UNIVERSIDADE DE LUANDA
UNIVERSIDADE DE LISBOA

ELEMENTOS DA TEORIA DA MEDIDA’
COM RELEVO PARA A TEORIA
DA PROBABILIDADE

PARTE C

LIMITES DE SOMAS DE VARIAVEIS
CASUAIS INDEPENDENTES

por
Pedro B. T. Braumenn

sor das Universidades de Lisboa e de Luanda

NOVA LISBOA
1969






UNIVERSIDADE DE LUANDA
UNIVERSIDADE DE LISBOA

ELEMENTOS DA TEORIA DA MEDIDA
COM RELEVO PARA A TEORIA
DA PROBABILIDADE

PARTE C

LIMITES DE SOMAS DE VARIAVEIS
CASUAIS INDEPENDENTES

por
Pedro B. T. Braumann
Professor das Universidades de Lisboa e de Luan da

NOVA LISBOA
1969






NOTA EXPLICATIVA

Este volume é o terceiro da série corrente apresentada
pelos servicos universitarios de Luanda, e corresponde & parte
C inteira do tratado intitulado «Elementos da Teoria da Medida
com relevo para a Teoria da Probabilidades. A bibliografia res-
pectiva encontra-se colocada no fim do volume. No demais, po-
dem repetir-se conjuntamente as indicagdes dadas nas notas
explicativas que acompanham os primeiros fasciculos da parte
A e a parte B deste tratado.

Assim, a letra y refere o livro «Limit distributions for
sums of independent random variabless de B, V. Gnedenko e A.
N. Kolmogorov, Addison Wesley Publishing Company, Inc.,
Cambridge 42, Mass., 1954, e a letra A refere o livro «Probabi-

lity theory» de M. Loéve, D. Van Nostrand Company, Inc., New
York, 1955,

Antes de prosseguir, cumpre-nos avisar o leitor de que na
linha 11 da pagina 88 o nfimero 3) deve ser corrigido para III.

Posto isto, ha necessidade de organizar um aditamento
a tabela de correspondéncias, em matéria de referéncias, que



PEDRO BRAUMANN

se estabeleceu na nota explicativa da parte B e a que o leitor
podera recorrer em todos os casos em que o aditamento for
omissdo. A propésito, as letras v e A conservam o seu significado,
isto &, referem-se aos livros respectivamente 16) e 25) da bi-
bliografia anexa a este volume.

A, II de §2, pode ver-se no primeiro volume desta série e
refere-se s continuidades superior e inferior duma medida (pro-
babilidade).

A, texto a seguir a IX de §3, corresponde & definicio do
principio de §10 de v ou de 18.1 de A, quer dizer corresponde 3
definicio de tipo duma lei ou v.c. ou f.d. ou f.c..

A, 2) de §4 e texto subsequente, corresponde & definicio
2.° do principio e ao teorema a, ambos de 7.1 de A, quer dizer cor-
responde & atitude de se definir o integral duma f. m. nio-nega-
tiva como sendo o limite dog integrais de qualquer sucessio nio-
-decrescente formada por f.m. simples e nio-negativas que con-
virjam para a f.m. considerada.

A, 4) de §4, corresponde & definicio posterior & defini-
¢80 3.° de 7.1 de A, quer dizer corresponde & definicdo de inte-
gral estendido a um conjunto mensuravel qualquer (nio neces-
sariamente confundido com o espaco inteiro).

A §5 (sem mais indicacdes), refere-se ao conceito de
funcio de frequéncia, também chamada densidade de probabi-
lidade, quer dizer a um conceito conhecido dos cursos elementa-
res e tratado desenvolvidamente no primeiro volume desta série.

A, 8) de §5, refere o seguinte facto, decorrente de III
de §4 de A ou seja do teorema da convergéncia majorada: Da-
da uma func¢do integravel, qualquer limite de integragio infi-
nito pode alcangar-se substituindo-o por um limite finito varié-
vel e fazendo tender este para o primeiro.

A, I de §5 e corolérios, corresponde ao (Gnico) teorema
incluido nas aplicagdes II e ao texto subsequente, ambos de 7.2
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de A, quer dizer corresponde ao facto de coincidirem os inte-
grais de Riemann-Stieltjes e de Lebesgue-Stieltjes duma funcio
continua tomada num intervalo onde ela seja absolutamente
integravel no sentido de Riemann-Stieltjes.

A, nota & demonstragio de III de §5, corresponde ao teo-
rema b de 11.2 de A e também a observagio que precebe o exem-
plo 2 da pégina 245 do primeiro volume desta série, quer dizer
corresponde a0 facto de a convergéncia fraca duma sucessdo de
funcdes de distribuicio no sentido de ) ou seja de funcles de
quase-distribuicio no sentido de A, convergéncia esta definida
pela forma habitual, equivaler & convergéncia vulgar da mesma
sucessdo sobre um conjunto denso na recta real.

A, IIT’ de §5, corresponde ao teorema A ou da compacti-
diio fraca de 11.2 de A e também ao corolario XXXVIIT’ da pa-
gina 246 do primeiro volume desta série, quer dizer corresponde
ao facto de qualquer sucessio formada por funcdes de distri-
buicdo no sentido de A ou seja por funcbes de quase-distribuigdo
no sentido de A compreender uma subsucessdo fracamente
convergente para uma funcio de (quase-) distribuicdo.

