f.m. ou v.c., isto na hipdtese de ela ser majorada
por uma funcao integravel fixa.

A, III, de §4, corresponde a 3.° a seguir ao teorema C
ou da convergéncia majorada de 7.2 de A, isto é, se uma f.m.
ou v.c. admitir derivada em ordem a um pardmetro real que
percorra um intervalo fechado fixo onde a mesma derivada
tenha um moédulo majorado por uma funcdo integravel fixa,
entdo haverd igualdade, no intervalo considerado, entre o inte-
gral da derivada e a derivada do integral da f.m. ou v.c..

A, III, de $§4, corresponde & primeira parte de 4.° a se-
guir ao tecrema © ou da convergéncia majorada de 7.2 de A,
quer dizer, se uma f.m. ou v.c. for continua em relacdo a um
parametro real que percorra um intervalo fechado fixo onde a
mesma f.m. ou v.c. tenha um médulo majorado por uma fun-
céo integravel fixa, entdo havera permutabilidade entre as in-
tegracles no sentido de Riemann e no sentido da teoria das f.m.
em qualquer intervalo fechado contido no intervalo fixo consi-
derado.
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A, III, de §4, corresponde & segunda parte de 4.° a seguir
ao teorema C ou da convergéncia majorada de 7.2 de ), quer di-
zer, caso as condigdes do trecho precedente se encontrem satis-
feitas para qualquer intervalo fechado percorrido pelo parime-
tro, entdo a hipétese de ser majorado por uma funcio integré-
vel o integral de Riemann (impréprio ou generalizado) que se
estende ao intervalo do parimetro compreendido entre — oo e
+ o e que tem por funclo integranda o médulo da f.m. ou v.c.
considerada € uma hipétese que implica a permutabilidade en-
tre as integragdes no sentido das f.m. e no sentido de Riemann,
a ultima com limites de integracio — w e + co.

A, IV-VI de §4, corresponde ao texto intercalado entre
as féormulas 1) e 2) de §11 de y ou ao ultimo trecho de 9.1 e ao
teorema a de 9.3 de A, donde se tira, directamente ou por con-
sideragOes faceis, que uma f.m. ou v.c. complexa é integravel
se e 80 se o seu médulo for integrivel, que o médulo do integral
duma f.m. ou v.c. complexa nunca excede o correspondente in-
tegral do médulo e que a existéncia do momento da ordem r>0
duma v.c. complexa implica a existéncia dos momentos de qual-
quer ordem positiva e menor.

A, fim de §4, corresponde & primeira igualdade de §11
de y ou de 16.1 de \, quer dizer corresponde & definicio de vari-
4ncia (ou dispersdo) duma v.c., subentende-se real, de acordo
com a qual o quadrado do primeiro momento nunca pode ex-
ceder o segundo momento.

A, 5) de §5, coresponde & segunda igualdade do texto de
§10 de y ou seja a relagdo entre as f.d. duma v.c. e duma trans-
formada linear dela.

A, IV de §5, corresponde ao lema a ou de Helly-Bray de
11.3 de 1, cujo estudo ja foi recomendado nesta nota explicativa.
A saber, dada uma funcdo continua num intervalo fechado e
dada uma sucessdo fracamente convergente formada por fun-
¢Oes de distribuicio que tendem para o valor da funcdo-limite
em cada um dos pontos extremos do intervalo, entfio os inte-
grais da funcio continua, tomados no intervalo dado e com res-
peito as funcdes de distribuicdo da sucessio dada, tém por li-
mite o integral da funcdo continua, tomado no intervalo dado e
com respeito & funcao-limite.
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A, 1) de §6, corresponde a formula 1) de §11 de y ou
seja & definicdo de f.c..

A, IIT de §6, corresponde ao teorema 1 de §11 de y ou
seja ao facto de o médulo duma f.c. nio poder exceder a unidade.

A, IV de §6, corresponde & primeira igualdade da de-
monstracio do corolario 2 do teorema 3 de §11 de v, quer dizer
corresponde ao facto de o conjugado duma f.c. se confundir
com a f.c. de argumento simétrico.

A, demonstracdo de V de §6, refere-se a desigualdade
2|tx| > |eitx — 1| <2, dedutivel por processos elementares.

A, 2) ou 3) de §7, corresponde a férmula 1) de §7 de
y ou & definicio dada a seguir a A de 15.1 de ), quer dizer corres-
ponde & definicdo de v.c. independentes.

A, II de §7, corresponde ao teorema A’ ou das funcgdes de
Borel de 15.1 de A, que assegura a independéncia de f.m. de v.c.
independentes.

A, TIT de- §7, corresponde & segunda igualdade do texto
de §11 de y ou ao principio de 16.2 de A, quer dizer corresponde ao
facto de a independéncia dum niamero finito de v.c. implicar a
igualdade entre a varidncia da soma e a soma das varidncias
das v.c. consideradas.

A, IV de §7, corresponde ao colorario 1 do teorema 3 de
$11 de vy, quer dizer corresponde ao facto de a independéncia
dum ntmero finito de v.c. implicar a igualdade entre o produto
das suas f.c. e a f.c. da sua soma.

A, nota final de §7, indica que por logaritmo duma f.c.
se deve entender o ramo principal do seu logaritmo tomado no
campo complexo ou seja aquele ramo que se anula na origem e
que é continuo num intervalo real suficientemente pequeno e
construido & volta da origem.

A, 1) de §8, corresponde ao teorema 2 de §11 de y ou
seja a relacdo entre as f.c. duma v.c. e duma transformada li-
near dela.

A, III de §8, corresponde ao teorema A de 12.4 de A ou
a0 exemplo 3 de §12 de y, quer dizer corresponde ao facto de
uma lei de probabilidade resultar simétrica se e s0 se a corres-
pondente v.c. tiver uma f.c. real.



TEORIA DA MEDIDA E DA PROBABILIDADE

A, IV de §8, pretende apenas chamar a atengéo para o
simbolo Re, que significa parte real de.

A, VI e VII de §8, corresponde aos teoremas 1 e 2 de
§13 de y ou seja & equivaléncia entre a convergéncia fraca du-
ma, sucessdo de f.c. para uma f.c. e a convergéncia uniforme da
mesma, sucessio em qualquer intervalo real fechado.

A, VI de §8, corresponde ao critério B ou da convergeén-
cia completa, sob a forma do teorema da continuidade de Lévy,
de 12.2 de A, quer dizer corresponde ao facto de a convergén-
cia duma sucessdo de f.c. para uma funcdo que é continua na
origem obrigar esta Gltima a ser um limite fraco e a ser uma fe..

A, X de §8, corresponde as propriedades C ou de dife-
renciabilidade de 12.4 de X, quer dizer, se a f.c. duma v.c. admitir
uma derivada finita de ordem per para o valor 0 do seu argu-
mento, entdo o v.c. admite um momento finito de ordem igual &
da derivada.

A, 3) e 3") de §8, corresponde & igualdade imediatamente
anterior a 17) e as igualdades da formula 21) de §15 de vy, quer
dizer corresponde & defini¢do dos cumulantes ou semiinvariantes
e 4s suas relacdes com os momentos correntes.

A, exemplo 2 de §8 e texto subsequente, da as informa-
cOes mais importantes relativag 3 lei ou distribuicio de Bernoul-
i (eventualmente generalizada), bem conhecida dos cursos ele-
mentares, e refere o facto de uma v.c. se denominar normada se
e 56 se ela tiver esperanca matemaética nula e, simultaneamente,
varidncia igual a 1.

A, exemplo 4 de §8, corresponde ao exemplo 1 de §11 de
y e d& as informacdes mais importantes relativas 4 lei ou dis-
tribuicio normal, também denominada de Gauss. '

A, exemplo 6 de §8, corresponde ao exemplo 3 de §17 de
y e da as informacOes mais importantes relativas & lei ou dis-
tribuicio de Cauchy permitindo concluir, sem dificuldade, que
ai nfo h& esperanca matematica (finita) nem varidncia (fini-
ta).

A, principio de §9, refere que, dada uma v.c. ou lei id. e
escolhido arbitrariamente um niimero natural n, se chama v.c.
ou lei componente a qualquer uma das n v.c. ou leis indepen-
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dentes e idénticamente distribuidas cuja soma reproduz a v.c.
ou lei dada.

A, 2) de §9, corresponde & definicio dada no principio de
§17 de vy, quer dizer corresponde ao facto de, escolhido arbitra-
riamente um nimero natural n, uma v.c. i.d. resultar igual 3
soma de n v.c. independentes e idénticamente distribuidas.

A, I de §9, corresponde ao teorema 1 de $17 de vy ou seja
ao facto de a f.c. duma lei ou distribuicfo i.d. néo poder assumir
o valor 0.

A, V de §9, corresponde ao teorema 3 de $17 de y ou se-
Jja ao facto de resultar i.d. todo o limite fraco duma sucessio de
leis ou f.d. ou f.c. i.d..

A, texto a seguir a 9) de §10, refere que se assegura a con-
tinuidade do integral, isto em virtude de A, IIT, de §4.

A, fim de §10, corresponde & férmula 6) de §18 de v, da
qual se depreende que as funces M,N e G das representacGes de
Lévy e de Lévy e Khintchine para o logaritmo da f.c. duma lei
id. tém os mesmos pontos de continuidade (diferentes da ori-
gem),

A, 1) de §11, corresponde & férmula 1) de $18 de vy ou
seja & representacio de Lévy e Khintchine para o logaritmo da
f.c. duma lei ou distribuicdo i.d..

A, 3) de §11, corresponde 3 igualdade que precede a fér-
mula 2) de §18 de y e que representa um passo importante na
deducdo da representacio de Lévy e Khintchine para umag lei
id..

A, 11) de §11, corresponde & férmula 7) de §18 de y ou
seja a representacgio de Lévy para o logaritmo da f.c. duma. lei
ou distribuicdo i.d..

A, 12) de §11, corresponde & férmula 6) de $18 de ¥s
formula esta que relaciona as grandezas tipicas da representa-
¢do de Lévy para uma lei i.d. e da representacio de Lévy e
Khintchine para a mesma lei.

A, 13) de §11, corresponde 3 férmula 9) de §18 de y ou
seja a férmula que permite passar da representacio de Lévy
para uma lei i.d, & sua representacio de Lévy modificada.

A, 14) de §11, corresponde & férmula 8) de §18 de vy ou
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seja 3 representacdo de Lévy modificada para o logaritmo da
f.c. duma lei ou distribuicdo i.d..

A, 15) a 19) de §11, corresponde as férmulas 10), 11)
e anexas de §18 de vy, quer dizer corresponde aos dados essen-
ciais relativos & representacio de Kolmogorov para o logaritmo
da f.c. duma lei ou distribuicdo i.d. com varidncia.

A, I de §11, corresponde ao teorema 1 de §i8 de y ou
seja ao teorema relativo & representacdo de Lévy e Khintchine
para uma lei i.d..

A, II de §11, tem a mesma correspondéncia que A, 11)
de $11, acrescendo que se afirma a unicidade das grandezas ti-
picas da representacéo de Lévy para uma lei id,.

A, IIT e IV de §11, refere o facto, facil de provar, de uma
lei i.d. admitir representacdo de Kolmogorov se e s6 se ela ti-
ver variincia ou, equivalentemente, se e s6 se u’ for integra-
vel com respeito & funcio G(u) da respectiva representacéo de
Lévy e Khintchine.

A, exemplo 2.° de §11, corresponde ao exemplo 1 de §17
de v e estabelece a relacio entre as contantes definidoras du-
ma v.c.i.d. normal ou de Gauss e as dasg suas componentes,
isto para qualquer escolha do nimero natural n.
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LIMITES DE SOMAS
DE

VARIAVEIS CASUAIS INDEPENDENTES
PARTE B

§1) Introdugdo

Esta parte B do estudo dos limites de somas de varidveis
casuais independentes pressupde o conhecimento da parte A,
designada abreviadamente por A nas referéncias e repro-
duzida, salvo em questdes secundarias sem efeito sobre as
referéncias, num trabalho ligeiramente resumido intitulado
«Introducdo ao estudo dos limites de somas de varidveis casuais
independentes».

Depois de fazermos algumas consideragdes suplementa-
res a teoria das leis i. d. (isto &, infinitamente divisiveis)
e de introduzirmos os conceitos de infinitesimalidade e de
constancia assintética de sucessdes (de varidveis) casuais
independentes, terminamos pelo estudo da lei dos grandes
nameros.

No primeiro paragrafo do capitulo I tratamos da repre-
sentacio das leis infinitamente divisiveis simétricas com
respeito a alguma constante real e procuramos abordar a
representacdo de leis infinitamente divisiveis num caso a
que podemos chamar intermédio entre o caso geral e o caso
sujeito a formula de KoLmocorov.

No paragrafo seguinte damos os teoremas usuais relativos
a convergéncia de sucessdes de leis infinitamente divisiveis.
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No primeiro pardgrafo do capitulo II caracterizamos o
conjunto das constantes assintoticas e estabelecemos pro-
priedades uteis ao estudo da lei dos grandes ntmeros. [mi-
tamos o processo nos dois paragrafos seguintes dedicados ao
estudo da constancia assintética forte e das sucessdes esta-
veis. A nocdo de quantil revela-se muito fecunda em todas
estas questdes.

O ultimo capitulo desta parte B constitui uma pequena
monografia relativa & lei dos grandes numeros. No trato desta
lei recorremos a um método que principia por servir-se de
construgdes elaboradas por outros autores para depois apro-
veita-las por um caminho que oferece a vantagem néo s6 de
alcancar todos os resultados conhecidos e até de ir um pouco
mais longe, mas também de ser completamente independente
da nociio de lei infinitamente divisivel e da teoria geral dos
limites de somas de variaveis casuais independentes.

A doutrina moderna que vamos apresentar aqui e tam-
bém na parte seguinte teve muitos obreiros, mas merecem
destacar-se quatro grandes nomes, os de Guepenko, Khin-
tcuing, KoLmocorov e Livy, Se a beleza e o alcance das suas
conclusdes nos enchem de admiragdo profunda, ndo devemos
olvidar que o seu esforgo teria sido impossivel se os proba-
bilistas classicos nfo tivessem desbravado o caminho em
terreno ignoto.

CAPITULO I
ADITAMENTO AO ESTUDO DAS LEIS INFINITAMENTE DIVISIVEIS

§ 2) Complementos 3 representagdo candnica duma lei infini-
tamente divisive!

Sejam « e s duas constantes reais e X uma varidvel casual
i.d.. Logo se v& [A, 1) de § 8 e 1) de § 11] que a X +f ¢
também uma varidvel casual i. d. cuja fungio caracteristica
(abreviadamente f. c.), escrita sob a forma de Lévy e KnintcHINg,
se obtém a partir da f. c. de X substituindo # por « e depois
ao por ae-+ B, se a5=0; se «a =0, degenera em impropria.
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Podemos enunciar a parte mais importante das nossas
conclusdes através da proposi¢do: '

I) «Toda a transformada linear duma lei i.d. € por sua
vez uma lei i. d.. Em particular, dada uma lei i. d., todas as
leis do mesmo tipo sdo i. d. e sfo representadas pela mesma
funcio G(u) na forma de Livy e KHiNTCcHINE.»

Suponhamos que a fun¢do G(u) de A, 1) de § 11, goza
da propriedade seguinte: Para todo o #>>0 e tal que >« séo
pontos de continuidade da fun¢do, tem-se

G (1) — G (+0) =G (—0)— G (—u).

Entfio podemos dizer abreviadamente que a fun¢io G (u)
tem igual crescimento sobre os semieixos reais negativo ¢ positivo.
Na hipotese apresentada sai
. 1 2
log f(t) =tat+ fR [cos (fu)—1] tu dG (u)

uz

e portanto e~ f(¢) uma fungfo real. Logo, sendo X a varia-
vel casual correspondente a f(¢), X—a é simétrica [A, 1) e
III de § 8] e portanto X é simétrica com respeito a constante
real a.

Suponha-se agora inversamente que a varidvel casual
i. d. X (ou a sua lei) é simétrica com respeito a alguma cons-
tante real a*. Entdo X*=X—a* é i. d. (I) e é simétrica (com
respeito a origem); se representarmos por f*(f) a f.c. de X*
sai log f*(f) real [A, ultima nota de § 7 e Ill de § 8] e pode
escrever-se [A, 1) de § 8 e 1) de § 11]

. & . ¢ 122
1) log f*(z‘)zz(a—a*)zqut/R<e““—~1— 1’+ZZ> j;j‘ dG (u).