A, V de §6, corresponde ao teorema 1 de §11 de v, quer
dizer corresponde a continuidade uniforme duma f.c. na recta
real.

A, VI de §6, corresponde ao teorema 2 de §12 de v, quer
dizer refere a correspondéncia biunivoca entre f.d., por um
lado, e f.c., por outro lado.

A, T de §8, corresponde ao corolario 1 do teorema 3 de
§11 de v, quer dizer corresponde ao facto de resultar uma f.c.
qualquer produto dum nimero finito de f.c..

A, II de §8, corresponde ao corolirio 2 do teorema 3 de
§11 de v, quer dizer corresponde ao facto de resultar uma f.c. o
guadrado do médulo de qualquer f.c..
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A, IV de §8, corresponde ao teorema 1 de §14 de v, quer
dizer refere que o quadruplo da diferenga entre a unidade real
e a parte real duma f.c. ndo pode ser menor do que a diferenca
entre a unidade real e a parte real da f.c. de argumento duplo.

A texto a seguir a V de §8, alude simplesmente ao con-
ceito de convergéncia fraca, cujo estudo j4 tinha sido reco-
mendado na nota explicativa da parte B.

A, exemplo 1 de §8, corresponde 3 definiciio intercalada
entre as formulas 4) e 5) de §6 de y e também & definicdo que
precede o teorema a de 13.1 de A, quer dizer da as informacgdes
mais importantes relativas as leig (ou distribuicbes ou v.c. ou
f£.d. ou f.c.) improprias, também chamadas degeneradas e bem
conhecidas dos cursos elementares, denominando-se propria to-
da a lei (ou distribuicdo ou v.c. ou f.d. ou f.c.) que néo for im-
propria.

A, exemplo 3 de $8, corresponde a uma generalizacio fa-
cil do exemplo 2 de §11 de v, isto &, da as informacbes mais im-
portantes relativas & lei ou distribuicio de Poisson na esséncia
repetidas a meio da pagina 147 deste volume.

A, exemplo 7 de §8, d& as informagdes mais importantes
relativas & lei rectangular ou uniforme, que é conhecida dos
cursos elementares e que é caracterizada pelo facto de ter uma
f£.d. cujo valor iguala o do argumento quando este percorre o
intervalo fechado compreendido entre os nimeros 0 e 1.

A, principio de §9, corresponde ao principio de §17
de v, onde se declara i.d. toda a f.c. que (ou toda a v.c. cuja f.c.)
possa igualar-se, seja qual for o ntmero natural n,a uma po-
téncia com expoente n e com base que é outra, f.c. em geral va-
riavel com n.

A, texto antes de I de §9, refere que a probabilidade em
causa decorre de VIII de §8 de A, correspondente ao teorema 4
de §14 de v, isto é, dadas a sucessdo natural n, uma sucessao
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de f.c. £, (t) e uma sucesséo estritamente crescente formada por
niimeros -naturais m_, entfo a convergéncia fraca das potén-
cias de expoentes m_ e de bases f (t) para uma funcdo con-
tinua ou caracteristica implica a convergéncia fraca das f.c.
£, (t) para a constante 1.

A, 4) de §10, corresponde & férmula 3) de 16 de v ou
seja & formula de De Finetti para a representagido dos loga-
ritmos dag f.c. de certas leig i.d..

A, texto antes de 6) de §10, limita-se a justificar a desi-
gualdade posta no texto deste volume, que é dedutivel por um
processo elementar.

A, 8) de §10, refere a seguinte propriedade, conhecida do
estudo elementar dos integrais de Riemann-Stieltjes estendidos
a um intervalo finito: Dadas as func¢Oeg continuas f(u) e g(u),
a funcfo de variacfo limitada G(u) e a igualdade dF(u) =g(u) X
XdG(u), todas no intervalo cosiderado, entfo coicidem ai o
integral de f(u) dF(u) e o de f(u)g(u)dG(u).

A, T de §11, corresponde ao corolario do teorema 1 de
§18 de v, quer dizer corresponde a unicidade de qualquer repre-
sentacdo para o logaritmo duma f.c. que generalize a represen-
tacdo de Lévy e Khintchine no sentido de a funcdo G(u) ser de
variacdo limitada, sem ser necessariamente uma funcio nfo-
~-decrescente.

A exemplo 1 de §11, particulariza A, exemplo 2 de §11,
para o caso duma lei ou distribuicdo de Gauss impropria, quer
dizer de varidncia nula, caso esse referido pormenorizadamen-
te na pagina 118 deste volume.

A, exemplo 2 de §11, corresponde as féormulas desde 12)
até 13’) de §18 de v, quer dizer corresponde a caracterizagdo
da lei normal ou de Gauss nag diversas representacdes canéni-
cas, caracterizacdo essa que vem repetida na pagina 119 deste
volume.
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A, exemplo 3 de §11, corresponde a uma generalizacio
facil das férmulas desde 14) até 14”) de §18 de v, quer dizer
dA as grandezas tipicas das diversas representacSes canénicas
da lei de Poisson de parimetros reais A>0, h e H ou a, grandezas
essas que vém repetidas na pagina 147 deste volume, A propé-
sito, talvez convenha esclarecer que a caracterizacio da funcéo
N das representacdes de Lévy duma, lei de Poisson (e de varias
outras leis) apresenta ligeiras diferencas, alids meramente for-
mais, conforme considerarmos as integragdes com respeito a
essa fungio no sentido duma medida nfo-negativa ou no senti-
do de Riemann-Stieltjes.