Entdo sai real (1/#)- log f*(¢) e portanto, para todo o »
natural, X* é a soma de » variaveis casuais i. d., idéntica-
mente distribuidas e simétricas cuja func¢do de distribuigdo
comum vamos designar por F(x) [ver A, 2) de §9), com um
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espacgo subjacente adequadol. Escrevendo agora G,f no lugar
de G, em A, 3) de § 11, e supondo que Fu e +¢ sdo pontos de
continuidade de todas as fung¢des envolvidas, com 0<e<{#, sai

o x‘Z

G.¥ (1)— ,;*‘(e)znf s dF () =

ne  x2
=, g @ = G (9 =GR,

Viu-se em A, a propoésito da demonstragdo de 1de § 11,
que existe uma subsucessdo m da sucessdo naturalao longo da
qual G} (u)——t G* (4), onde G*(u) € a fun¢lo que corresponde
a X* na representacio de Livy e KHINTCHINE; doutro lado
G* (u)= G (u) (I). Entdo, com m 1 eo,

Gu)—G(e) = G(—e)—G(—u)
e, com ¢4 0,

G ) — G(+0) = G(—0)—G(—u).

A ultima igualdade estende-se, por passagem ao limite,
também aos pontos que sdo de continuidade de G sem o
serem de todas as funcdes anteriores de modo que G (#) tem
igual crescimento sobre os semieixos reais negativo e posi-
tivo. Logo o integral de 1) tem a parte imagindria nula, o
que obriga a a=a*.

As consideragdes precedentes demonstram a proposicdo
seguinte:

II) «A condi¢fo necessaria e suficiente para que uma
lei infinitamente divisivel seja simétrica com respeito a
alguma constante real ¢ que a fungéo G (%) da sua represen-
tacdo de Livy e KuinrtcHINg tenha igual crescimento sobre os
semieixos reais negativo e positivo. A constante de simetria
coincide com a constante @ da representacdo.»

Se as funcoes M(u) e N(u) da representagdo de Lévy
duma lei i.d. satisfizerem a igualdade M (—u)=2N (u), para
todo o #>0 tal que +u pontos de continuidade respectiva- .
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mente de NV e de M, diremos abreviadamente que M e N
sdo imagens uma da outra.

As relagdes A, 11) e 12) de §11, provam a proposi¢do
seguinte:

II') «A condigio necessaria ¢ suficiente para que uma lei
infinitamente divisivel seja simétrica com respeito a alguma
constante real é que as fung¢des M (u) e N(u) da sua repre-
sentacio de Livy sejam imagens uma da outra. A constante
de simetria coincide com a constante a da representagdo.»

Observemos de passagem que tanto II como II' mostram
que a(U)z=a na representacio de Lévy modificada duma
lei i.d. e simétrica com respeito a alguma constante real
[A, 18) de §11].

As relagdes A, 15) a 18) de § 11, mostram o seguinte:

II") «A condi¢do necessaria e suficiente para que uma
lei infinitamente divisivel com variancia seja simétrica com
respeito a alguma constante real é que a fun¢do C'(x) da sua
representacio de KoimoGorov tenha igual crescimento sobre
os semieixos reais negativo e positivo. A constante de sime-
tria coincide com a constante « da representagéo.»

Tendo em vista os teoremas II a IIY, a representagdo
canénica duma lei i.d. e a definicdo de lei componente [A,
principio de § 9] podemos enunciar:

III) «Se uma lei infinitamente divisivel € simétrica com
respeito a alguma constante real a sua componente (i.d.) de

%

indice # ¢é simétrica com respeito a parte 1/# da constante.»

As leis de Gauss e de Caucny servem para ilustrar a dou-
trina precedente.

& ®

Se u é integravel com respeito a fun¢do G (») da repre-
sentacdo de Livy e Kamnrcuine de modo algum pode concluir-se
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que # ¢ também integrdvel simultdneamente com respeito as
fungbes M(u) e N(u) da representagdo de Livy. Por exemplo,
. T du
dG(u)==du|(1+|u]®), com G(+o00)=2. <+,
o 14u
como deve ser; correspondem leis i.d. simétricas com res-
peito a alguma constante real (II) tais que « ¢ integravel
com respeito a G, pois

f+°° wudu [1 1 w—ut+1 V3 u——1/2]+°° PR
— = b

o+ 1+ |6 8t aay1 s ACtE V32 o+ 9

e » nédo ¢ integrdavel com respeito a /V, pois

f+°° (14u2) du

or  u(lLFud)
1 uS ) u—1/2]t*
- [E'“’g @+ ee—ut) T8 O T ] s

Note-se caso «® seja integravel com respeito a G tal implica
que também # ¢ integravel.

Inversamente, se # é integravel simultineamente com
respeito a M e a N, a relagio

[y wdM )+ [, wdV ()= [ ion 41}y dG ()

mostra que » € integravel com respeito a . Mas agora o facto
de #® ser integravel simultAneamente com respeito a M e a IV
ndo implica que « é integravel com respeito a essas funcées.
Por exemplo,

. AN (u)=du[[u (+1)];
sai e

du ~rarct uJ =7/2
j0+ %2+1 _L g o =T

e du ﬁ[_lﬁ 16 u? +°°__
j0+ w(w+1) |2 g w41 |+ = oo

le
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Vimos que uma lei i.d. tem representacdo de KoLmocorov
quando e s6 quando tem varidncia ou, equivalentemente,
quando e s6 quando #® € integravel com respeito a G[A, III
e IV de §11].

Suponhamos agora que # € integrdvel com respeito a G
sem fazermos qualquer hipotese sobre a integrabilidade de #
Entéo e s6 entdo, posto :

2) oc=a+fRudG(u) [ver A, I de §11]
sai
2
3) log f(t)=iott [R(e”“——l—z'tu) A6 w).

Tendo em conta A, 12) de §11, pode transformar-se 3) em
4) log f(f)—iat—828 )24 [, (e#n—1—itu)dM (u)+

4[5 (et —itu)d N (1),

Se a lei de 8) ou 4) tem esperan¢a matemdtica sabemos
que esta € dada pela formula E(L)=(1/7)-d (log f(0))/(d?) [A, 8)
e 8") de §8]. Se for possivel permutar as opera¢bes de inte-
gracgio e derivagfio sai £(L)=«, como na representagdo de
KoLmoGorov; tal sucede todas as vezes que # for integravel
simultaneamente com respeito a M e a N [A, Ill; de §4].
Note-se que a derivabilidade do segundo membro de 3) ou 4)
nio assegura que exista esperanca matemdtica [compare-se
com A, X de §8].

As consideragbes precedentes provam a proposi¢do
seguinte:

IV) «Sewu ¢integravel simultineamente com respeito as
fungdes M () e N (u) da representagio de Livy duma lei infi-
nitamente divisivel com esperanga matematica esta ¢ igual
a constante « da representacdo 3) ou 4).»
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Consideremos uma lei i.d. de f.c. f(#) e seja X, a varia-
vel casual de f.c. [f(#)]"*. Vamos usar os seguintes simbolos
abreviados:

E,=EX), Ef=E(X}) e Ej=FE(X).

Representamos por X, : a restricio de X, a regido das abcis-
sas de moédulo ndo inferior a ¢ e fazemos

Eﬂ:e'—:E(X",s)} E,,J[,S=E(X,f’€ € E;vEZE(X‘”_)E);

logo se vé que £, ¢=F, e analogamente para as partes posi-
tiva e negativa. O indice #» pode suprimir-se quando igual a 1.

Posto isso retomemos a féormula A, 8) de §11, e suponha-
mos que G (u) € continua nos pontos ¢ e U, com 0.Le< Ul
Entio

U -+ o
fs ua’G,,(u)_._/__n-fE udF,(u)=n-E},,
desde que exista o tltimo factor do dltimo membro.

Suponhamos agora que existe uma subsucessio 7' da
sucessfdo #z tal que

sup (n'- £ e = 57 < + oo

7'

Repetindo o raciocinio feito na demonstra¢io de A, I de §11,
concluimos que existe uma subsucessio m da subsucessdo 7'

tal que G, (1) — G (u) (recorde-se a unicidade da represen-
tagdo de Livy e KuiNTcHINE).
Entdo, por A, IV de §5,
[} 4dG, () — [ udG (u) 2 St

e, fazendo Ut + o,
fj“* udG (u) £ St.

Concluimos que a parte positiva de # ¢é integrdvel com res-
peito a G.
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Seja agora G(u) continua no ponto —¢{<0; na hipétese
de existir uma subsucessdo ' da sucessio # tal que

sup (' - Ey r)=S;<+eco concluimos do mesmo modo que a

it
parte negativa de # ¢ integrdavel com respeito a G.

Quando ¢ (ouf) cresce a grandeza £}, ,(ou £ ) decresce
e o mesmo se diz do supremo Sf(ou .S7). Quer dizer, se a
hipotese relativa a esse supremo se verifica para um certo
¢(out) ela é satisfeita também para todo o ¢(out) maior. Pode
entdo admitir-se que ¢(ou—¢) seja ponto de descontinuidade
de G sem alterar a conclusio que a parte positiva (negativa)
de u ¢ integravel.

As consideracdes precedentes permitem enunciar a
proposi¢édo:

V) «Para que # seja integravel com respeito a funcio
G (u) da representagdo de Liévy e Kuinrcuing duma lei infini-
tamente divisivel é condi¢do suficiente que existam numeros
nao-negativos ¢ e ¢ tais que cada um dos produtos # - £, , e
n -k, ; tenha sentido e seja limitado ao longo duma subsu-
cessio (infinita) da sucessfio ». Em particular é condi¢io sufi-
ciente que cada um dos produtos 7. £}, e n- E,, tenha sentido
e seja limitado ao longo duma subsucessdo (infinita) da suces-
sfo natural n.»

Se a lei é simétrica com respeito a constante real a
tome-se Ix|a|; sai £ @t y1n=Er,5—a,» 1) e Vsimplifica-se.

Dado 7, a existéncia simultanea dalgum £} . e dalgum

£, . € equivalente a existéncia simultanea de £} e de E5, por
sua vez equivalente 4 existéncia de £,; a ultima implica a de
E=nE,. Se existe E,, para todo o n, é E=u(E;—E;) de
modo que nf; e nkL,; saem conjuntamente limitados ou ilimi-
tados ao longo de qualquer subsucessdo da sucessido natural 7.
Dai a proposigio:

V') «Para que # seja integravel com respeito a fungdo
G (u) da representagio de Livy e Kuinrcuine duma lei infini-
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tamente divisivel tal que todas as suas componentes tenham
esperan¢a matematica ¢ condi¢do suficiente que um dos pro-
dutos nE} e nE; seja limitado ao longo duma subsucessio
(infinita) da sucessdo natural 7.»

A condicio de V' encontra-se satisfeita para toda a lei
duma variavel i.d, sujeita a hipétese do enunciado e tendo
sinal fixo, pois aquele dos dois produtos do enunciado que néo
& constantemente nulo sai identicamente igual a = £. A condi-
¢do também se encontra satisfeita quando, ao longo duma
subsucessdo (infinita) da sucessdo 7,

Ef|Eixo>1 ou EV[E;£4<1

donde, respectivamente, £>0 ou E <0; ao longo da subsu-
cessfo tem-se entdo

nEfZ9E[(p—1) ou nEIZY(—E)[(1—).

Consideremos, por exemplo, uma lei de Gauvss normada
[A, exemplos 2.° e 4.° de § 8]; portanto a= E=0eb=1.A com-
ponente de indice » serd uma lei de Gavuss, com a=0 e
b=(1]#n)2 [A, exemplo 2.° de §11]. Entao

n \1? +o 1 12
+ . —nx? 2 —
E; 5 fo xe dx <2ﬂ%> {0,

mas nE;} t+ . A condigdo de V' encontra-se violada e toda-
via # & integravel com respeito a G.

§3) Convergéncia de leis infinitamente divisiveis

Suponhamos que é dada uma sucesséo de leis i.d. L, as
quais correspondem as f.c. f,(f). Entdo podemos escrever
[A, 1) de §11]

. it itu 14 u?
1) 10gﬁ,(l)=za,,t+fR<gt _1—~—1—rﬁ2~>———9—~a’G”(u),

u?



LIMITES DE SOMAS DE VARIAVEIS CASUAIS INDEPENDENTES 11

onde 0s @, sdo constantes reais bem determinadas, os G, ()
sio funcdes de distribuicdo, a menos de factores positivos,
igualmente bem determinadas e a fun¢io integranda comum
se considera igual a —#?/2 no ponto #=0 de forma que se
torna continua e limitada em todo o campo da varidvel «.

Consideremos ainda uma lei i.d. L, fixa, de f.c. f(#) e
representemo-la sob a forma 1), com a em lugar de a, e G (u)
em lugar de G, (u).

E muito importante saber em que condiges L é limite
(fraco) de L, quando 7#1 ou, equivalentemente, em que con-

dicdes f, (z“)——saf(t). Esclarece-nos a esse propdsito o seguinte
teorema de Gnedenko :

I) «Para que a sucessdo de leis infinitamente divisiveis
L, tenha por limite (fraco) a lei (infinitamente divisivel) L
quando #to & condicdo necessaria e suficiente que @, —a

. ~ 4 ~ ’
e simultineamente G,(#)— G (1) nas representagdes de Livy
KuintcHINE correspondentes. »

A expressdo infinitamente divisivel do enunciado figura
em paréntesis por causa de A, V de §9.

Comecemos por demonstrar que a condi¢do do teorema
¢ suficiente. Pelo segundo teorema de HEeLiy-Bray tem-se,
para todo o ¢ real, :

. " itu 1422 .
m,,t—i—fR<e” —1— 1+u2>7;——a’G,,(u)——>zat+

) ity \ 14-u?
+fR <e”“'—1—‘ "1—4——“2‘> TdG(H),

sendo o tultimo integral func¢fio continua de 7 na origem
[A, texto a seguir a 9) de §10 e III; de § 4]. Concluimos que

£ (D> £(2) [A, VI de §8).

Falta demonstrar que a condi¢do do teorema é neces-
saria.
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Agora, por hipétese, f,(t)— f(#) e portanto [A, I de §9]
log| /()| log| f(#)] ou

[ [cos (tu) — 1] (1 + ) dG, () | u* =~
_lfR (cos (tu)—1](14+u*)dG (u) | u?.

Procedendo agora exactamente do mesmo modo que na
demonstra¢do de A, I de §11, inferimos primeiro que a suces-
s40 Gu(+o0)¢ limitada, isto &, que sup G,(+o)=S<+w e

#n

depois, pondo de lado a hipétese S=0 (excluindo um caso
trivial), que a sucessio de funcdes de quase-distribuicio
G,(u)/ S admite uma subsucessdo G,.(#)/.S que converge fra-
camente e até completamente para uma fungfo de quase-
-distribui¢dio que vamos designar (com mudan¢a ligeira de

notacdo) por I'(#)/S. Em resumo, Gm(u)—f—»l‘(u), sendo o
limite uma fun¢do de distribui¢do, a menos de um factor
positivo.

Representemos por I[(#,#) a fun¢do que se integra em 1).
Para todo o ¢ real tem-se entfio, pelo segundo teorema de
HrLry-Bray,

[ o d(t0) 4Gy () — [ I(#,5) AT (w);
doutro lado, por hipétese,
[t 4 [ o 1(1,10) dGo (1) — iat+ [ 1(2,4) G (u).

As duas convergéncias fazem com que a sucessio a, tenha
um limite finito «. Entédo

fatt [ I(t,u)dT(w)y=iat+ [ I(t,u)dG ().

Como a representaciio de log f(¢) pela forma de Livy e
KuintcuiNg € tinica sai e=a e T'(#)=G(»); portanto

an—a € G,(u)— G
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Se suprimirmos os termos a,, € G,,(#) das sucessdes a, €
G, (u), respectivamente, aparecem novas sucessoes a,—a e

G, (1) — G (1), etc. Concluimos que
?

ty—a e G,(u)—G(u), c.q.d.

* ®

Podemos substituir 1) pela férmula de Livy modificada
[ver A, 14) de §11]. Entéo

2) log fu () = ia,(U)- =0, *[2 +
[ (1) db, )+ [ 7 e 1) AN () +
[y @it —itu) A () + [ (60— 1—itu) AN (),

onde escolhemos U>0 por forma que a fungio G e todas as

funcoes G, consideradas no inicio deste pardgrafo sejam con-

tinuas nos pontos U e —U. Aqui convém recordar que o0s

pontos de descontinuidade de G e de G1,Gs, ... formam um

conjunto com poténcia quando muito igual a do numeravel.
Sabemos que [A, 12), Il e 13) de §11]

M, (—o0)=0 e, para u<0, dM, (u)=(1+u*)dG,(u) | u*;
N, (+0)=0 e, para u>0, +dN,(#)=(1+u")dGn(u)|w*.