A, exemplo 4 de $11, d& as grandezas tipicas das diversas
representacdes canénicas da lei de Cauchy de parimetros reais
>0 ou H>0 e B ou h, cujo cilculo se faz pelas vias habituais
e que vém: repetidas na pégina 155 deste volume.
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ESTUDO GERAL DOS LIMITES DE SOMAS
DE VARIAVEIS CASUAIS INDEPENDENTES

§ 1) Introdugdo

Esta publicagdo tem por fim fazer progredir a exposi¢do
iniciada nos dois estudos anteriores sobre limites de somas
de variaveis casuais independentes, designados por parte A e
parte B ou, abreviadamente, por A e B para efeitos de refe-
réncia. Cumpre assinalar aqui que a parte A se encontra
reproduzida, salvo em questSes de pormenor que ndo preju-
dicam as referéncias, num trabalho um tanto resumido, o
qual se intitula «/utroducdo ao estudo dos limites de somas
de varidvess casuais independentes».

No primeiro capitulo da publicacdo presente, parte C
ou C para efeitos de referéncia, damos a teoria geral da con-
vergéncia das somas de varidveis casuais independentes, con-
duzindo o estudo, por vezes, em termos duma generalidade
levemente maior do que a usual e acrescentando certas propo-
si¢bes complementares tidas por tuteis para fins ulteriores.

No capitulo seguinte tratamos de aspectos especiais da
convergéncia versada no capitulo anterior. No quinto para-
grafo referimos alguns tipos de simplifica¢do dos teoremas
gerais de convergéncia, uns certamente conhecidos e outros
talvez novos: Assim, as proposi¢ées I a Il generalizam resul-
tados que ja eram familiares em casos particulares, afigurou-
-se-nos conveniente enunciar e demonstrar II', a proposigéo V
aclara um resultado citado no livro de Lotve e V' é um com-
plemento curioso de V. No pardgrafo seguinte estudamos as
propriedades das leis de Lévy e a convergéncia para essas
leis; depois de reproduzirmos toda a andlise preliminar neces-
sdria a4 penetragdo na questio posta, apresentamos uma boa
variedade de resultados, todos conhecidos, com excep¢do pos-
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sivel de VIII e dos seus corolarios®). No sétimo paragrafo,
destinado a resolver o problema de achar constantes (posi-
tivas) capazes de transformarem sucessdes simples de varia-
veis casuais independentes em sucessdes duplas fracamente
convergentes (para leis que podemos supor proprias), arre-
dondamos os resultados principais de Grosuev e GNEDENKO,
contidos nos enunciados de II; VIII e XI, acrescentando-lhes
as restantes proposi¢des do pardgrafo.

No ultimo capitulo passamos em revista as condigdes de
convergéncia de somas de varidveis casuais independentes
para algumas leis particulares importantes. No paragrafo
oitavo aludimos rapidamente ao caso duma lei limite impro-
pria, o qual ja tinha sido estudado na parte B. No paragrafo
seguinte tratamos do caso importantissimo duma lei limite
de Gauss, procurando fazer uma exposi¢io a mais selectiva
possivel: Ai as proposi¢des I a V, IX, Xl a XII e X1V a XVI
sdo conhecidas ou implicitas em resultados conhecidos, a
proposi¢io IV tem por coroldrio o teorema de Zarmmea citado
em VI, as proposigcdes VII e VIII afiguram-se mais praticas
do que o teorema de BernsTEIN e FrLLER, as proposi¢des X, X'
e XIII parecem ser novas e as proposi¢des XVI' a XVII' apre-
sentam consequéncias interessantes dos resultados cldssicos
devidos a LinpeserG e Liarounov. No paragrafo seguinte damos
as condi¢oes de convergéncia para uma /es de Poisson, gene-
ralizando ligeiramente os resultados alcangados por GNEDENKO,
Lévy e Marcinkiewicz, contidos em I, III e V. Finalmente nos
dois ultimos paragrafos usamos a teoria geral para resolver-
mos dois exercicios, possivelmente pela primeira vez: Deter-
minar as condigbes de convergéncia para leis de Cavchy e
para lers gama (em particular, para leis qui-quadrado).

Nao queremos fechar esta introducdo sem chamarmos a
atengdo do leitor para dois pontos:

Primeiro, o nosso trabalho é de apresentacio e, por vezes,
de arredondamento da bela teoria elaborada por GuEDENKO,

(" Nota posta durante a reimpressfo da pag. 2: O niumero inaugural da
«Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete», publi-
cado em 5/4{1962, traz um artigo de Marex Fisz (pags. 25 a 27), entregue em
Outubro de 1961, 0 qual contém um lema equivalente 2 proposi¢io v de § 6.
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Kuintcaing, KowmoGorov, Livy, Marcinkiewicz, Raikov e outros
autores, cujo esfor¢o magnifico nunca é demais enaltecer.
Mais, foi o nosso desejo facilitar ao consultor apressado desta
publicagdo a apreensfio tanto quanto possivel extensiva dos
resultados mais importantes nela referidos. Por isso, nio hesi-
tamos em apresentar alguns enunciados de teoremas com ele-
mentos superabundantes do ponto de vista puramente logico.
Ao correr da pena recordamo-nos de tal ter acontecido, por
exemplo, no enunciado de X de § 7.

CAPITULO I

ESTUDO GERAL DOS LIMITES DE SOMAS DE VARIAVEIS
CASUAIS INDEPENDENTES

§ 2) Bases da doutiina

Teoremas preliminares, Em todo este capitulo colocamo-
-nos na posicdo de § 4 de B, isto &, consideramos sucessdes
duplas de variaveis casuais Xy, com 1. LkLk, e ky—oo,
quando #t oo, € supomos as varidveis independentes por li-
nhas, isto €, independentes, quando # ¢ fixo e £corre de 1 a k.

Pois bem, uma proposi¢do importante para a elaboragdo da
doutrina que temos em vista € o teorema preliminar seguinte:

I) «Quando as varidveis casuais X, independentes por
linhas, admitem as constantes assintoticas A, entdo, dada
qualquer sucessdo de numeros positivos p, de limite finito p,
ficam as varidveis p,X,. com as constantes assintéticas p, A

Na hipé6tese de existirem constantes .5, que tornam as
leis das somas

a) )(u = an -+ Xn2 44 )(nl.',l - Sn

(fracamente) convergentes para uma lei de funcdo caracteris-
tica f(f), as constantes p,.S, tornam as leis das varidveis
casuais p, X, (fracamente) convergentes para a lei de fungéo
caracteristica f(p?), do mesmo tipo que f(?), se p>0, e im-
prépria, se p=0.
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Em particular, se as leis das somas de ) convergem e
se p =0, as varidveis casuais p, X, obedecem a lei dos gran-
des nimeros, podendo tomar-se as grandezas p, S, para cons-
tantes de estabilidade.»

Demonstragdo de [: Representemos por P(...)a probabi-
lidade do acontecimento contido no paréntesis. Entdo, sendo »
suficientemente grande, temos a desigualdade
1) sup P(| Xy — 4[> e)>

(EEH
> sup P([pn X — pu | > (p + 1)2),
1=k=<lk,
a qual mostra, juntamente com 2) de § 4 de B, que as gran-
dezas p, A, sdo constantes assintoticas das varidveis P Xt
quando as grandezas 4, sdo constantes assintéticas das va-
riaveis X,;.

Posto isso, designemos por £, () a f. c. (isto é, a fungio
caracteristica) de X,. Temos, por hipotese, £, (£)— f(¢) [A,
texto a seguir a V de § 8]. Sendo assim, a desigualdade

L f(BO)—So (Bu )| L1 S (PO —F (Bu O] + | [ (n )~ S (B0 1),

a continuidade da fun¢fio f [V de § 6 de A] e a convergéncia
uniforme de f, para f[VIde § 8 de A] provam que f, (p. &) —
— f(p?), para todo o ? real, donde concluimos, tendo em vista
VII' de § 8 de A, que f.u(pa z‘)—-s->f(pt) ou seja, por causa de 1)
de § 8 de A, que as leis das varidveis p, X, tendem para a
lei de f. c. f(p?), com f(pt) do mesmo tipo que f(2), se p>0,
e lmpropria, se p=0 [A, texto a seguir a IX de § 3 e exemplo
1.° de § 8].

Quanto ao caso particular mencionado na tese, ¢ uma
consequéncia imediata de B, I e 1) de § 7.

A proposi¢do I admite um coroldrio que por vezes se
torna util. Ei-lo:

I} «Quando se verificam todas as hipéteses do teorema I
e, além disso, a lei limite € prdpria, entdo nenhuma sucessio
de ntimeros positivos p, divergente para -+ pode tornar as
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variaveis p, X, assintoticamente constantes e, simultanea-
mente, as leis das varidveis casuais p, X, (fracamente) con-
vergentes para alguma lei limite.»

Demonstragio de I':  Se as variaveis Xy = pn X fossem

assintoticamente constantes e as leis das varidveis Xu=p. X,
tendessem para uma lei limite, entdo I obrigava as varidveis

Xon/pn = X a serem assintoticamente constantes e obrigava

também as leis das somas X, /p, = X, a convergirem para
uma lei smprdpria (uma conclusio absurda).

Observagdo: Basta suprimir alguns passos da demons-
tracdo de I, convenientemente escolhidos, para reconhecer
que @ proposicdo continua a ser vilida, quando se ¢liminam dela
as veferéncias d constincia assintitica das varidveis presentes,

Dado p, >0, entdo, sendo *¥ um quantil da ordem 7 de
X € %3/,) um quantil da ordem y de X, =puXu,y 8)de§4de B
permite escrever a relagio AW = puxD.