4) Com ¢>0, frungn(u)—l—f;m AN, (1)< +oo.

5) an(U) =t [ o 4G (1) [y 4G (1) 10

Para a lei i.d. L temos férmulas analogas que se obtém
a partir de 2), 8), 4) e 5) suprimindo o indice #. De qualquer
modo as transformacdes 3) preservam, em ambos os sentidos,
os pontos de continuidade distintos da origem [A, fim de § 10].
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Pergunta-se quais sio agora as condigles para que
L, — L quando # 1 oo ? Responde-nos outro teorema de Gnedenlo
[para a notagdo veja-se A, nota a demonstracdo de III de §4]:

II) «Para que a sucessdo de leis infinitamente divisiveis
L, tenha por limite (fraco) a lei (infinitamente divisivel) L
quando 71« é condi¢do necessaria e suficiente que se veri-
fiquem simultaneamente as relagdes seguintes, referentes as
representacdes de Livy modificadas: ‘

1.%) M, (u)— M (u) e N,(u)— N (u),
respectivamente nos pontos de continuidade de M(«) e V(u).

2.) a(U)—a(U).

8.2) lim lim max [/f— w? dM, (u)+ b5+ 0+ udN, (u)] -

el0 ntco

0= 3
—tim lim min[ [, w2 dM, () + 8+ [ w2 AN () | = 0>

el0 #nhoco

Comecemos por demonstrar que a condi¢do do teorema
¢ necessdria.

Agora, por hipétese, fu ()= f(#); entio (I) a,—a e
G, ()~ G (). Atendendo a 3) e aos teoremas de Herry-Bray®
concluimos que se verifica a relagdo 1.2) do enunciado; aten-
dendo a 5) e aos mesmos teoremas(") concluimos que se veri-
fica a relagdo 2.).

Para mostrar que se verifica a relagdo 8.*) vamos supor
que ¢>0 e —:¢ sdo pontos de continuidade das fungGes
N, (u),N (1), M(u) e M,(u). Entdo, pelo primeiro teorema de

HeLry-Bray ),
f A6, (1) — f  dG(u)

ou, equivalentemente,

* E facil de ver que os teoremas de HeLLy-Bray se adaptam a todos
os tipos de intervalos que aqui podem aparecer.
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U 1+u
/_e dM,, (u)+ b3 —{~f0+ T 5 AV, () —

o ‘)
[ T dM(z¢)+b‘+/\0+ T A ().

v %

Como 1/(1+ ) L1/(1+u*) L1, tanto entre —e e 0~ como
também entre 0" e ¢, sail

1 o= . e 7 e
6) ﬁj[ [ wdm s bt [ aN. @) | 2] G2
é / U d M )+ B+ / w2 dN, ().

Se passarmos em 6) ao limite maximo quando 71 o obte-
mos a desigualdade

1# 0— . ) i 0 ]
i 11111%1;1)21)( I:f_a u® dM,, (u)+ b +j0+ wdN, (u) | L

éfﬁ dG (1) £ lim max [fo— w* dM, (u)+ b}, +] 1 1w d N, (“):lr
—2 ¢ 0

100

se passarmos ao limite minimo obtemos outra desigualdade
andiloga.

S6 {alta fazer ¢} 0 e atender a primeira parte de 8) para
chegar a relagéo 3.2). -

Vamos demonstrar agora que a condi¢do do teorema ¢€
suficiente.

Sabemos pois que se verificam as trés relagbes do
enunciado.

Sendo %<0 um ponto de continuidade de M (u) e por-
tanto de G () resulte da primeira parte da relagdo 1.*) e dos
teoremas de HEeLLy-Bray que

[ s e~ [ 5

"
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Somando G, (—¢) a todos os membros de 6), atendendo
a limlim G, (—¢) = G(—0) e usando a relagio 3.*), obtém-se
€0 ntoo

7)  G(—0)+=lim lim max G, (¢) = lim lim
e}0 20 n

ntoo -

min G, (g).
too

Sendo agora #>>0 um ponto de continuidade de N (u) e
portanto de G () considere-se a igualdade

lim max G, (1) = lim lim max [G,, (s) —}—f‘“* v dn, (7,)]

ntoo €0 ntoo 1-’"7)2

e a igualdade que resulta desta quando se substitui lim max
por lim min. Entdo resulta de 7), da segunda parte da rela-
¢do 1.2) e dos teoremas de HeLLy-Bray que

ntoo

lim max G, (#) = lim min G, () = G(—0)+ 0>+ G (u) — G (+0).
ntoo

Pela primeira parte de 8) tem-se ainda G, (1) — G (u).

Como G, (—&)—G(—¢) e G, (s)—G(z), toda a subsucessio
convergente extraida da sucessio G, (0) tem um limite com-
preendido entre G(—e¢) e G(+4¢). Se G(u) for continua no
ponto #=0 basta fazer ¢| 0 para reconhecer que G (0)—G(0).

Os resultados que acabamos de alcangar mostram que
G (1) = G (u).

Considere a igualdade
-0 142
Gy (+o0) = G (e) +j’ T% AN, (10).

Entdo, por causa da convergeéncia fraca de G, para G e pelos
teoremas de Herry-Bray,

\ I

G,,(+<>0)—+G(£)+J

1242

E Z'[j AN () = G (+0).
Estamos pois aptos a afirmar que G, (1)~ G () e s6 falta

provar que a,— a para terminar a demonstragéo (ver I).
Mas tendo em conta 5), a relagdo 2.*), a convergéncia

completa de G, para G e mais uma vez os teoremas de

Heriy-Bray infere-se sem dificuldade que a,—a, c q.d.
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Observacdo: Se demos a representacdo de Levy modifi-
cada da f.c. duma lei i.d. no caso de se tratar de funcoes
continuas em & U fizemo-lo por comodidade, afim de evitar a
distingio entre intervalos de integracio fechados ou abertos
nesses pontos; mas a hipotese ndo é essencial. Podemos pre-
servar 5) com qualquer U >0 introduzindo, para o efeito, na
expressdo 2) os intervalos de integracio

—wLuL—U, UfLu< 4o, —Ulu<0 e 0<u<U.

Desde que U e — U sejam pontos de continuidade de G (u) a
demonstracio de II subsiste, pois os teoremas de HerLLy-Bray
continuam a ser aplicdveis em 5).

Enfim, no enunciado de II sevve todo U>0 tal que +U
sejam pontos de continuidade de N e M (e portanto de G).

Suponhamos agora que as leis i.d. L, e L tém variancias
Vil.) e V(L), respectivamente, e portanto esperancas mate-
maticas E(L.) e £(L). Pode entdo usar-se a representagio
de Korvocorov [A, 18) de §11]:

8) 10g fu (ty=i o 14+ [ g (et —1—itu) dCy () |2,

onde [A, 15),17) e 19) de §11]

9) dC,(u)=(1+u?)dG,(u) e Cu(—o)=0;
E(L)=an=aut [ g udGu(1); V (Li)=Cu(+o0).

Para a lei L temos férmulas andlogas que se obtém a
partir de 8) e 9) suprimindo o indice #.
Pregunta-se quais sfo agora as condi¢des para que

L,;—S—> L e simultaneamente V(L,)— V(L) quando #te? Res-
ponde-nos wumn teorema de Gnedenko ¢ Kolmogorov:

IIT) «Para que a sucessdo de leis infinitamente divisi-
veis L, com variancias tenha por limite (fraco) a lei (infini-
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tamente divisivel) L com varidncia quando 7#tc e simulta-
neamente as varidncias das leis da sucessido tendam para a
variancia da lei limite é condigio necessdria e suficiente

» ¢ ~
que o,—a e também C,(x)— C(#) nas representa¢des de
Kormogorov correspondentes.»

Comecemos por demonstrar que a condi¢io do teorema
¢é suficiente.

Como C,(u)— C(u), segue-se
Cu(+0)— C(+) ou V(ls)— V(L).

Porque «,—>a e pelo segundo teorema de HerLy-Bray
tem-se, para todo o ¢ real,

iyt [ (61— 1—itu) dC, () 12—

__>z'ocf—i—fR (e¢t%—1—ifu)dC (1) | u?,

~

sendo o ultimo integral func¢fo continua de # na origem.

s
Concluimos que f,{($)— f(¢).

Falta demonstrar que a condi¢fo do teorema € necessdria.
Primeiro V(L,)— V(L) ou C,(+)— C(+o) faz com que
exista um numero nfo-negativo y tal que

Co(+0)LC(Ho0)+y< +oo.

Como, por hipétese, fn(t)—s»f(t), tira-se de 8) que, para
todo o t=£0,

Foy + [ (€% —1—i tu)dC, (1) (tu?) —
— ot [ (65— 1—itu) dC (u) [ ().
Aqui osintegrais sfo limitados em médulos por |#[-[C(+c0)+7]

e portanto convergem para zero, uniformemente em #,
quando f— 0. Inferimos que &, —«.
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Supondo C(+4o0)+y=3>0 sabemos que a sucessdo de
funcbes de quase-distribui¢fio C,.()/d admite uma subsucessdo
C,.(1)]d que converge fracamente para uma fun¢do de quase-
-distribuicio, seja D(u)/d. Logo C.(#)—D(u), sendo o
limite uma funcdo de distribui¢io, a menos dum factor
positivo.

Respeitando a convengdo usual vamos considerar o valor
da funcéo integranda de 8) no ponto #=0 como sendo igual
ao limite respectivo quando #—0, isto ¢, igual a —#/2. Assim
(¢'t*—1—itu)|u® fica uma fun¢do de », continua e limitada
em todo o campo real, que tem limite nulo quando #-—>co.
Entdo, pelo segundo teorema de Heriy-Bray,

[ (65— 1—itu) dC,y () [ 2 — [t —1—itu)dD ()",
isso para todo o ¢ real. Mas f,,,(t)-s—»f(t) e o, — o implicam que
[p(etn—t—itu)aCy ()| ue—[ (6" —1—itu) dC () | 2,

também para todo o ¢ real. Como € unica a representacio
da lei limite pela formula de Kormocorov sai D (u)=C'(u) e

portanto C,, ()= C ().

Se suprimirmos os termos C,, (#) da sucessio C, (%) apa-
rece uma nova subsucessido C, (u)—s+ C(u) etc.. Concluimos
que C,(#)—> C(u) e depois, tendo em vista G, (- c0)—C(+ o),
que C, (u); C(u), c.q.d.

Os trés teoremas que acabamos de demonstrar sdo muito

importantes no estudo da convergéncia de somas de varia-
veis casuais independentes.
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CAP{TULO 1I

CONSTANCIA ASSINTOTICA

§ 4) Variaveis casuais infinitesimais e assintolicamenle constantes

Consideremos as varidveis casuais independentes X,
Xy oo Xuy.oo. Quando n1t o levanta-se o problema de esta-
belecer a convergéncia (fraca) das varidveis casuais X +---
vt X -+ X, [A, VII de § 8] e de caracterizar a varidvel
limite.

A questfio assim posta ndo tem flexibilidade satisfatéria.
Com efeito, muitas vezes convém associar a cada soma par-
cial 2 X, uma constante de translacio A, e outra cons-

1=k<n
tante de sentido e escala B, =0 e retomar a questdo primi-

tiva sobre as varidveis casuais «corrigidas» 2 Xi/B, — 4,
1=k=n

[A, IX de § 8]. Pondo X, = X;/B, e introduzindo cons-
tantes A, tais que 32 A4, = A, constitui-se entdo uma

1=<hk=n

sucessdo dupla de varidveis casuais

Xll - All
X21 - A21 yXZE - A22

)(nl - Anly- . Xnk - Ank;- . Ava; - Ann

T Y

que sido tndependentes para n dado ou seja por linhas [A, 11
de § 7] e que se somam também por linhas para formar a
sucessio simples 2 (Xu— Auw)= 2 Xup— 4.

1=k=<n 1=k=n

Dando um novo passo na senda da generalizagdo pode-
mos considerar varidveis casuais X, independentes por
linhas, mas de resto quaisquer, isto €, nfo necessariamente
da forma X,/B,. Finalmente ndo ha necessidade de que
os numeros de parcelas das linhas consecutivas formem a
sucessdo natural 7, pois serve qualquer sucessdo de inteiros
e positivos 4, tais que #£,-—> o0 quando 71t .
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Presentemente consideramos sucessoes simples de cons-
tantes 4, e sucessdes duplas de varidveis casuais Xz, com
1LkLk, € ky—c quando 71, varidveis essas que se
supbem independentes por linhas, e pretendemos fazer o
estudo dos limites (fracos) das somas 3 X, — 4, quando

1=Sk=

74 oo, ==

O problema que acabamos de delinear é excessivamente
lato para oferecer interesse. Com efeito, seja X uma variavel
casual qualquer e ponha-se, para todo o0 7, X, = X e X,,=0
quando £>1. Sai lim 2 X, =X o que prova podermos

ntoo 1=Sh=ilhy
impor um limite arbitrario.

A restricdo que naturalmente se impde aqui é que,
quando 7t co, nenhuma parcela da soma de limite eventual
deve exercer influéncia preponderante sobre as outras, isto
¢, cada uma das parcelas deve tornar-se de certo modo des-
prezavel. Em seguida vamos procurar uma formulagio mate-
matica precisa para tal ideia.

“n

% *

Considere-se entdo a sucessio dupla de variaveis casuais
Xoxy com 1LkLEk, € ky—>c0 quando nt e, e recorde-se a con-
ven¢do de representar por P(...) a probabilidade do acon-
tecimento contido dentro do paréntesis [A, §2].

Pois bem, se

1) lim sup P(|X.|Xe)=0, para todo o >0,

ntew 1=k=k,

dizemos, com Gnepenko e KoLmogorov, que as varidveis casuais
X s80 in finitesimais®). Com tais variaveis, dados dois ntme-
ros positivos arbitrarios d e ¢, verifica-se, para todo o # sufi-
cientemente grande, que ¢ inferior a ¢ a probabilidade de
cada um dos 4, acontecimentos | X,:|>¢(de que cada uma das
k, varidveis X, ndo seja desprezavel dentro da ordem €).

() Lokve usa a designagio de variaveis (uniformemente) assintdtica-
mente nulas, abreviadamente uan.
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Se as varidveis casuais X, forem infinitesimais cada
uma delas tem probabilidade elevada de concentrar os seus
valores em torno do zero, isso para todo o # razoavelmente
grande. Mas como essas variaveis costumam ser acompanha-
das de constantes subtractivas 4, convém entio que as
diferengas X,;—A4,. sejam infinitesimais, isto ¢, que cada
variavel X, tenha probabilidade elevada de concentrar os
seus valores em torno duma constante A4,;, isso para todo o
n razoavelmente grande. Eis porque é muito importante a
definicdo seguinte:

Se existirem constantes A, tais que

2) lim sup P(|X.u— Aum|>¢)=0, para todo o0 ¢>0,

nto 1K=k,

as variaveis X, centradas nas constantes 4., saiem infinite-
simais. Diz-se entfo que as variaveis X, sdo (uniformemente)
assintoticamente constantes ou, mais explicitamente, que elas
admitem as constantes assintoticas Ay .

Observagdo : Pode escrever-se>e¢ em lugar de XNe, sem
prejuizo da defini¢do de varidveis casuais infinitesimais e
assintoticamente constantes.