Posto isso, consideremos constantes assintdticas 4, das
varidveis X, sujeitas a restri¢do seguinte: Existe um par
fixo de ntmeros ¥ e y", com 0<y' 27"« 1, tais que se verifica,
para todo o # suficientemente grande e uniformemente em 2,

2) XE}:) - .nﬁ'llz‘é A}l/:éxg;\';/) —}' W;;Ic )

onde 7, € ;. representam ntmeros nio-negativos que tor-
nam limitadas as somas 2 #2e 3 midy quando # 1 co,

I=Sh=thy 1=k hy

Entio, supondo que p, — 0 e fazendo
Tl;;k = ]572 Nk n;;/c = Pn 'ﬂZk e Ank = ?n Anlcy

resulta, também para z suficientemente grande e uniforme-
mente em £,

~

3) X(T) — :;;L]\‘ é Ank _.4, i’gk”) + :;Zl:,

nk

com lim 2 yi=Ilim 3 q2=o0,.
nhw 1=Shk=thy e 1Sk=k,
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Designando agora por F,.(x) e Fiu(x) as fungdes de dis-
tribuicio de X,. e de X, respectivamente, e supondo que
a sucessio das leis das somas de a) de I ¢ convergente, basta
ter em conta VII' de § 7 de B para tirar de 3) e de | a igualdade

2 . ~
Ozli;n %fRﬁ—x? dFy;k (x+ Ank):

. i ot ‘
= 11;11 % R m aF (x+ Ank) =

— 3 ‘2 —x2- — .
= h;n l:pn . %v[R 1—{—%2 dEtk (x"‘Ank)—J

, Como as grandezas p,—>0 podem ser tomadas arbitra-
riamente, concluimos que o tultimo somatdrio de integrais é
limitado, quando #1eo. Portanto, atendendo a 4)de §4de Be
as desigualdades que precedem o enunciado de VII' de § 7 de B,
podemos enunciar a proposi¢do seguinte:

II) «Dadas as variaveis X, independentes por linhas,
assintoticamente constantes e tais que existem constantes .S,
que tornam (fracamente) convergentes as somas de @) de I,
entdo quaisquer constantes assintoticas 4, dessas varidveis
que satisfacam as relagdes 2) tornam limitadas (com res-
peito a #) as expressfes seguintes:

» x‘z
<) 1:<:1:2§kn J R 14 4x° s (24 Au)
b) 1<]2<I fR hD (x) dEzk (x"{" Aﬁk),
6) 2 f x? dFﬂ7t (x + Auk) €
1=<k=tky o (x| <D
2 d nk nk
d) 1=k=ky \]"tl >D F ] (x+ A L) !

nas ultimas trés das quais D significa um namero positivo
arbitrario.»
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Passamos a supor que as varidveis X, satisfazem as
hipéteses de Il e, além disso, sdo in finitesimars. Entdo, as suas
esperancas matematicas truncadas em 0, definidas pelas
igualdades

4) DEnk :fl”léDx anlc (x)y

sio constantes assintdticas [B, VIII de § 4]. Doutro lado,
entrando com as rela¢bes ¢) e d) de 1l na desigualdade do-
texto imediatamente anterior a VIII de § 7 de B, a saber em

(1/2) . IZ(DEnk “Xnk)g é
é % [c[lxl§2D xe ank <x+X11A~) + X?;Ic . flxl>D/2 dEzk (x"”’)(,nl:)]y
inferimos de I' de § 4 de B que

5 2 (DEnk"X;;J;)2éS<+°°, quando nt oo,
) 1=k=hy

Posto isso, sendo P e O dois nimeros positivos arbitrd-
rios, fagamos

6) inf (PE”L-’QE”L«) == lnk € sup (PEnk,QEnI:) :jnk

e consideremos constantes assintéticas A4, das varidveis X,
tais que se tenha, para todo o # suficientemente grande e
uniformemente em 2,

7) lnk - E.nk é Ank é_/nk -+ Z.nlr,

onde ;. e 4, representam numeros nio-negativos que tornam

limitadas (em #) as somas 2 B2.e 2 .
1=<k=<k, 1=k=Shy,

Entdo, notando que a relagdo 6) de § 8 de B, aplicada a
varidvel casual (real) simples de valores a;,a,...,4a,, todos
de probabilidade 1/n, d4 a desigualdade

8) (@ + a4+ af Ln(al + o+ -+ dh),

basta ter em conta 7) para obter
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% (Anlc"X¢1k)2 = ‘]Z [(Xﬂk - Jnk) + (— inl\') ’{" (jnk + Z./ﬂc - Aul.‘):]?é
é 3. % ?‘ (y_nk ’_]7zk)2 + % E?zk -+ % [Z.nk ‘+‘ (]ﬂ/\‘ - Xn!\') + (xnk - nlr) + Eizk:l%% _/—/_~
é 15. [Z (j-nk - Xnk)Q + ']2 (Iulv - Xnk)‘z + % C?ﬂ; + 12 E?ﬂc] )

. k o ¢ c

onde o ultimo somatorio ¢ limitado, por causa de 5) a 7).
Portanto, as grandezas 4, satisfazem a 2) e podemos apli-
car 11. Dai o coroldrio:

II') «Quando se verificam as hipéteses de II, as variaveis
X, sfo infinitesimais e as suas constantes assintéticas A
satisfazem a 7), tem-se também uma condi¢io suficiente para
que resultem limitadas as expressées a), 6), ¢) e d) de >

% ¥ %

Teorema basico de Gnedenka e Khintchine. Em face do
exposto estamos aptos a deduzir uma proposi¢do que cons-
titui a duse do estudo da convergéncia das somas de a) de I
e a que podemos chamar teorema de GNEPENKO ¢ KHINTCHINE.
Vejamos:

IIl) «Dadas as variaveis casuais X, independentes por
linhas, infinitesimais e possuindo as func¢des de distribuic¢do
F.:(x), podem determinar-se constantes S, que tornem as
leis das somas

a) Xn = )(nl + X712 ’jf‘ ce + Xn/-',, - 'Sn

(fracamente) convergentes para uma lei limite, quando e s
guando se verifica a condigfio seguinte: Representando por
P e O dois numeros positivos arbitrarios e tomando cons-
tantes assintoticas 4, das varidveis X,;, sujeitas a restri¢do
de sair, para # suficientemente grande e uniformemente em &,
a desigualdade