E ¢bvio que as constantes 4, da féormula 2) ndo sdo
univocamente determinadas pois faz-se uma passagem ao
limite. Assim nfo deixa de ser interessante a proposi¢do
seguinte:

I) «Se as varidveis casuais X, admitem as constantes
assintéticas 4, a condigio necessaria e suficiente para que
as varidveis admitam também as constantes assint6ticas A,
é que se tenha

lim sup lAn].:"‘A;gk ! =0,»

ntw 1=k=k,

Suponhamos primeiro que as variaveis X, admitem
tanto as constantes assintéticas .4, como também as cons-
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tantes assintéticas 4. Dado ¢>0 tem-se entdo, para todo o »
suficientemente grande,

sup P (| X —Au|2e[2)<1[2
e simultaneamente
sup P (|Xoi— | e/2)<1/2
(subentende-se que o supremo se refere a 1<£k<%,). Logo
i?f P (| Xun— A <e/2)>1/2
e simultineamente

Entdo, seja qual for %, é maior que 1/2 cada uma das proba-
bilidades de que X, esteja no intervalo aberto de A.—¢/2
a A.+¢/2 e de que X, esteja no intervalo aberto de A —¢/2
a Al;+¢e/2; isso obriga a | An— Al <e, para todo o %, e por-
tanto a sup | A — Al| Le. Logo lim sup |Au—Ai|=0.

nho k

Suponhamos agora que lim sup | Au—A4u|=0 e que as

nlo k
variaveis casuais X,; admitem as constantes assintéticas A,:.
Dados os numeros positivos ¢ e <1 tem-se entdo, para #
suficientemente grande,

llllf P(Ianz"‘Ankl <€/2)>1——3

| Aui— Aw| <e/2, com qualquer 4.
Portanto

irklf P(| Xu— A | <e)>1—3 ou sup P(|Xu— Al|>e)<9.
e k

Entdo
lim sup P(| Xu—Au|>e)=0

#4oo k

e a demonstracdo de I fica completada.
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Uma consequéncia imediata de I é o corolario

I') «Se as variaveis casuais X, admitem as cons-
tantes assintéticas A4, a condicdo necessdria e suficiente
para que as varidveis sejam infinitesimais &

é que se tenha
lim sup |Au|=0.»
ntoo I=k=k,

* Ed

Antes de prosseguirmos torna-se necessario dar mais
uma defini¢do. Chama-se mediana ou valor mediano duma
variavel casual X a todo o numero y tal que se tenha simul-
tdneamente

3) P(X<Lox1/2 e PXxyp1/2.

Significando F(x) a fun¢io de distribuig¢do correspon-
dente a X a equagio F(x)=1/2 ou nio tem solucdo ou tem
uma s6 solu¢do ou tem uma infinidade de solug¢des consti-
tuindo um intervalo da forma a<x¥£f ou aLx<p. No pri-
meiro caso a mediana de X é o valor # que faz com que
F(x)<1/2 e F(x+0)>1/2, no segundo caso a mediana é o
unico valor de # que resolve a equagio e no ultimo caso
serve todo o valor & do intervalo a<Lx£p ®

Deve notar-se que um valor mediano de X existe sem-
pre enquanto o valor médio ou esperan¢a matemadatica pode
deixar de existir [A, exemplo 6.° de §8].

Dado um numero y tal que 0<y<1 podemos generalizar
o conceito de mediana e chamar guantil da ordem y duma
varidvel casual X a todo o numero 3™ que satisfaz simul-
tineamente as desigualdades

8) PXZ)ny e P(Xag)n1—y

- Todo o quantil assim definido diz-se um quantil préprio
e pode obter-se a partir da equac¢io F(x)=y do mesmo

() No altimo caso faz-se, por vezes, y=0+(1/2) (B—«) e a mediana
passa a ser univocamente definida em todos os casos; aqui nfo nos con-
vém proceder assim.
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modo que se obtém toda a mediana a partir da equagdo
F(x)=1/2.®) Note-se que /=y e que yV cresce com .

Completa-se 3') definindo quantis émprdprios das ordens
zero € um do modo seguinte:

3" y@Q=lim @ e y®=lim ¥y,
T40 TH

Observacdo: 8") e 8") mostram que s6 nio sdo quantis
duma variavel X os numeros y que fazem com que F(x)=0
para algum x>y ou [I(x)=1 para algum x<y.

Dado um numero D>0 representemos por /4p(x) a fun-
¢do continua da variavel real x definida como segue:

4) hp(x)=# para |x|£D e hp(x)=D? para |x|>D.
Se x e y forem de sinais contririos tem-se entdo
hp (=) ().

Vamos agora estabelecer uma proposi¢do 1til na conti-
nuacio deste estudo:

II) «Se X e Y forem duas varidveis casuais indepen-
dentes e idénticamente distribuidas (isto é, com a mesma
lei de probabilidade) e se for x® um quantil de X (ou de Y)
verifica-se a seguinte desigualdade, relativa a esperancas
matematicas,

Elhp(X—Y)x inf(y,1—9) - E[hp(X—yM)].
Em particular,

Elhp(X =Y (1/2) E[hp(X—x)]->
A proposicio s6 carece de demonstragio quando 0<{y<1.
*) No terceiro caso faz-se, por vezes, y(N=a+v (B—c) a fim de obter

um s6 quantil da ordem y em todos os trés casos; aqui nfdo nos convém
proceder desta forma,
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Pondo X=X—yM ¢ Y=Yy a desigualdade do enun-
ciado toma a forma :

Elhp(X~Y)] inf(y,1—y)- E[hp(X)]

e € sob esta forma que vamos deduzi-la.

Suprimindo no campo de > integragéo do ) primeiro membro
da desigualdade as regides X>.0,Y>0 e X<0,¥ <0, recor-
dando a notagfo introduzida em A entre I e II de §3, aten-
dendo as desigualdades

(X' (= Y))2ho(X) e ho(~X =T )xho (-,

tendo em vista A, 2) ou 38) de §7, e usando finalmente 3
obtém-se

E[hp (X~ VNNE[hp(Xt+(= Y+ Ehp (- X — T
NEhp (X)) P(YLO)+E[hp(— X)) P(P0)x
> inf(y,1—9) | E[hp(X )+ Elho (— X))

e a tese segue.
*
Ed #

Seguem algumas proposi¢des sobre varidveis casuais infi-
nitesimais ou assintoticamente constantes. Em todas elas,
dada uma variavel casual X,. representamos por y, uma
mediana da varidvel, por x{) um seu quantil da ordem 7,
por £ (x) a sua fungdo de distribui¢do e por f. (/) a sua f.c.

Suponhamos que as varidves casuais X, admitem as
constantes assintéticas A4,.. Para todo o y positivo e menor
que um tem-se entio

lim sup- pour — x| = 0.

nieo
Pois se a relacfio nio fosse verdadeira para algum y nas con-
di¢bes indicadas teriamos um nimero »>0 e uma infinidade
de valores de » tais que sup | Aur—yD| >=0; para cada um

nk
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desses valores de # sairia, com (pelo menos) um valor de %,
| Aue— ) |>n e portanto P (| Xu— 4| <n) L sup(y,1—7y) ou

1k
P (| Xos— Au| S 0) > 1—sup (7, 1—7),

o que contradiz a defini¢do de constancia assintotica.

As relagbes

. 0y | _. 3 VN —

lim sup |4w—yxQ|=0 e lim sup | du—x)|=0

nteo k nhoo k
podem ocorrer ambas ou s6 a primeira ou sé a segunda ou
entdo nfo ocorre nenhuma, como pode ver-se através de
exemplos. Assim:

1.°) Paratodoo n e &,F,.(x)=0 ou 1, conforme x£0 ou
x#>0; pode ser, para todo o # e £, Au=0=y0=x0).

2.°) Para todo o %, F,.(x)=0 ou x/#n’ou 1, conforme x£0
ou 0<xZ1 ou x>1; pode ser, para todo o # e &, A,;=1=x{)
enquanto A, =39 =0.

8.°) Se #>1 tem-se, para todo o &, F,;(¥)=0 ou
x|n ou (n—2)/n+x/n ou 1, conforme ¥£0 ou 0<xr L1 ou
1<x£2 ou ¥>2; pode ser, para todo o # e %2, Au,=1
enquanto A, Fy9=0 e Au=FyD=2.

nk nk

A anilise que acabamos de fazer e I demonstram a
proposi¢do seguinte:

III) «Se as varidveis casuais X, sdo assintoticamente
constantes elas admitem como constantes assint6ticas quais-
quer dos seus quantis proprios de ordem fixa, em particular
as suas medianas. Os quantis das ordens zero e um podem
servir de constantes assintéticas ou simultineamente ou sé
os primeiros ou s6 os segundos ou entio nfdo servem nem
uns nem outros, conforme os casos.»

Dado um par fixo de ntimeros y' e 7" tais que 0<y' £Ly"<1
suponha-se que tem lugar, para todo o # suficientemente
grande e uniformemente em £, a dupla desigualdade

chl) — 0L A L300,

nk
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onde » significa um numero positivo arbitrariamente pe-
queno. Sai

fm sup [ Ay |<ntlim sup |30y
Logo se as variaveis X,. forem assintoticamente constantes
concluimos de IIl e I que elas admitem as constantes assin-
toticas A4,.. ‘

Suponhamos agora que as varidveis X,; admitem as cons-
tantes assintéticas A,;. Se fixarmos um par de numeros y'
e 7', tais que 0<y <Ly'< 1, verificam-se as igualdades

lim sup ‘A,,;,.—ijl‘f)fcozliTm sup | Au—x0] .
nlTw >

nto I

Pois bem, da primeira igualdade tira-se a primeira parte da
dupla desigualdade anterior e da segunda igualdade tira-se
a outra parte.

Estamos aptos a enunciar a proposicdo seguinte :

IV) «Para que as varidveis casuais assintoticamente
constantes X, admitam as constantes assintéticas A, € con-
di¢do necessaria e suficiente que, escolhido um par de nume-
ros 7' e ¥, com 0<y'£y"<1, se tenha, para todo o # sufi-
cientemente grande e uniformemente em £,

K 0L A LY+,

nk

onde nsignifica um ntimero positivo arbitrariamente pequeno.»
Vejamos mais dois exemplos:

4.°) Seja, para todo o n e %, F,(¥)=0 ou 1, confor-
me ¥<1 ou x>1. Dado # pode tomar-se, para todo o &,
Ap=1—1[n<y9=1.

5.°) Em 2.° ndo pode tomar-se 4,,=1/2 muito embora
este numero seja enquadrado, para todo o # e %, por quantis
proprios (de ordens varidveis).
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Observacdo : Suponha-se que 7, e v, S0 numeros posi-
tivos, dependentes de » e %2, que se tornam arbitrariamente
pequenos, para n suficientemente grande e £ qualquer desde
1 a %,, e substitua-se a condi¢do de IV por

X',;‘,’ — L A £ Xﬁ:",:/) -+
E 6bvio que a nova condigdo é suficiente para que as varia-
veis assintoticamente constantes X, admitam as constantes
assintoticas A,:, mas ja ndo é necessaria como pode ver-se
através do exemplo seguinte:

6.°) Dado #» ponha-se, para todo o &, F/,;:(x¥)=0 ou 1,
conforme x<Ln'B ou x>n"'#, de modo que todos os quantis
saiem iguais a »#~'3; todavia, dado 7, pode por-se, para todo
0 ky Au=0<u—B—0o(1n=B) (o leia-se de ordem menor que).

i#

Dados os numeros positivos D e » tem-se, para todo o ¢
tal que 0<s<< D,
supf | x| dFu(x)Le +
|ej=D

k

AP (x)Lem+ D7 - (ot .
+Sgpjélx‘§1)|x{ Fo(%)Le"+ D7 - sup P (| X >e)
Donde , com #t e 10,

V) «Se as variaveis casuais X, sdo infinitesimais entéo,
dados dois numeros positivos D e », tem-se

lim sup f | 2| dF o (x)=0 >
wlw 1=k=hk,,/ |*|=D

Se o integral do enunciado de V se estendesse a todo o
campo real ele representaria a esperan¢a matematica de | X",
esperanc¢a a que é uso chamar momento absoluto da ordem r
de X,:. Na realidade o integral referido é a esperanc¢a ma-
tematica da restricdo de | X, |” ao intervalo fechado de
— D a +Dj; pode designar-se por momento absoluto da ordem v
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de X, trumcado em + D [comparar com A, §3]. A proposi-
¢do V da portanto uma propriedade dos momentos absolutos
truncados das varidveis X,; que se verifica uniformemente
em 4.

Vimos em A, 5) de §5), que a fun¢do de distribuicio de
Xow— A € Fup(x+ Au). Entdo, por 2), Ve Il:

V) «Se as variaveis casuais X,z admitem as constantes
assintéticas A, entdo, dados dois numeros positivos D e 7, sai

lim sup [ l xlr dﬁ‘nk (x+ Anl;)z
|»{=D

nto 1=Sk=ky,

As constantes 4, podem sempre substituir-se por medianas
X« OU, mais geralmente, por quantis préprios de ordem fixa.»

Como .2
1+€2 Sl]}p P(l‘X}kléE):
=sup | 5% zdr,,,\(xusupf )=

=S1,1pr {l - X dFu(x)+ { dl*",,k (x)]_.ée?—i—s?p P (] Xuk|>e)
oLV |xi< 3

vojriz

podemos enunciar a proposi(;ﬁo seguinte:

VI) «Para que as varidveis casuais X, sejam infinite-
simais é condi¢do necessaria e suficiente que se tenha

lim sup f ——— dF . (x)=0.»
nto 1=k=inJ R 1+
Do mesmo modo que se passou de V para V' também
se passa de VI para

VI') «Para que as varidveis casuais X, sejam assinto-
ticamente constantes € condi¢do necessiria e suficiente que
existam constantes 4, tais que se tenha

lim sup fR Ty 2dF,,k(x+Ank) 0.

nto 1=k=k,
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Aqui as constantes A, podem sempre substituir-se por
medianas y,. ou, mais geralmente, por quantis proprios de
ordem fixa.»

Tem-se, para todo o ¢>0,
sup | fuw()—1|<sup [ |e—1]dFu(®)<
k k R

ésup[[ 2| tx|dFu(@)+ [ 2dl"nk(x):|é
k Jlwel<e Jlel=e

<2 [0 sup [ 1@ dF @)+ sup P(| Xuld)

[A,1)de §6,V de §4 e demonstracdo de V de §6]. Se as varia-
veis X, forem infinitesimais sai lim sup | fu ()—1|=0, unifor-
ntwo  k

memente em qualquer intervalo finito e fechado de # (ver V).
Logo [comparar com A, VII de § 8] sup | fiu ()—1|—> 0.
k

Suponhamos agora que sup | fu:(#)—1 |=>0. Entdo [A, IIT
de § 4] *
lim [ "e—t sup)| fur () —1|dt=0.

0 k

nho

Como |fu(f)—1|>1—Re [ fu(?)] [para a notagdo veja-se
A, IV de §8] e como uma soma de supremos de grandezas
positivas nunca é inferior ao supremo da soma dessas gran-
dezas tem-se '

(4ot supl fun()— 1] drssup [ 77 e~ | 1—Re [ fu (]} dt—
0 I k 0

:SII;:pr [—1 ——-f+°° e—*cos(tx) dz‘] dF,. ()
- 0

[A,III; de §4]. Mas
furme*’cos (tx)dt=
0

—{ e~*[wsen (#x)—cos (22)] | (1+42) [i=F “=1/(1+42).
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Logo
4 e
f e~ sup| fur () —1|dtx supf e A (%)
0 k k 1+

e a hipétese implica que as variaveis X, sdo infinitesi-
mais (VI).
Acabamos de demonstrar a proposi¢io seguinte:

VII) «Para que as varidveis casuais X, sejam infini-
tesimais é condi¢do necessadria e suficiente que se tenha

sup lf;;/,‘ (l’)—l ]—-S-) 0.»

1=h=<hy

A f e de Xpy—Auy € et fu.(H[A, 1) de §8). Entido
(2), VII e I1I):

VII') «Para que as varidveis casuais X,; sejam assinto-
ticamente constantes ¢ condicio necessaria e suficiente que
existam constantes A, tais que sup |e—idut. £, (H)—1|=>0.

1=<h=<tky
Aqui as constantes 4, podem sempre substituir-se por
medianas y.. ou, mais geralmente, por quantis proprios de
ordem fixa.»

Dados os nimeros D>0 e »>0 fagamos

” . 1
5) DESH?:];ﬂ;Dx’ dF,:(x), com a conven¢io DEn/;)=DEnk
e

6) DEZ(Z)_/ l<D|x[ dF .. (x), com a conven¢io pEy =pEy-

As grandezas pE;Y ja foram consideradas em V. Logo
se ve que | pEG | L pEN’ £ D7 [A,V de §4]. Qualquer grandeza
pFEY é momento da ordem # da restricdo de X, ao inter-
valo fechado de —D a + D e podemos chamar-lhe momento da
ordem v de X, truncado em + D. Em particular, pE,. € a espe-

ranca matemdtica de X, truncada em + D.
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Tendo em vista V, I e VII podemos enunciar a propo-
sicdo seguinte (usa-se momento ordindrio como sindénimo de
momento):

VIII) «Se as variaveis casuais X,,; sdo infinitesimais saem
também infinitesimais as mesmas varidveis centradas nos
seus momentos, ordindrios ou absolutos, de qualquer ordem
positiva 7, truncados em + 2, com D>0 arbitrario, e tem-se

sup | e pEL0 . fru(D)—1] >0

I=sh=ky,

. o s
sup le—t-pE§7/?~f-ﬁk(t)—1 '———>0.
1=k=h,

Em particular saem infinitesimais as variaveis X, cen-
tradas nas suas esperan¢as matemdticas truncadas em + 20,
com >0 arbitrdrio, e tem-se

. s
sup l gt ply-t 'f”/.- (l‘)—l I —0.»