6) iuf [flr&éPx dF (%), _/lmég x a’F,,k.(x)] — b L A L
25p| [cp® dFu(8), [0 % dFu (®)] + Cu
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onde &y e &, significam numeros ndo-negativos que satis-
fazem a

c) lim 2 Ey=lim 2 ¢ =0,
k=

nho 1=h=h, nto 1=k=lk,

€ possivel associar as constantes 4, e as variaveis casuais
X uma sucessdo de varidveis casuais infinitamente divisi-
vels cujas fungbes caracteristicas tém logaritmos definidos
pela formula

d) loggu(®)=7.(=Su+ 2 Au).t+

T=h=<hy,

+ 2 fR(git.v_l)C/F,,/;(x—}~Aﬂk)

e cujas leis convergem para uma lei limite,

A lei limite ¢ a mesma, quer em a) quer em d),

Se alguma sucessdo de leis definidas por &) tiver uma
lei limite, esta é também lei limite de qualquer outra sucessfo
que resulte da primeira, fazendo variar as constantes 4,; no
ambito das relagdes 4) e ¢).»

Demonstragio de III: Comecemos por notar que d) é
uma modificacio inessencial do caso da formula de De Finerm
em que se anula o coeficiente de £2[A, 4) de § 10], o que equi-
vale a dizer que g, (4 é a f. ¢c. duma lei i. d. (infinitamente
divisivel) comparativamente simples e privada de compo-
nente gausseana.

Posto isso, designemos por fu(#) a f. c. de X, e por £,(2)
afcodeX,. Sai [A, IV de§7e1)de§ 8]

9) Sty =50 0 fu(),

1Sk,

Tomemos quaisquer grandezas A,; que se sujeitem a &)
e ¢) e facamos

10) _f;;k (t) = e-iA"kt . f;ﬂ\(t) € F;fu (39) = Fnk(x + Ank) .
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Entdo, atendendo a ), 9) e 10) e usando depois A, 1)
de § 6, podemos escrever

[og /2(8)~1og gu(8)|~| 2[l0g fik (B~ [ (¢#—1)dF5 ()] | =

=] 2{1og [1+9.u ()] — 2 (H)] ],
onde *

11) Our (£) = f5 () — 1.
Como de 11) se tira [B, VII de § 4]

sup |9, (f)|—0, quando n4oo,
1=k=k

===l

sal, para z suficientemente grande,

log f.()—log gu(f)|=|2 > (—1)su(n)t| <

/<

_‘é_ ) 7 1 ' Dok (f) ]2 N
2 nk ! _— 2 A 3o, (H) ]2
3 2§l§+ml?k(f)l/l 2 1—l|ou(?)] AJ:IPI()I

Tendo em vista 4) e recordando que [ —1—itn| 2 2 u?
[A, texto antes de 6) de § 10}, podemos escrever, suprimindo
temporariamente os indices # e 4,

0] = | [alet = — 1]dF ()] 2
21 fumnle? = — 1 — it (v — A))dF ()] +
|l plete = 11aF ()] +
| frzn (= 0E) + (oE — A)dF(x)]| 2
L8[ ap AP dF@) 2. [ dF (@) + 2.
UoE [0 @F (@) + 1E — A) [, _pdF (3)] 2

L2 lxléD(x—A)2dF(x)+(2+D.];D,ﬂxDDdF(x)_HIHDE__AI.
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Dai e de 8) tiramos

1
LS
3 k

Dt (t> 12 L. Sllgpflxté'D (x__A"k)‘z dF,; (x) .
' fffmgp (% — Ay A () + 2+ D - | 2]}
. ' . B .
SgpflrbD e (%) %fl.vt>D dFu (%) + ¢ % (pLur — A )

Recordando que as varidveis X,; sfo infinitesimais, tira-
mos de 10) e de B, I' de § 4, que sai, para » suficientemente
grande,

1
12) 5+ [10g o (t) — 10g gn(®)] £ 14 5up [, opp#* dF 1 (8).

2 [gzap® dEA )+ 4D 117 sup [\ o dFA ()

. §f|x|>D/2 dF% (%) + 2. %(DEM~ Ay,

onde os dois supremos tendem para zero, quando # 1o [B, V
e 1) de § 4].

Admitamos agora que existem constantes S, tais que con-
vergem as somas de a) do enunciado.

Como as hipéteses feitas a respeito das constantes 4.
implicam que elas satisfazem a 7), concluimos entdo de Il
que saem limitadas as somas de integrais que figuram em 12).

Além disso, supondo PLQ e n suficientemente grande,
as formulas 4) e 6) dédo '

% (Soe = Lue) = ? UP@:I;Q & dF (x)l £0Q % f|x1>P aFu (%) £
<0 ',Z f|x$>P/2 aF (%),

onde o ultimo somatorio é limitado por causa de II'. Dai se
tira que
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2;: (]ﬂ/e - [uk>2 é Sl}{p (]nk e [n/e) i Zk (jnk _ [nb)

tem limite nulo, quando #te (B, VIII e I de § 4]. Entfo,
pondo D=F em 12), resulta

%(DEfzk - Ank)2 _é f [gnk + (jnk - ]nk) + E.nk:!2 é 3 -

' [2 szk + 2 (,/nk”_ [11}3)2 + p E_\?;k] *’O, quando 71too L)
k k& k

Em conclusio,

13) lim [log f.(¢) — logg,(¢)] =0, para todo o 7.
14w .