1= =k,

§ 5) Consténcia assintdlica forte

Se até agora tinha pouco interesse a circunstancia de as
varidveis X, serem independentes por linhas outro tanto ja
ndo sucede daqui por diante.

Vamos dar mais uma definicdo: As varidaveis casuais
X, independentes por linhas, dizem-se wniformemente infi-
nitesimais ou, talvez melhor, fortemente infinitesimais se [veja-
-se A, VI' de §3]

1) lim P( sup | Xu|>¢)=0, para todo o > 0.

nt® 1=k=k,
Se existirem constantes A, tais que

1)y lim P( sup | Xu—Aue| >¢)=0, para todo o ¢>0,

niw 1=kZky,

diremos que as varidveis X,., independentes por linhas, sdo
Sortemente assintoticamente constantes ou, mais explicitamente,
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admitem as constantes assintoticas fortes A Equivale a dizer
que as variaveis X, — 4. sdo fortemente infinitesimais.
Do mesmo modo que em 1) e 2) de § 4 também em 1) e
1') pode escrever-se >¢ em lugar de e
~ Se as varidveis X, sio fortemente infinitesimais ento,
dados dois numeros positivos arbitrarios ¢ e ¢, verifica-se,
para todo o # suficientemente grande, que ¢é inferior a d a
probabilidade do acontecimento sup | XX ¢ (de que o con-
k

junto das k, variaveis X, nio seja desprezivel dentro da
ordem e).

Tendo em vista A, 2) ou 38) de § 7, pode escrever-se,
para todo o #,

P(Sllllp ! an: léi):l—P(SliplX1zls I<5)=1—];l P(]Xnk l<5>=

:141[1— dF,,k(x)].
k l#1zze
Concluimos que 1) ¢ equivalente a

2) lim I [‘1——]1 - dF,,y;(x)]zl, para todo o ¢>0.
=g

nho 1ShSky

Consideremos grandezas p.. (1LkZLk, € k, — o quando
ntoo) tals que 0Lpur £ 1. Entédo

-3 nk . .
12 pup Tt (1— pur)Le i e a condi¢fio lim I1 (1—p,z)=1
I k ntoo k

implica e é implicada por lim 24, =0.

nio k
Pois bem, fazendo p.i= f‘v|>_dF,,k(x),
concluimos que 2) é equivalente a
3) lim 2 [‘ dF,:(x)=0, para todo 0 ¢>0,

ntw 1ShSk, J |v]| =€

As considera¢bes precedentes provam a proposicdo
seguinte:
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I) «Para que as varidveis casuais X, independentes
por linhas, sejam fortemente infinitesimais é condi¢do neces-
saria e suficiente que se verifique uma das relagbes 1), 2) ou 3).

Mais geralmente, para que as varidveis Xur, independen-
tes por linhas, admitam as constantes assintoticas fortes Ay
é condicio necessaria e suficiente que se verifique uma das
relagdes 1'), 2) com dF.(¥+Au) em lugar de dF,..(x) ou 3)
com a mesma alteragdo.»

Como

a

sup P(| Xue|2e)=sup /1 | P22 [ dFu(@),
k k rv|l=:

WANES

inferimos de 1) e 2) de § 4 e de I a proposigdo seguinte:

II) «Se as varidveis casuais Xy, independentes por
linhas, sio fortemente infinitesimais elas sdo também infi-
nitesimais.

Mais geralmente, todas as constantes assintoticas fortes
das variaveis X, independentes por linhas, sdo constantes
assintoticas das mesmas varidveis.»

Note-se que a inversa de 1I ndo ¢ verdadeira. Pois as
variaveis X,:, independentes por linhas, podem muito bem
ser infinitesimais sem serem fortemente infinitesimais. Veja-
mos um exemplo, generalizagdo de outro que parece ser de-
vido a Gnepenko e KorLmogorov:

Dado #, tome-se cada [, (x) igual a 0,1—1/n ou 1 confor-
me x£0,0<x£1 ou x>1. Entdo, para todo o ¢ tal que 0<¢<1,

lim sup P (] Xu|>e)=1lim 1/n=0,
ntwo k #to

o que prova que as varidveis X, s&o infinitesimais.®
Doutro lado,

P(sup | Xou[xe) = 1—[(1—1fmy [l

() A hipésete >>1 ndo causa qualquer embarago.
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Porque lim (1—1/n)"=1/e, as varidveis X, independentes

1t

por linhas, sdo fortemente infinitesimais se lim ky/n=0 e nio

ntw

sdo fortemente infinitesimais nos demais casos.

Suponhamos agora que as variaveis X,, admitem as cons-
tantes assintéticas fortes A, e as constantes assintoticas A,
Por causa de Il e por causa de I de § 4, dado ¢>0, tem-se,
para n suficientemente grande, sup | A — A | ZLe 2.
Nestas condi¢des sai k

3 f A (4 Aly) = 3 / Al Au) £
k v = k ‘M+Ai21«"—A’)1/{‘éS

i

é 2 j° dﬁ‘ﬂ]x (x+ Anl;) é 2 dElk (x + A”’") ‘
k |2 Z=e— | dpp— AN}

EJ e =e2
Daqui e de I inferimos a proposigio seguinte:

III) «Se as varidveis casuais X, independentes por
linhas, sdo fortemente assintoticamente constantes todas as
suas constantes assintoticas sfo necessariamente fortesy.

Observacdo: A proposiciio III mostra que I, I', I1I, IV e
a observagio anexa de § 4 servem também para caracterizar
o conjunto das constantes assintéticas fortes de variaveis
fortemente assintoticamente constantes.

§ 6) Sucessdes estéveis

Principiemos por recordar uma definicio dada em A,
fim de §3:

Diz-se que a sucessdo casual Y, Yy Yy, -, abrevia-
damente |Y,|, converge em probabilidade para a varidvel
casual Y se

1) lim P(|Y, — Y|x¢)=0, para todo o ¢>0.

ntw

Abreviadamente escreve-se

1) Y, ¥ (quando 71 ).
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Pois bem, podem existir constantes reais S;,Sz,---S,, -
tais que a sucessio |Y,—S,| convirja em probabilidade
para Y=0. Entfo

2) lim P(]Y,—S,|>¢)=0, para todo 0 ¢> 0,
niw

ou

2) Y,—S,—»0 (quando 71 co)

e diz-se que a sucessfo |Y,| é estavel ou, mais explicita-
mente, que-ela admite as constantes de estabilidade S, .
&
Ed &

Comparando 2) com 2) de § 4 logo se vé que o conceito de
sucessdo casual estdvel é a adaptacdo as sucessdes simples
do conceito de constancia assintética para as sucessdes duplas
(ponha-se £,=1).

Uma versdo simplificada da demonstracio de I de §4
(k,=1, suprima-se o indice £ e escreva-se Y, S e S' em lugar
de X, 4 e A4') prova o seguinte:

I) «Para que a sucessfio casual |Y, ], estdvel com res-
peito as constantes .S,, seja também estavel com respeito as
constantes S; ¢ condigio necessiria e suficiente que se
tenha lim |S,—.S),[=0.»

ntxo

Donde o corolario:

I') «Para que a sucessfo casual |Y,|, estdvel com res-
peito as constantes .S,, convirja em probabilidade para zero
¢é condi¢io necessdria e suficiente que se tenha IiTm [.Si]=0.»

7T

Representemos por %7 um quantil da ordem y da varia-
vel Y. Uma versdo simplificada da demonstracdo de Il de § 4
mostra entio o seguinte:

II) «Se a sucessdo casual |Y,| for estdvel ela admite
como constantes de estabilidade quaisquer quantis préprios
de ordem fixa das suas varidveis, em particular admite as
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medianas destas. Os quantis das ordens zero e um podem
servir de constantes de estabilidade ou simultaneamente ou
s6 uns e nio os outros ou entio ndo servem nenhuns, con-
forme os casos.»

Uma versio simplificada de IV de §4 da

1) «Para que a sucessdo casual estavel |Y,| admita
as constantes de estabilidade S, é condigio necessdria e
suficiente que, escolhido um par de numeros 7' e 7, com
0< 7' £7"'< 1, se tenha, para » suficientemente grande,

thr) — /)ésnéxg) )‘l'“n;
onde n significa um namero positivo arbitrariamente pequeno.»

Observacdo: Substituindo, no enunciado de IIl, —» por
—4, e +=n por +n,, onde v, e wj, significam nameros posi-
tivos, dependentes de #z, que se tornam arbitrariamente
pequenos para 7 suficientemente grande, obtemos uma con-
dicdo suficiente para que as grandezas .S, sejam constantes
de estabilidade.

CAPITULO 111

LEl DOS GRANDES NUMEROS

§ 7) Estudo geral da lei dos grandes nimeros

Quando se pretende tratar um problema tio geral como
o posto no principio de §4 ndo surpreende que os varios
caminhos que se oferecem sejam um tanto arduos. Uma via
possivel, a que vamos seguir, é comecar por estudar um
caso particular determinado, comparativamente simples, e
aproveitar os resultados colhidos para facilitar a solugéo do
caso geral. O método é bom em si e tem um motivo histérico
a seu favor, pois o caso particular escolhido foi o primeiro a
ser considerado.



LIMITES DE SOMAS DE VARIAVEIS CASUAIS INDEPENDENTES 39

Vamos dar mais uma defini¢do: Diz-se que as varidveis
casuais X,., independentes por linhas, obedecem & lei dos
grandes numeros quando a sucessdo casual de termo genérico
Y,= 2 X, ¢ uma sucessio estavel ou, equivalentemente,

quando existem constantes S, tais que

1) lim P(] 2 Xu—S.|x¢)=0, para todo o ¢>0.

nfoo 1=h=Zhy

Logo se vé que a condigdo 1) ¢ satisfeita quando e s¢
quando as fung¢bes de distribui¢do das somas 2 X,—.S, con-

I

vergem para zero em todo o ponto de abcissa negativa e
convergem para um em todo o ponto de abcissa positiva.
Quer dizer, 1) é satisfeita quando e s6 quando as fun¢des
de distribuiciio referidas convergem fracamente para ¢(x), a
funcdo de distribuicdo da variavel casual improépria idénti-
camente nula, varidavel esta a que corresponde uma lei que
vamos denominar e/ unitdria.
Dai a proposic¢éo:

I) «Sdo afirmacdes equivalentes dizer que as variaveis
casuais X,, independentes por linhas, obedecem a lei dos
grandes numeros ou dizer que existem constantes .S, tais

que as leis das somas 3  X,;—S, convergem (fracamente)
1=k=ka

para a lei unitdria.»

Usa-se a expressdo classica de lei dos grandes nimeros pov
tradicdo, mas ¢ mais elucidativo falar em convergéncia (fraca)
para a lei unitdria.

A f.c.dasoma 2 X, —S, é iS¢ I £ (H[A IV de §7 e
k

I
1) de §8] e a f.c. da lei unitaria ¢ idénticamente igual a 1.
Por causa de I podemos entdo afirmar que a condigdo 1) é
equivalente a

9) =St T fu(d)—1, quando n1 co.

1=k=shy



40 PEDRO BRAUMANN

Tirando médulos em 2) sai
3) I fu ()] =1 ou —2log| fu(8)] = 0.

Como —log [ 1—[1—[/u ()] 1=[fu(®)] [A, IIl de § 6]
concluimos de 3) que

II) «Se as variaveis casuais X,:, independentes por
linhas, obedecem a lei dos grandes ntimeros tem-se

2 —1 £, s (
1<k<k,,[1 | fur(8)]]— 0, quando 7t oo,
e portanto

sup [1—|f,,k(z.‘)l]—i>0, quando 71} co.»
1=k=ky

#

Demos a condicdo necessaria e suficiente para que as
variaveis casuais X, independentes por linhas, obede¢am
a lei dos grandes ntmeros, respectivamente a custa de pro-
babilidades em 1) e a custa de f.c. em 2). Convém agora
exprimir tal condi¢fo a custa de fun¢des de distribuic¢do. Para
este efeito vamos demonsirar o teorema seguinte que é uma
generalizag¢do ligeira doutro teorema a que podemos chamar
teorema de Kolmogorov relativo a lei dos grandes wibmeros
(para a notacdo veja-se 4) de §4 e antes de III de §4):

III) «Para que as varidveis casuais X,;, independentes
por linhas, obedecam a lei dos grandes numeros é condigio
necessaria e suficiente que exista um numero positivo D tal
que se tenha
a) lim 2 J hp (%) AF i (% 4-Yi) =0

R

nto 150k,

ou, equivalentemente, se tenha

b) lim 2 dF,;k (x+X1zk)=0=:

nto 1k=ky, ) |¥|>D

—lim 3 | : .
lim J\x|§Dx dEzlt(x+X7t/()

nto 1=k=k,
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As constantes da lei podem escolher-se de acordo com a
férmula

Sn = 2 2 A an* nk .
4 1= [X * +Jlxl§0x k(x_‘_x A)]

=k,

Se a condi¢iio a) ou b) se verifica para um certo numero
positivo D ela verifica-se para todos os ntimeros positivos.»

Vamos comecar por demonstrar que a condi¢do &) € sufi-
ciente, podendo escolher-se as constantes .S, de acordo com ¢).
Facamos

4) Xn/z = )(nk_')(,nk) Fnk (x) : Fnk (x’{"y,nk)

e consideremos, para cada 7 e &, a varidvel casual X, res-
tricio de X, ao intervalo fechado de —D a +D. Entdo

E(Xly) = fmsp wdFou(®), Su= Xl + £ (X))
2 Xuk - Sn =2 [X~n/e - E(Xck)] .
k k

A regifio |2 X,s—S. |> ¢ ¢ aunido das duas regides (dis-
k
juntas)seguintes: |2 X,z—.S,|>¢ acompanhado de 3Xu=2Xu
k & k
e |2 X,s—S.|> ¢ acompanhado de 3 X2 X)p. A primeira
® k 3

destas regides estd contida na regido (talvez melhor no acon-
tecimento) | 3[ X}z —E (Xix)]|> ¢ e a outra é coberta pelo con-
k

junto das regides (dos acontecimentos) | Xt | > D, | Xoe| > D, ...
-+ | X, | > D. Logo
5) P(|2Xnk"‘snlé.5)é

k

£ 2P (| X > D)+ P(12[Xu— EX)] > 9
Representemos por /% (x) a fungdo de distribuicdo de

Xk =Xiw— E(Xix) e por F}(#x) a fungio de distribui¢do de
k
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Sai
eZ-P(IX,;"“}ée)éJ“ ¥ dFT (x) £V (X)) = 2V (X%)
MED k
(A, fim de §4 e II e III' de § 7). Donde
6) O OPUXN 9 Z () 2V (XA).
Como
V 1:)': éE Xlz2 = anIFnz Ac
X2 EE) = 2 dFu()
tiramos de 4), 5) e 6) a desigualdade
7) . P(IZXnk—Sn{é.a)é
k

éZ" 1) [ & dF o (x4 y) + [ AL (4L ]
; _U)jng ¢ () J1x|>D ()

Pois bem, escolheram-se as constantes .S, de acordo com
c) € assim 7) prova a suficiéncia das relagdes &).

Vamos agora mostrar que a condig¢io a) é necessaria.
Suponhamos primeiro que as varidveis X, obedecem
a lei dos grandes nimeros e sfo simétricas. Entdo y,.==0 e
Jur (2) € real [3) de §4 e A, 11l de §8]. Logo

[ S @14t = [ 1= [ cos (t2) dF o (w) ] dt =
= 2 'fze (I—senx/x)df 7 (x) [A, 11 de §4].

Ora, para |x]| £ 1, 1 —senx/x > a%/3! —x4/5! X 19 #%/120 e,
para |x|>1, 1—sena/x >1—sen1>1/3!—1/5! = 19/120. Logo

1 : 19
Z 1— nk t d _—_._.Z 2 2 1
jq k[ S (1)) 60 k[fﬂg{xdF,(x)»L

? 19 [ ,
+P/|xl>1a7F”k(:L)]=—-E6_%jkfll(x)dFﬂ]‘(x)'

Ora, dado # suficientemente grande, a segunda parte de II
mostra que cada f.c. 7eal f,(¢), considerada no intervalo
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|2l £ 1, se confunde com o seu moédulo. Entdo, pela primeira
parte de Il e por A, Ill de §4,

Jim 2 [ /(%) dF o (x) = 0

ntw kJ R
ou seja a condi¢lo a), com D=1 e yuw==0.