Notando agora que as f. ¢. g, (#) nunca se anulam, por
serem i. d. [A, I de § 9], e que as f. ¢. f,(¢) convergem (fra-
camente) para uma f. ¢, a qual podemos designar por £(¢),
inferimos de 13) que

Gn (z‘)—s>f(t), quando # t oo,

Assim fica demonstrado que as leis das somas de @) ndo
podem convergir para uma lei limite sem que alguma (e atée
toda a) sucessdo de constantes 4,;, escolhida de acordo com
b) e ¢), faga tender as leis i. d. definidas em @) para a mesma
lei limite.

Passamos a demonstrar a condicfo suficiente do nosso
teorema,

Para cada n vamos escolher uma f.c.i.d. g, (#) de acordo
com d). Corresponde uma fungio G, («) que é de distribuigéo,
a menos dum factor constante ndo-negativo [A, I de § 11].
Para obter esta fungdo, recorde-se 10) e faca-se

14) Gu(—)=0 e dG,(u)= 2 -

tsksch, 1+ 22

ary (u);

() Talvez valha a pena chamar a atengfio para o facto gue existem
constantes assintéticas 4,, das varidveis X,, que satisfazem a 8) de 111,
mas néo satisfazem a ¢) de Il e nem sequer tornam £, e 2% simulta-
neamente limitados, quando 71co. Exemplo: ¢, =1/k? seja qual for &,
torna %% -+ oo,
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entdo <) toma o aspecto

19) log gulf) =i+ |=Se+ 3 [Aut | g dFA@I - o+

1k, r 1+a°

w1 it \ 142
J;:[R <e Vo) — dG, (u),

caracteristico da representa¢io de Livy e Kuintcniveg duma
lei i. d.

Admitamos agora que, escolhidas constantes S, conve-
nientes, se tem

16) ()2 g(t), quando #n1oeo,

e designemos por G () a funcfo que corresponde a g(#) na
representacio de Livy e Kminrcuine, Resulta [B, I de § 8]

17) G,(u) 2. G(u) e, portanto, G, (4c0)— G (+o0).

Pois bem, 14) e 17) permitem escrever

x? .
%fk Ty (@) — G eo) <Aoo,

o que mostra que sido limitadas as expressdes que figuram
em a) de II; consequentemente, saem também limitadas as
somas de integrais que figuram em 12). Nestas circunstan-
cias podemos passar novamente de 12) para 13). No fim de
contas inferimos de 13) e 16) que

Su (£) ~s—>g (), quando #1teo,
o que completa a segunda parte da nossa demonstracdo.

Para terminar a demonstracio de lII basta observar o
seguinte: Se alguma sucessio de leis i. d. associadas as
varidaveis X,, € a certas constantes assintéticas A, sujeitas
a 6) e ¢) tende para uma lei limite, entdo as somas X, con-
vergem, pela condi¢do suficiente, para a mesma lei limite, a
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qual € também lei limite de qualquer outra sucessio que
resulte da primeira por mudanca das constantes iniciais para
outras admissiveis, conforme se viu no decurso das conside-
ragdes relativas a condicdo necessdria.

Observagdo : Se as varidveis casuais X, das somas de a)
de IIl forem assintoticamente constantes, mas nio infinitesi-
mais, podemos fazer as translagdes que consistem em dimi-
nuir cada uma delas de uma das suas constantes assintoticas;
depois introduzimos a altera¢do correspondente nas grande-
zas .S,. As constantes assintoticas bem como as funcées de
distribuicdo das desigualdades 4) passam entio a dizer res-
peito as varidveis transladadas (infinitesimais). Feitas estas
adaptacdes, continua valida a condicfio necessaria e suficiente
do teorema de Gnepenko e KHINTCHINE.

Lxemplo: Considere-se a sucessio de variaveis casuais
simples independentes X;,X;,... tal que o termo genérico
X, pode tomar os valores 0 e 1, o0 primeiro com probabilidade
¢» € 0 outro com probabilidade p,=1—g,; depois ponha-se
by =n e Xy=Xe—pr)) By, com B, =+ 2 pirqr; final-

1=t=un

mente admita-se que lim B, = «, afim de assegurar que as

nto

varidveis X,; saiam infinitesimais. Ento, escolhendo

P> sup (1 Bn) € Ank“—‘PEnk, tem-se A,,kEEO

e, portanto, as leis i. d. associadas que constam de d) sdo
definidas por
loggu () +iS, t= 3 (qu-entiBag p . gitiBu 1),
1=k=<n

Depois™ use-se 14); sendo # suficientemente grande, re-
sulta, se <0, G, (u) =0 e, se u>0,

) Caso se deseje obter a f. c. da soma genérica de @), use-se a fér-
mula 9); sai

log fu(t) =—iSu ¢4 2 log(qe-eitnilon 4 py . ginctiB),
1 "

i

iA
A
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B B, 7i/By -
Gn(u)h— 1§%§n <9k' 1+Pll/Bil +pk 1+q;~/Bi’ B

@t D g bt B b1 g4/ B, >
- 2 (4 It BB - BT a1
1§k§n< fo + Bn 1+Pfr/B;z l‘f’Qk/Bu

—(1/Ba)-

[pequ(Pr— peqi+qi) ] > 1—1/B, —1,

quando # toeo.