Cumpre-nos agora levantar a restricio y.»==0. Para este
efeito vamos usar uma técnica, denominada de simetrigacdo,
que consiste no seguinte: Para cada » associem-se as varid-
veis X, outras Y, independentes entre si e das primeiras,
escolhidas de modo tal que cada varidvel Y, tenha a mesma
lei de probabilidade que a variavel X,; homdloga; em se-
guida formem-se as varidveis casuais Z = X,p— Y.

Como a f.c. de Zyp € | fur(®)|? [A, IV de §7,1)de §8 e
IV de § 6] ela é real, portanto duma lei simétrica [A, Il de § 8].

Doutro lado, 3) da 11| £, (£)|*—>1 o que permite concluir que
k

as varidveis Z,; obedecem a lei dos grandes nimeros. Se re-
presentarmos por H,;(x) a funcdo de distribuicdo de Z,; sai

lim 3 [ 7 (%) dHup (%) = lim 3 E [hy (X — Yi)] = 0.
R ntw k

ntw k

Em virtude de Il de § 4 e de A, 5) de § 5, resulta

0=lim 3 E[/(Xpt— 7)) = lim 3 /“R By () dF (24 i)
ntw k

nto k

ou seja a condi¢fo a), com D=1.

Para todo o x tem-se, se D>1, /u(x)Lhp(x)LD?. (%) e,
se D< 1, D? Jny(x)ZLhp(x) £ 7 (x). Portanto, se as varidveis
X,» obedecem a lei dos grandes numeros tem-se a condi¢do
a), seja qual for o namero D>0.

Finalmente, se a condi¢do @) ou b) se verifica para um
certo D >0 tem-se a lei dos grandes numeros, pela primeira
parte da demonstra¢do, e depois sai @) ou &) com qualquer
D>0, pelo que acabamos de ver.
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A primeira relagdo 4) de IIl e as proposi¢des I e Il de §5
provam o seguinte:

IV) «Se as varidveis casuais X,;, independentes por
linhas, obedecem a lei dos grandes numeros as mesmas
variaveis, centradas em medianas delas, saem fortemente
infinitesimais e portanto infinitesimais. As proprias varidveis
X.» saem (fortemente) assintoticamente constantes.»

Retomemos arelagio ¢) de IIl. Dado um niimero positivo
n tem-se, com # suficientemente grande,

sup If _y m P )| <0 (V' de §4)
k |v|=

e pode escrever-se S, = 2 .4,;, onde as grandezas A, sdo
13

constantes assintéticas das variaveis X, (IV de § 4, com

7' =7"=1/2). Se a sucessdo 2 X, admitir as constantes de
k

estabilidade S; e se ¢ for um numero positivo arbitra-
riamente pequeno tem-se, para » suficientemente grande,
h— 2 Auw=1¢,, com |4, | £¢ (ver 1) de § 7 e I de § 6). Podemos

P

por .S;’, = 2 (Aur+ ¢ [ k). Dai a proposigao (I de § 4):
k

V) «Se as varidveis casuais X, independentes por

linhas, tiverem somas 2 X, estdveis com respeito a
1=k

quaisquer constantes estas sdo por sua vez somas de cons-
tantes assintoticas das varidveis.»

Observacdo: Se escolhermos de modo arbitrdrio as cons-
tantes assintéticas A,; das varidveis X, (sujeitas a lei dos
grandes numeros) ndo se pode afirmar que as somas 2 4,; séo

k

des numeros. Por exemplo, se for 2 4,,=S, e A= A +
k
+1/n, tem-se 2 A} =S, + %, [n e pode acontecer que &, /»
k

nio tenda para zero quando 7 1o,
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Ed £

Retomemos a demonstrag¢do de III. A primeira parte ndo
se altera se substituirmos, nas rela¢des 0) e ¢), as medianas
y.x POT constantes assintoticas quaisquer A,;z.

Suponhamos que existe um par fixo de numeros y' e 7"
tais que 0<7'£y"<1 e que se verifica, para todo o # suficien-
temente grande, a desigualdade XS?;)éA,,k éxg;:), com 1LkLbk,.
Entdo as grandezas 4,; sdo constantes assintoticas (IV de §4)
e sido quantis de ordens (porventura varidveis) 7,., com
v Ly Z7y" (ver pag. 25). Na segunda parte da demonstragdo
de IlI temos agora

E [l (X — Yor)]> inf (7, 1—9") - £l (Xor — Aui)]

(Il de §4) e chegamos a mesma conclusdo final, com A.r em
lugar de y.x. Podemos pois generalizar III como segue:

VI) «O enunciado de III permanece se substituirmos as
medianas y,; por outras constantes assintéticas A4,;, desde
que exista um par fixo de numeros y' e 7, com 0<y'£Ly"'<1,
tais que se tenha, para todo o # suficientemente grande e
uniformemente em %, y__ﬁ?}?’éA,,kéXQ;').»

Suponhamos agora que as varidveis X,, obedecem a lei
dos grandes ntmeros e que as constantes assintdticas 4,z ndo
satisfazem a dupla desigualdade de VI, mas sdo tais que

ng}e)'_":;zk:Ank<X9k)’ com lim sup &x=0 (I de §4).
ntw k&

Quando 71 oo tem-se IV de § 7 e lll e I de §5)

k

2 ’ dEt x+Ane —0.
J i p sl )

Pois que (a-+b)*.£2(a®+ 6% sai, para » suficientemente grande,

P x2 ank (x+A71k) =

k |v|=<D

=2 o )2 A, (1) £
/]J"f‘t’,,“,ﬁ_D ('y+ ) k) k(-y+7nk )—

k

£ ) 2 2dﬁ‘7” o C’z ' anv (.]/) .
< 2 : [L/vlylégD }' k (y_I—anc )+ 2k ﬂy\é?D ¥; (}’-H("L :i
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Por causa de VI tem-se entéo

limz [ &2 dF (- Au) = 0,

#lw & |v|=D

desde que 1i¢m EC?;“L:O, 0 que sucede certamente quando
niw

sup G = o(ky').
k
Concluimos que VI subsiste se, para todo o # suficien-
q y P
temente grande,
AE) — e £ A < xSy, com liTm ]2 g = 0.
nwTow n

Analogamente se prova que VI subsiste se, para todo o
n suficientemente grande,

A < A £ 78 + ik, com  lim 2 #jf =0,
ntn k
Como as parcelas das somas das relagdes 4) de I sdo
nido-negativas podemos sobrepor os dois casos ultimamente
tratados e o caso analisado em VI para alcangarmos uma
nova generalizagdo de III, a saber:

VII) «Para que as variaveis casuais X,;, independentes
por linhas, obedegam a lei dos grandes nimeros é condicdo
necessaria e suficiente que exista um numero positivo D tal
que se tenha
a) lim 2 R hp (%) dF (% + Au) =0

nto 1=k=<k,

ou, equivalentemente, se tenha

b) hm 2 ,/’;t']>D di;‘nk (x+A1;Ic) =0 =

"1‘00 1=k=ky

=lim 2 jméu W dF (x4 A,

nteo 1=k=k,

para alguma sucessdo dupla de constantes assintéticas 4,
das varidveis X, sujeita a restri¢gdo seguinte: Existe um par
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fixo de ntmeros 7' e 7", com 0<y'Ly"'< 1, tais que se veri-
fica, para todo o » suficientemente grande e uniforme-
mente em %,

¢) A0 — e £ A L3O F 1ol
onde 7 € 7, sdo numeros positivos que satisfazem a

lim 2 #h=1lm 2 22=0.
nho 1=h=k, nheo 1=k=k,

Em particular, pode por-se A=, com 0<y<1.
As constantes da lei podem escolher-se de acordo com

a formula

d) Su = 2 Ank + x ank (x+Atzk)] .

I=k=ky |x|=D

Se a condigdo a) ou &) se verifica para um certo numero
positivo D e para uma certa sucessio de constantes assinto-
ticas sujeitas a ¢) a mesma condi¢do verifica-se para qual-
quer nimero positivo e para qualquer sucessdo de constantes
assintoticas sujeitas a ¢).»

Dois exemplos:

1.°) Ponha-se F,(#)=0 ou 1, conforme x£1/(n'*+£) ou

x>1/(n'P+k), e ky=o(n"?) (leia-se da ordem de n'*). Verifi-

ca-se a lei dos grandes numeros, com .S, = 2 1/(n'?+£); tem-
k

-se y(0=1/(n'®+ k), para todo o y admissivel; pode tomar-se
A.=0 e portanto &z =1/(n'"®+ &); finalmente sup &} =
k

= o (17) = o(n7'?) e as constantes A4, sujeitam-se a ¢).

2.°) Dado 7, ponha-se, para todo o & F,(x¥)=0 ou 1,
conforme xZ#n'® ou x>n"'8 e suponha-se %, = o(n*?). Veri-
fica-se a lei dos grandes numeros, com S, =n"1. %,; dado »,
tem-se x)=n"' para todo o # e y admissiveis, e pode to-
mar-se A,,==0 e portanto ;=" para todo o #; final-

mente lim 3¢,%=£0 e as constantes A, ndo se sujeitam a ¢).
nto k
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Pois bem, agora a segunda parte da condicdo &) de VII ja
ndo é respeitada visto que, para » suficientemente grande,

S A, (%) = S = o(1).
%fnwéu # dF (%) = 2n o(1)

Se as variaveis X, forem infinitesimais sabemos que o
mesmo pode afirmar-se das diferencas X, —pEu (5) e VIII
de §4).

Ora (1/2) - (pLor— st =(1/2) -

. [f (x—'){nlr) dFm‘" (x) Hf Yk dEtk (x)]g £
=P |#|>D

é l:f }’ ank (}’+Xnk):]2 +
|+t | =D

| | dFus(y ) [ £
v IJ’+7.11I;!>D

pd o dF,,; + Lotk :r+ \}” . [ dFm.- E ]2’
”[Jm_SJDU)] k(5 + ) Yo JIJ'!>DI2 (¥4 )

desde que 7 seja suficientemente grande. Viu-se em A, fim
de §4, que £?*(X) £ E(X?); sai entdo

(1/2) . E(DE1;I.-—X117-)2 é

é 2 [f }’2 dFu/r (_y+X1zk)+X?1k f dEzk (}/-f-’)(m;)] .
Bl lyl=2D |21>Dp2

Atendendo agoraalelll de §4 (4u=0¢e A =yu) e a Il
e VII de § 7 (4w = pEur € 7'=y"=1/2) tiramos a proposi¢do
seguinte:

VIII) «Para que as varidveis casuais infinitesimais X,;,
independentes por linhas, obedecam a lei dos grandes ntme-
ros é condi¢do necessaria e suficiente que exista um namero
positivo D tal que se tenha

a) lim 2 hp (%) dF (x4 pEu) =0

nhoo 1=k, R
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ou, equivalentemente, se tenha

b) lim 3 ]1 o WP D) = 0 =

ntw 10k,

=1lim 2 /.I b 2> dFu(x+ pEu),

nho 1ShSh, .

onde
Enc: dF,“ .
b jm_gnx + ()

As constantes da lei podem escolher-se de acordo com
a formula

6) Sn = 2 DEnk +f X dﬁ'nk (x + DEnk):l .
|x]=D

1=k=hy

Se a condic¢do @) ou 4) se verifica para um certo ntimero
positivo D ela verifica-se para todos os nimeros positivos.»

Citamos VIII porque os autores usam centrar as varia-
veis X,. em medianas (ver III) ou, na hipétese da infinitesi-
malidade, em esperang¢as matematicas truncadas.

Como D> 1 implica, para todo o x real,
21+ 8% £ hp () £ (D4 )21+ #)
e como [ <1 implica, também para todo o x real,
D2 x2](14+4%) £ hp (%) £ 2 %) (145%)

podemos dar ao teorema VII outra forma, por vezes mais
pratica do que a primitiva:

VII') «Para que as variaveis casuais X,r, independentes
por linhas, obede¢am a lei dos grandes numeros ¢ condigdo
necessaria e suficiente que se tenha

. “ x2 _—
(l} llnl P fR “‘l_f_x_?'dﬁ;zk(x"l"Aﬂk)_*O;

nlw 1=h=k,

para alguma sucessdo dupla de constantes assintoticas A
das variaveis X, sujeita a restrigio seguinte: Existe um
y
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par fixo de numeros y' e 7", com 0<y'£Ly"< 1, tais que se
verifica, para todo o # suficientemente grande e uniforme-
mente em 4,

b) XE?Z) - 77417-‘ _é Ank s 7“/’) + 77%/: 3

= hnk

onde 7). e i sio numeros positivos que satisfazem a

im 2 #i=1lim 2 ¥ =0.
nlw 1=Sk=k, nhw 1=k=k,

Em particular, pode por-se A=y, com 0<y<1.
As constantes da lei podem escolher-se de acordo com

a férmula

G) Sn == 2 An!c + D xdF;zA‘(x+A1zlr)]y

1=k<ky |v|=

onde D significa un namero positivo arbitrério.

Se a condi¢do @) se verifica para uma certa sucessio de
constantes assintdticas sujeitas a 4) ela verifica-se para qual-
quer sucessdo de constantes assint6ticas que se encontram
nas mesmas circunstancias.»

Do mesmo modo que se passa de VII para VII' também
se passa de VIII para

VIII) «Para que as varidveis casuais infinitesimais X,
independentes por linhas, obede¢am a lei dos grandes ntime-
ros é condi¢do necessdria e suficiente que exista um numero
positivo D tal que se tenha

2
d) liln 2 '—i‘:“—' ank (x “]’" DEnk) =0,

ato 1=k=k] B 1-+2°

As constantes da lei podem escolher-se de acordo com a
féormula ¢) de VIIL

Se a condigdo a) se verifica para um certo nimero posi-
tivo D ela verifica-se para todos os niimeros positivos.»
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. . P
Observacdo: Se quizermos que 22X, — 0 quando 71t oo
k

a condicido necessdria e suficiente de VII ou VII' vem acres-
cida da relagido

el
CL
\./

"f

lim A + xdf, Au) =0 (3
”L sl J[r{SD de‘}' zI)J v (v

nt» 1<I<A

Analogamente a condi¢do necessaria e suficiente de VIII
ou VIII' vem acrescida da relagio

lim 2 [DEHI; +j: |<D xan.’c(x"l—DEnk)] =0

ntow 1=k,

Retomemos mais uma vez a demonstra¢io da primeira
parte de I, substituamos ai as medianas y,. por constantes
assintoticas quaisquer A, (relativas as varidveis X,.) e acom-
panhemos o desenvolvimento até ao fim da férmula 6).

Sendo
V(X)) = E[(Xi — EXi)P] = EXiD) — E2(X0) =

= x2 d}?nk (x + Anl.') - [ /

Jlxl=D l#|=D

X dl;‘nk (x +Ank):r

a variancia da varidvel X,.— A, truncada pelo intervalo
fechado de — D a + D ou, em linguagem mais simples, a va-
vidncia de X, — Au. truncada em T D, sai, com ¢>0 qualquer e

n =2 [Ank +f xd]?ﬂ’» (x+A”")] 1
This) e P(|2Xu—S,x)22fe f AF e (%+ Au) +
E E [#|>D

2 nk wk) [ anc Auc ’ .
+/;xI§D g dFk(x+A I) lﬁ./lrléD v P l):l }
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Entio uma condi¢io suficiente para que se verifique a
lei dos grandes numeros € que exista um numero positivo D
tal que se tenha

lin] 2 dFMk (x+ Ank) =0 =
ntw k x| >D

== 1 2 2d}?nc Anr - A dFﬂf A"‘ ’
anIolc} k {/V[r|<Dx ](x+ ]) [A/I"'|§Dx 7(x+ ]‘)] }’

podendo escolher-se as constantes da lei de acordo com a
formula

= 2 [Ank +f xank (x’{‘Ank)}- O
ko |x|=D

Vamos provar agora que a condigfio referida ¢ também
necessaria.

Suponhamos entio que as varidveis X, obedecem a lei
dos grandes numeros e que as constantes assintoticas 4
sdo tais que se tem, para todo o #» suf1c1entemente grande e
uniformemente em /e, X — Lo = A <3O,

1l

A primeira parte do raciocinio feito logo a seguir a VI pode
reproduzir-se sem altera¢fo e conclui-se da mesm a forma que

lim ZJ dFu(x4+Auw) =0, com D>0 arbitrario.
nto &k x| >D

Posto isso representemos por A, a regido |y-+&u| < D
e por F{1’(y) a fungdo de distribuigdo Fu(y+x(?). Entio,
para # suficientemente grande,

2 Ir. -2dEzi' g An'\— r /1 dll?n‘/' IAnc :|2 =
k{.}m p % W (ot ) | J ismp T 2 }

A

_2 2dF O ( _r . dFO) ()
I [.Ank 7 4 JAnk <k /_J

(*) Até esta altura da demonstragfio ndo nos servimos da propriedade
das constantes A4, de serem assintoticas.
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cot [ parg(e)-[1- [ aEgp )]+
Ank Ank e

2, (1) . - i (1
var [ arp)-[1-[, aFpe])<

22{ [ AP~ INEZHOI N

Lan-sup [ AFI(y)-3 [ dFO) () +
IcPJIylg?Diyi ke (y) kJ|y|>D/2 nk (-y)

+ P 2 dF ) (), com n>>0 arbitrariamente pequeno.®
ko \y1>Dj2

No dltimo membro da desigualdade anterior o somatério

dos integrais de »* nfo excede §/I o YAl (y+20)—0
VARGE=
(VII), o somatério dos integrais da unidade também tende
para zero (mais uma vez VII) e o mesmo se diz do supremo
dos integrais de | y]| (V' de §4).
Concluimos que a hipdtese y{) — Gy = A < x) implica

lim 2 {f x? dﬁ‘”’i(x +Aazk)"[f xank(x‘l‘ Ank)]2}:O.
nto L lw|=<D lx|=<D

A tGltima relagdo também é verdadeira quando ()<
< A =700 + i (raciocinio semelhante) e quando 1D £
£ A £y8 (consequéncia de VII). Podemos sobrepor os di-
versos casos conforme fizemos na demonstracio de VII; con-
cluimos entfio que a mesma relagdo é verdadeira para quais-
quer constantes assintéticas.

O que precede e a observagdo feita a seguir a VIII' habi-

litam-nos a enunciar uma proposi¢do a que podemos chamar
teorema fundamental relativo a lei dos grandes mimeros :

(*) Para o raciocinio a estabelecer bastava que v fosse limitado.
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I1X) «Para que a varidveis casuais X, independentes
por linhas, obedecam a lei dos grandes numeros é condicio
necessaria e suficiente que exista um numero positivo D tal
que se tenha
a) lim 3 /" AF e (%4 A = 0 =

[#|>D

ntw 1=k=k,

nhtw 1=k=k,

~[ [, s a0,
l#|=D -

para alguma sucessio dupla de constantes assintéticas 4,
das varidveis X,.

Se a condigio a) se verifica para um certo numero posi-
tivo [ e para uma certa sucessdo de constantes assintéticas
A a mesma condi¢do verifica-se para qualquer ndamero
positivo e para qualquer sucessfo de constantes assintéticas.

As constantes da lei podem escolher-se de acordo com a
féormula

5) &=2[&w

1sk=ky

= lim 2 {./‘I ' Dx2dF“k(x+A,,k)—
ri=

X dEﬂc (x+ Anl.:)} .
D

Izl=

. < v P .
Se quisermos que 2 X, —0 quando #}oo a condic¢do
1=kl

necessaria e suficiente ¢ ainda a) e mais a relagio

lim 2 [Ank +\/v|x[§D xdF,; (AH‘AM.:)] = 0.»

nto 1=k=<k,

O exemplo 2.° da pagina 47 mostra que o teorema VII
nio tem generalidade suficiente para abranger todas as
sucessdes (duplas) de constantes assintéticas. Por isso o teo-
rema IX tem real interesse.

Pois bem, atendendo a I e Il de § 5 e pondo A,,=0 no
teorema fundamental, obtem-se uma proposi¢io frequente-
mente citada:

X) «Para que as varidveis casuais X,;, independentes
por linhas, sejam (fortemente) infinitesimais e obedecam a
lei dos grandes numeros é condigio necessaria e suficiente
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que se verifique, para fodo o numero positivo ¢ e para algum
ntmero positivo D, a condi¢do

a) lim 3 f dF (%) = 0 =
E

nto 1=h=k,

B T R oo o P
=lim 2 i X2 d P (%) — sdl o (x) ] L.
nteo 1=kl L/ |#|=D LJirléD 11
Se a condigdo a) se verifica para um certo namero posi-
tivo D) ela verifica-se para todo o nimero positivo.
As constantes da lei podem escolher-se de acordo com
a férmula
é) Sn = P xdF,,;, (x).

1=<k=k, || =D

. P .
Se quizermos que 32  X,;—0 quando 71 o a condi¢io
1=k,

necessaria e suficiente ¢ ainda @) e mais a relagfio

lim 2 Jq & dlFu(x)=0.»
fel=D

nho 1=Sklk,

E indispensavel que a condicdo a) de X se verifique para
fodo o numero ¢>0. Vejamos um exemplo: Tome-se F,.(x)=0
ou 1, conforme ¥ L 141/(n+4%) ou x>1+1/(n+4£). Entdo as
grandezas A, =1+ 1/(n + &) sdo constantes assintoticas;
como sup | A:]— 1 quando # 4t ndo ha infinitesimalidade

(I' de § 4). Todavia, @) de X verifica-se para D=c¢=2 e temos
a lei dos grandes ntimeros, com S,=2[1+1/(n-+£)]. Este
k

resultado estd de acordo com as notas das paginas 52 e 53.

Se a varidvel X, tem esperan¢a matemética, seja £,
¢ uso chamar desvio de X, a diferenca X, — E,.. E 6bvio que
as variaveis X,; admitem as constantes assintéticas (fortes)
E,. quando e s6 quando os seus desvios sdo (fortemente) infi-
nitesimais. Dai um corolario de X, a saber:

X') «Para que as varidveis casuais X, independentes
por linhas e dotadas de esperan¢as matematicas £,,, tenham
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desvios (fortemente) infinitesimais e obedegcam a lei dos
grandes niimeros ¢ condi¢io necessaria e suficiente que se
verifique, para fodo o nimero positivo ¢ e para algum namero
positivo D, a relagdo

[l) liﬂl 2 f d]?n/r (x+ Enk) =0=
[#{>e

ntwn 1=ZhSh,

_lim 3 { fmgpxédﬁ,,k(erEnk)—[ f‘ HéDxdF,,k(mEnk)T}.

nte 1=E=SK,

Se a condicdo @) se verifica para um certo nimero posi-
tivo D ela verifica-se para todos os nimeros positivos.

As constantes da lei podem escolher-se de acordo com a
formula

b) Sn = 2 [Enk +ﬂ \=D xdFr1k(x+Enk)]-

I=k=hn

. e P : ~
Se quizermos que 2 X,;— 0 quando # 1o a condigdo

1<k=<ky,

necessaria e suficiente ¢ ainda @) e mais a relagdo

lim = [E,,k+ wdFu(x+Eu) | =00
|

nte 1Sk=k: Jlxl=D

Se a variavel X,; tem variancia, seja V,;, ela tem espe-
ranca matematica E,;. Como, para qualquer niumero positivoe,

V= | &dFu(x+Ep)>e dr, "
[ e B i

€ ]rléé

” 2
+ a2 dEtk (x+E71k) — [J] _ xank (x+E1zk>]
v|=¢
tiramos de X' um novo corolario, a saber:

X'") «Para que as varidveis casuais X, independentes
por linhas e dotadas de variancias V., tenham desvios (for-
temente) infinitesimais, obedecam a lei dos grandes numeros
e sejam tais que lim 32 V=0 ¢é condigdo necessdria e

nto 1=Sk=<ky

suficiente que se verifique a relagdo
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a) lim 2 f 2 dl (% + Eu)=0.
nto 1=k=k, J R
As constantes da lei podem escolher-se de acordo com a
formula &) de X' (D um numero positivo arbitrario).»

Deve notar-se que zero € a variancia da lei unitdria,
para efeitos de enquadramento futuro de X" em teoremas de
convergéncia para leis limites que nio sdo necessariamente
unitarias.

§ 8) Casos particulares da lei dos grandes numeros

Procuremos agora aproximar-nos dos resultados classicos
relativos a lei dos grandes numeros, particularizando para
este efeito os resultados gerais atras obtidos.

Nesta ordem de ideias consideremos a sucessio | 5,{ de
ntmeros positivos e a sucessdo |X,| de varidveis casuais
independentes, representemos por y{¥) um quantil da ordem
y de X, e designemos por 7, (x) a fun¢do de distribuicdo
desta varidvel.

Posto isso, facamos Xup =X/ By Auwe=Ar| By € &y = n.
Entdo a funcio de distribui¢do da varidvel X, — A=
=(Xi— Ay)| B, satisfaz a relagéo Four (x+ A =Fi (B x+ Ay)
[A, 5) de § 5] e 8) de § 4 mostra que {0 =y B.(0<y<1)
de modo que as variaveis X,/ B, , supostas assintoticamente
constantes, admitem as grandezas y{)/ B, como constantes

assintéticas da forma 4./ B, (Il de § 4). Pois bem, se subs-
tituirmos B, x por x (e portanto x por x/B5,) o teorema fun-
damental de § 7 toma o aspecto seguinte:

I) «Dado o par constituido pela sucessio de ntmeros
positivos B, e pela sucessdo de varidveis casuais indepen-
dentes X, , a condi¢do necessaria e suficiente para que as
variaveis casuais X,/ B,, com 1ZLk<Ln, obedecam a lei dos
grandes ntmeros — isto ¢, para que haja constantes .S, tais
que seja, para todo o >0, liTm P(| 2 Xi/Bu—Su|>¢)=0—

nlrow

1=k=n

¢ que exista um numero positivo D tal que se verifique
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a) lim 2

/ Al (x+ A)=0~
nte 1=5h=n J |x|>DB,

= lim <(I/B,3) :

nlw

([ oz, e 40—

2
1=k<n

B [f:xléDB,, xdl (x+A/f)]2}>’

para alguma sucessio (dupla) de constantes assintéticas
Ax| B, das variaveis X,/B, .

Se a condigdo a) se verifica para um certo numero posi-
tivo [ e para uma certa sucessio de constantes assintéticas
Ar/B, a mesma condi¢do verifica-se para qualquer numero
positivo e para qualquer sucessio de constantes assintéticas
da forma mencionada.

As constantes da lei dos grandes ntmeros podem esco-
Iher-se de acordo com a {érmula

b)  S.=(1/B). 3 |4+ xdﬂ,(.erAk)].

1=h=<n |*|=DB,
_ P
Se quizermos que 3 X,/B,—0 quando #tco a con-

1=k=n

di¢do necessaria e suficiente ¢ ainda @) e mais a relacio

lim{(l/B,,)- 3 [A,CJF‘/”INQB"xdF,,.(x+A,¢)_]}=o.»

nto 1=r=n

Seja ¢ um namero positivo dado e suponha-se que B, 1 co.
Como a regido onde | X,,/B,, |>¢ ou, equivalentemente, onde
! 2 XA'/Bm—(Bm—l/Bm) . 2 X;/B,,l_l ' > ¢ esta contida na

1

1=k=Sm =h=Zm-1
unido das duas regies onde | 2 X,/B,|>¢/3 e onde
1=k=m
[ B [Bu)- 2 Xi/Bui|>¢/8, esta ultima contida na re-
1=k=<tn—-1
gido onde | 2 Xo|Bua|>¢/8, sai P(]X,,,/B,,,|>s)é
1=h=m~-1

ép(' 2 Xl;/Bm|>5/3)+P('l Em-l)(k/Bm—ll>5/3)-

1=shk=m =k
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N - , P . .
Entdo, dado >0, 2 X,/B,— 0 quando # oo implica
n

1=<h=

a relagéo
P(| X/ Bum|>¢) <38, para mXmy=m(s,9).
Esta, por seu turne, implica a relagéo
'P(|X,,,/B,,}>e)<6, para myZLmZ n, com n arbitrdrio.
Doutro lado tem-se, sendo  fixo e tal que 1 Zm <y,

ﬁ | B d]?m (x)ZP(IXm/Bn]>E)<5; Pafa 7’!}_”;44:%,”(5,6)-
x| >EB,

Pondo agora NV =sup (mo, Sup 1,), sai

1= m 1

sup P(|X,./B.|>)£9, para nx N,

1=m=n
o que equivale a afirmar que as variaveis X./B, sdo infini-
tesimais (ver 1) de § 4 e a observagdo a seguir a 2) de § 4).

Acabamos de ver o seguinte: Se a sucessdo de nume-
ros positivos B,te e se as varidveis casuais independen-

. P =
tes X, sdo tais que 2 X,/B,— 0 quando 71co, entdo as
1=Shk=n

variaveis X/ B, saem infinitesimais. Daqui e de I tiramos
a proposi¢do seguinte (ver também a nota da pag. 52):

II) «Dado o par constituido pela sucessdo de ntimeros
positivos B, 1o e pela sucessio de varidveis casuais inde-
pendentes X,,, a condi¢do necessaria e suficiente para que as
varidveis casuais X,/ B,, com 1ZLkZn, sejam (fortemente)
e e . P .
infinitesimais e tais que 2 X, /B,— 0 quando # 1o, € que

I<k<n
exista um numero positivo D para o qual se verifique a
relagdo
a) lim 2 / dF(x) =
|x|>DBN

nlw 1=Sk=Sn

=1im[(1/B,,). p> fmgmﬁ xdﬂ.(x)]z

nto 1=h=n
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— lim <(1/B,‘%). 3 {/;f1<ps 2 dF (%) —

ntx
- [f;-vlgDB” Al (x):r}> =0

Se a condi¢do a) se verifica para um certo ntimero posi-
tivo D ela verifica-se para qualquer numero positivo.»

IT generaliza um resultado citado por Lotve.

Ja vimos que ¥ ="/ B,. Pondo iy =i/ By € =
— | B,, a desigualdade

ngkl) — Tk e Ank £ XE?];I) + "’7%7\'1
com

lim 2 4} =1lim i =0,
nhw 1=h=hy, ntw 1Sk,

toma o aspecto
A1)~y £ A 2557 4
com
Um[(1/By) - 2 #]=lim[(1/BY). X =% =o0.

)
ntoo 1=h=n nto 1=k=n

O que precede permite reformular o teorema VII' de § 7
com o aspecto seguinte:

III) «Dado o par constituido pela sucessdo de numeros
positivos B, e pela sucessdo de varidveis casuais indepen-
dentes X,, a condi¢do necessdria e suficiente para que as
varidveis casuais X;/B,, com 1LkZn, obedecam a lei dos
grandes numeros € que se tenha

a) lim 3 [t dF (et A) =0,

nte 1=Sk<=n )/ i

para alguma sucesséo (dupla)de constantes assintéticas A,/B,
das varidveis X, /B,, sujeita a restricdo seguinte: Existe um
par fixo de numeros 7' e 7/, com 0<yLy'< 1, tais que se
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verifica, para todo o » suficientemente grande e uniforme-
mente em 2Ln,

5) A — th £ A £+ o,
onde ;. e 7 sio numeros positivos que satisfazem a

lim [(1/B) 2 #*]=lim (1B 2 w*]=o0.
nto 1=k=n ntow 1=r=n
Em particular, pode por-se 4, =y, com 0<y<1,
As constantes da lei podem escolher-se de acordo com a
férmula

¢)  S,=(1/B,). = ["AHL xdFy(x+A4) ],

1ssk=n | |*|=DB, :
onde [ significa um numero positivo arbitrario.

Se a condi¢do a) se verifica para uma certa sucessio de
constantes assintoticas A, /B, sujeitas a ) a mesma condicéio
verifica-se para todas as sucessdes de constantes assint6ticas
que tém a forma mencionada e se encontram sujeitas a 4).»

No caso particular 4; =y =y, o teorema III d4 um
resultado de FrLLir e no caso ainda mais particular A=y,
B,=mn o mesmo teorema refere praticamente um resultado
de KoLmocorov.

Observagdo : E claro que podiamos adaptar também o
teorema VIII' de § 7 as sucessées X:/ B, do mesmo modo que
o fizemos para VII'. A este propésito convém notar que, desi-
gnando por pp, [ a esperanga matematica de X, truncada
em + DB,, um céalculo facil di pEuy = (1/B,). pp, Ey, para
lLkhZLn,

Entrando agora decididamente no campo dos estudos
cldssicos, passamos a supor que as varidveis X, tém espe-

rangas matemdticas £, que B,=#n e que S,= 3 E/x.
. 1=k=n

Posto isso apliquemos II as varidveis (X,—£)/#, com
1£k<n. Obtemos a proposi¢do seguinte:
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IV) «Dada a sucessio de variiveis casuais X, inde-
pendentes e dotadas de esperancas matematicas £, a condi-
¢do necessaria e suficiente para que as varidveis (Xe—E) [ n,
com 1 ZLkLn, sejam (fortemente) infinitesimais e tais que

P
2 (Xi—E)|n—0 quando #1oco

1=k<n

A

€ que exista um namero positivo D para o qual se verifique
a relacgido
a) Hm 2 dF (v + E)) =

ntw 1=k=n || >Dn

= lim [(1 jn). 2 jq xdly (x + E/cﬂ =
1 || =< Dn .

ntw =hi=n

= lim <(1/7¢2) .3 {/' P dF (x + E)) —
1=h=n |x| = Dn

nieo
- [-/:xlspf; xdF, (x + E’)T}) =0,

Se a condi¢do a) se verifica para um certo nimero posi-
tivo D ela verifica-se para qualquer namero positivo.»

Se fizermos D=1 em IV obtemos um resultado de Kop-
MOGOROV que traduz a conclusio mais geral a que tinha che-
gado a teoria cldssica no estudo da lei dos grandes numeros,

Vale a pena notar que a) de IV se transforma em condi-
¢do suficiente quando se suprime ai o quadrado de integral
que figura como termo subtractivo do ultimo somatério.

Admitamos agora que, dado >0 arbitrdrio, correspon-
dem nimeros a(9)=a e 6(3) = b > a tais que se tem

¥ %3
sup ( [ xdF,,(x—i—E,,)I_Ajsup] |x|dF, (x + E,) £ 93
n J blw<la 7 b<lx<la
nestas circunstiancias dizemos que os desvios X,—ZF, sdo
uniformemente integravess.
Sendo 7 suficientemente grande, sai entio

3N sup f ndF(x+E)> 3 AP, (x-+ E,)
|®>n

12020 12510 lx|>n
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e a primeira parte de a) de IV ¢é respeitada (D =1). Também

0=1lim [(1 [1) - 3 xdFy (x+Ek)]
ntw k v |>n )

e a segunda parte de @) de IV é respeitada. Enfim, com m<#,
(L/m)pe -3 j R dF (5 +E) £
I EAE=%a

~ sup (4| w) dFi (& + i) + sup || AP (w Eo);

J x| >m

x| Sm

como, escolhido >0 e fixado m de modo que o tltimo supre-
mo n#o exceda /2, o pentltimo supremo também nédo excede
3/2, para 2> (), resulta que a tltima parte de @) de IV ¢
" respeitada. ) Concluimos que IV impde a proposi¢do seguinte:

V) «Se as variaveis casuais independentes X, Xs,... Xo...
tiverem desvios uniformemente integrdveis, entéo
P
2 (Xi—Ep)/n—0 quando #teo.»

1=k=<n

A conclusdo de V subsiste em particular quando as va-
ridveis independentes X, tém esperanc¢as matemadticas e sfo
identicamente distribuidas. Este coroldrio constitui o feorema
de K hinichine.

Suponhamos agora que as varidveis casuais X, tém va-
riancias V. Entdo as variaveis X,p=X;/n, com 1 LkLn,
tem variancias V=V, /n2

Ora, caso as varidveis X,—F) tenham todas momento
absoluto da ordem p+1, com pX0, podemos escrever:

zf PG dE;(x%—Ez;);Ef %) 10| dF (5 Ex) >
k) R ko le)>

zf‘ N (%]n)dF, (x+ Ey)

k

>

- l(l/ﬂ) 3 f wdFu(x+E)|.
L ri=n

(*) A integrabilidade uniforme dos desvios confere limite nulo & parte
subtractiva de @) de 1IV.

(**) Para estabelecer V bastava tomar supremos em 1<{2<#n e pedir
sup (|a|,|8]) =0 (#%), com 0<% <1/2. Depois m = n?, com u <v<<1/2,
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Pondo agora p=1 e tendo em vista X" de § 7, inferimos
a proposi¢do seguinte:

VI) «Dada a sucessdo de varidveis casuais X, inde-
pendentes e dotadas de variancias 7} (e portanto de espe-
rancas matemadticas £), a condi¢Ao necessaria e suficiente
para que

Ajn). 2 (Xi— E,,A)—B»O quando # 1} eo,
1=k=n

as variaveis (X, — £,)/n sejam (fortemente) infinitesimais

e simultaneamente lim[(1/#?)- Z Vﬂ =0

ntw 1

i
W\

¢ que se verifique a relagdo

a) lim | (1/n%). = x?dF,».(xJFE,.A)]:'o.» e
ntow 1=k=n R
A parte de VI que afirma que a) ¢ uma condi¢do sufi-
ciente para que (1 /n) Z (X, E)— 0 quando 1t € rela-
tivamente antiga e constltm o chamado #orema de Markov-
-Tchebichev.

E ¢bvio que ) se verifica e portanto se tem uma condigéo
suficiente quando sup ¥ =o(#n) e, em particular, quando
k

sup V,< . No caso particular obtém-se entdo o chamado
1=nlw

teorema de Tchebichev como corolario de VL

(") Pode apresentar-se uma demonstragio diferente de VI.
Entre 5) e 6) de § 7 vimos o seguinte: Dados um niimero «>0 e uma
variavel casual X de variancia 7 e de esperanga matematica E, tem-se

1) P(|X—E|x6) £V,

um resultado conhecido pele nome de desigualdade de Tchebichev.
De 1) tira-se a desigualdade

P(‘%(Xk"'EQ/nI_L_e)é%Vk/(%‘zEz).

Daf e de X/ de § 7 inferimos também a proposigdo VI
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LExemplo: Suponhamos que cada variavel X, pode tomar
apenas os dois valores 0 e 1, o primeiro com probabilidade
gr=1-— pp € 0 outro com probabilidade p;; entdo £, =p; e
Vi=pe—pr £ 1/4 [A, exemplo 2.° de § 8]. Pode aplicar-se o
teorema de TcuesicHev e conclui-se que

(1/n)- , %< (Xk—pk)—i 0 quando nfo,
=hiEne
afirmacio esta que equivale ao vetusto feorema de Poisson.
Em particular, quando p; ndo depende de % obtém-se o anti-
quissimo feorema de Bernoulli.

Suponhamos finalmente que as varidveis casuais X, tém
segundos momentos £ (X}). Entdo, atendendo a parte final
de §4 de A, tiramos um coroldrio de VI, a saber:

VI') «Dada a sucessio de varidveis casuais X, inde-
pendentes e dotadas de segundos momentos (e portanto de
esperancas matematicas ), tem-se

(/1)
todas as vezes que

lim [(1/ﬂ2). 3 “R %2 dF, (x):l —0.»

nte 1=k=<n

2 (XI;—“‘Ek)"Z’O quando 721 co

1=i=u

i

E 6bvio que a condicdo suficiente de VI' se verifica quando
sup £ (Xi)= o(n) e, em particular, quando sup £ (X})< +oo.
k

; 1=nw
E de notar que P(]X,|>L,)=0, onde L, é crescente
e o(n'?), implica sup £/(X}) £ L5, = o(12). Em particular, pode
k

tomar-se L, constante (Uspensky).

Em seguida vamos procurar generalizar VI' para mo-
mentos que nido sido necessariamente da ordem 2,

Afim de desembaragar o caminho comegamos por em-
preender consideragdes preliminares que ndo deixam de ter
o seu interesse proprio.
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Sejam x;,43,...% os valores (distintos) possiveis duma
varidvel casual X simples e sejam p,, ps,... p; as probabili-
dades correspondentes, isto é, as amplitudes dos saltos cor-
respondentes da fun¢fio de distribui¢do de X. O momento
absoluto da ordem (nfdo-negativa) s de X é entio dado pela

expressdo M= 2 p|#:|° com a convengdo |x;|°=1, mesmo
1=i=l

que se tenha x,=0.
Sejam s;,8:,... nimeros nio-negativos arbitrarios. Tem-
-se, pela desigualdade elementar de Caucny,

Mscrsyrn =12 (| el - (u] e ) BT £
é % Pl; 1 X is( * ‘E’ ﬁklM;‘sg == Ms, ‘ Msz.

Depois, supondo que m é natural e que se verifica

om—1
M(SI—{-Sz—f-"'+Szm—’)/2m—l é ]w‘s1 . MSZ e M

£ Sowi—1 y

resulta
zm-—l

om
M(sl+32+ sasife 52”‘)/2"1 é M(51+32+ e 82m~—1) /2"““‘ :
gm—1

. M(SZ’"—I‘I'1+‘5‘2'""!4'2""‘“+32’")/2m_‘ é Msl . MSZ e MSZ’" .

Finalmente, se p for um numero natural que ndo seja
poténcia perfeita de 2 escolha-se » por forma que 27! < p< 27
€ ponha-se sy 1=Sp9="-=Sgm=(S1+ S+ -+ +5,)/p=s; entdo
(s14Se+ -+ 4-sgm)/ 27" = ps+ (27 — p)s]/2"=s e sai M 2 M, -
M., - M, - MP-2,

Concluimos que ocorre a desigualdade seguinte, valida
para todo o ntimero natural p,

2) M{Z,—,Lsi-;-.“—,ysp)/j) £ M, - M, - M,,.

Se a, b e ¢ forem numeros inteiros tais que a>&>¢>0
ponha-se a—c=p2, S1=8=++-=S43=C € St} =Sapis= "
o =Sa,=a; sal (si+Se+ - +8y) [ p=[(@—b)c+(b—c)a)/(a—c)=b
e 2) toma o aspecto seguinte:

3) Méz—-cé Mca—b . M:—c‘
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E facil de ver que 3) subsiste na hipétese um pouco mais
geral aX6>¢20.

Se a, 6 e ¢ forem numeros racionais nfo todos inteiros
tais que ax 6> cx 0 faca-se a=a'ld, b=10'|d e c=¢'|d, onde
as fraccdes se supdem de termos inteiros e nido-negativos.
Pois bem, aplicando 8) a varidvel | X|[/? e acs expoentes o'

xpoentes «/,
b' e ¢', obtemos a desigualdade

!

8) (240 (|1 1 ZI2 pul| ma Y P - [3pa( | a1y

Se elevarmos ambos os membros de 38') ao expoente 1/d
reproduzimos 3).

Caso um dos numeros @, & e ¢ seja irracional substitui-
mo-lo em 3) por ntimeros racionais convergentes para ele,
por um de cada vez, e fazemos uma passagem ao limite.

Concluimos que a férmula 3) é valida para todos os
numeros @, b e ¢ tais que aX b ¢X0.

Procuremos agora libertar-nos da restri¢do que | X| é uma
variavel casual simples. Para esse efeito suponha-se X qual-
quer e considere-se uma sucessio nfo-decrescente de varia-
veis casuais simples | X;| convergente para | X| [A, IIl de § 3].
Entdo, seja qual for s>0, a sucessdo de variaveis casuais
simples | X;|* € ndo-decrescente e converge para | X . Supondo
que existe £ (| X %), resulta £ (| X;])t £(| X)) [A, Il de §4] de
modo que podemos passar em 3) de varidveis simples para
varidveis quaisquer providas dos momentos necessarios.

Do que precede e de A, IV e VI de § 4, inferimos uma
proposicio auxiliar devida a Liapounov :

VII) «Se a, 6 e ¢ sdo numeros tais que aXb>c> 0 e
se a varidvel casual X tem momento da ordem a, entdo veri-
fica-se a desigualdade

4 [E(| X)L [E(| X1 - [E(| X[

A formula 4) € conhecida pelo nome de desigualdade de
Liapounov.
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Pondo ¢ =0 em VII, sai, para ax b>0, [E(|X]P))P <
Z[E (| X|*)]"*. Podemos enunciar o corolario seguinte:

VII') «Se a variavel casual X tem momento da ordem
positiva a, entdo [£ (| X|*)]¥* é uma fun¢fio ndo-decrescente
de « no intervalo 0<aZLa.»

Sucede que, sendo y uma variavel positiva e f um numero
maior que 1, a fun¢io B tem primeira derivada crescente e
portanto € fungio convexa no intervalo |6| Ly £ |a|. Logo

[(lal+]6])/2P2(1/2) - (|aff+]|5]F)

ou
la—bP <2t (Jaf 1|6 F).

Se substituirmos @ por uma variavel casual X dotada de
momento da ordem {3 e 4 pela esperanca matematica de X,
seja £(X), e se depois aplicarmos esperan¢as matematicas a
ambos os membros da tltima desigualdade resulta [ver A, 9),
129, I e 13) de § 4]

5 E[X-EX)Pl<o[E(|X )+ EX)), para f>1.
Por causa de A, V de §4, e por causa de VII, tem-se
6) |EX)|E(XNZE(X PP, para p>1.
De 5) e 6) tiramos a desigualdade

N E[|X—EX)f) <28 E(XP), para p>1.

Posto isso, tornemos a considerar a sucessfio de varia-
veis casuais independentes X; e suponhamos que todos os
. seus termos admitem momento absoluto da ordem 140, onde
9>0 € um ndimero fixo. Entdo existe £, =Z£ (X)), a esperanca
matemadtica de X, para todo o 2 [A, VI e IV de §4].

Na hipotese 2 (| X[+ =0 (n' +9), tiramos de 7) a
1

=h=n
relacido
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2 E[| Xi— E (X[ ) =0 (st +Y)

1=i<n

e portanto obtemos

2 / | /n|'t? dF (x+E)— 0 quando 7t co.

1=i=n,) R
Como |&/n|>1, para |x|>n, resulta que a primeira parte de
a) de IV ¢é respeitada (D = 1).

Doutro lado, as desigualdades que figuram na demons-
tragio de VI provam que a segunda parte de @) de IV € igual-
mente respeitada.

Admitamos finalmente que J 1. Entfio, se |x]|ZL#n, sai

[P ou (|2 |/m) (| x| /n)

de modo que também a terceira parte de @) de IV é respeitada.
O que precede habilita-nos a citar a proposi¢do seguinte:

VIII) «Se a sucessfo de variaveis casuais X, indepen-
dentes e dotadas de momentos absolutos da ordem 1439,
com 0<JdL1, (e portanto dotadas de esperancas matemé-
ticas £;)) for tal que

A
lim 3 ] |%/n '+ dF (x)=0,
nto 1=i=sae ./ R
entdo resulta

(/) 3 (Xi—E)->0 quando #1co.

1=2=<n

VIII refere sensivelmente um teorema citado por Loive.
Com ¢=1, VIII da VI

Modifiquemos agora as hipoteses de VIII como segue:
As varidveis X, admitem momentos absolutos da ordem
14+9d, com dN1; pondo d=1-¢, com ¢ 0, tem-se

sup E(| Xp|PH)=0 (ni+2).

1=k=n
Entdo verifica-se, para qualquer %,

[E(| X)) Z[E (| X PHOJ4H9 (ver VID)
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e portanto sai
sup E(X{) £ sup [E(| X, P10+ = o (),
k k

Logo a condi¢do suficiente de VI' encontra-se satisfeita e
podemos enunciar:

IX) «Se a sucessio de varidveis casuais X, indepen-
dentes e dotadas de momentos absolutos da ordem 24-¢, com
¢ 0, (e portanto dotadas de esperan¢as matematicas £},)
for tal que

sup [ | & [ dEFy (8)—o(ni ),
1<k=n R

entdo resulta
(/). 2 (Xa—E) >0 quando #1toco.»
1

=k=n
Caso se tenha, para algum §>0, sup E(| X' < 4o
1=ZkZn

pode aplicar-se VIII, se 6 £1, e IX, se d 1. Dai tira-se o
teorema de Markov :

X) «Se a sucessio de variaveis casuais X, indepen-
dentes e dotadas de momentos absolutos duma ordem fixa
maior que um, seja 1+¢, (e portanto dotadas de esperangas
matematicas £;,) for tal que

sup f |19 P () < +o0,
R

1=k=n
entdo resulta

(1/m)- 2 (Xk——Ek)—LO quando #1toco.»
==
*
£ #®

Damos por concluido o estudo da lei dos grandes nume-
ros para o qual utilizimos um método auténomo, inteira-
mente indepentente da nog¢io de lei infinitamente divisivel
e da teoria geral dos limites de somas de varidveis casuais
independentes.

Peoro Bruno Treoporo BraumaNN
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