2
1=<k=n

Conclui-se que G, (x) tende completamente para uma
das fun¢bes G (#) do exemplo 2.° de § 11 de A. Este facto, o
teorema I de § 8 de B, a possibilidade de dispor das cons-
tantes S, em d) ou 15) e o nosso teorema III mostram que
aqui existem constantes S, tais que as somas de a) conver-
gem para uma varidvel casual normal. A variancia de qual-
quer lei limite é 1 [A, exemplo 4.° de § 8.

Convém assinalar que mais adiante encontraremos outros
tratamentos mais simples do nosso exemplo.

Suponhamos que existem constantes .S, tais que as leis
das somas de @) de Il convergem para uma lei limite de
f. c. f(#) e consideremos constantes S, as quais fazemos
corresponder as somas

a') Xip=Xu+ Xz + -+ ‘Xnk““—sﬁz-

Quando se parte de a'), os logaritmos das f.c. i.d. asso-
ciadas as constantes 4,, e as variaveis X,; obtém-se de 15),
mudando S, em S, e g, (¢) em g/ (). Sai

log . (2) —log g () = i (Si — Su) t,
onde, pela hipotese feita e devido a lII, log g (t)—ilogf(z‘),
quando # {eo, com log f(¢)5=ce[A, V e I de § 9].

Admitindo agora que as leis das somas de a') conver-
gem para uma lei limite de f. c. f'(¢), resulta de III que
log g (¢) > log FAGEECH portanto, S — S, — S g0,
Inversamente, se o limite S existe e ¢ finito, sai a relagdo
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logg,’,(z‘)—ilogf(z‘) —1.5¢ e as leis de a') convergem para
uma lei limite de f.c. f'(2) = f(¢)-e75".
Em conclusfio, temos a proposi¢do seguinte:

[I') «Convergindo as somas de a) de Il para uma lei
limite, as somas de a') convergem também para uma lei
limite, possivelmente diferente da primeira, quando e s¢
quando existe uma constante real .S tal que

lim (S, —S,)=So.
ntw

Verificada esta condigdo, sai igual a 757 a diferenca
entre os logaritmos das fung¢des caracteristicas das leis limite
correspondentes a @) e a a').»

#
Ed £

Um teorema de Kkintchine, Caso uma variavel casual X
seja limite (fraco) de somas da forma a) de /, onde 4, — o,
quando 7t e, os simbolos S, significam constantes e os
Xup(k=1,2,...,k,) representam varidveis casuais indepen-
dentes por linhas e assintoticamente constantes, entfo a lei
de X ¢ i. d. [Ill e observacio anexa, bem como V de § 9 de A].

Posto isso, consideremos uma variavel casual i. d. arbi-
traria e uma sucessio qualquer de numeros naturais /, —» oo,
quando # 1 co. Entdo, dado », pode igualar-se a varidvel esco-
lhida a4 soma de /, varidveis independentes, i. d. e idéntica-
mente distribuidas [A, 2) de § 9]; a f. c. comum das /, parce-
las depende de n e tende fracamente para 1, quando # $ oo
[A, texto antes de I de § 9). Concluimos que as parcelas
das diversas decomposi¢bes da varidvel considerada, corres-
pondentes aos diferentes valores de », formam uma suces-
sdo dupla de variaveis casuais i finitesimais [B, VII de § 4].

As consideragdes que acabamos de fazer provam o belo
teorema de KHINTCHINE !

IV) «Coincidem as seguintes classes de leis:
a) a classe das leis infinitamente divisiveis;
6) a classe das leis dos limites (fracos) de somas
da forma X, + Xue+-- + Xup, —S,, onde £, —> o, quando
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ntoo, 0s S, significam constantes e os X(f=1,2,...,4,)
representam varidveis casuais independentes por linhas e
assintoticamente constantes;

¢) a classe das leis mencionadas em §), para as quais
kB, =mn, S, =0 e as variaveis X,;, além de serem indepen-
dentes por linhas e assintoticamente constantes, sio cumu-
lativamente infinitesimais, infinitamente divisiveis e idénti-
camente distribuidas por linhas;

d) toda a classe de leis que se encontre em condig¢des
intermédias as de &) e de ¢).» '

O mérito deste resultado ¢ inquestionavel.

i
E3 *

Subconvergéncia. Para terminar este paragrafo vamos
fazer uma aplica¢io de certos resultados aqui alcang¢ados ao
estudo da subconvergéncia (isto ¢, da convergéncia ao longo
de subsucessdes) das somas de @) de IIl. As consideragdes
que vamos empreender levar-nos-2o a4 proposi¢do seguinte:

V) «Dadas as variaveis casuais X,, independentes por
linhas e infinitesimais, ¢ possivel encontrar constantes S,
que permitam extrair da sucessfio das leis das somas

{l) Xn == an’{’“X;ﬂ’]I“" +X7zk,,"" Sn

uma subsucessio (fracamente) convergente para uma lei limite,
quando ¢ sé quando existem constantes assintéticas A, (das
varidveis X,;), sujeitas a restricdes &) e ¢) iguais as restri¢des
homélogas de Ill, tais que, pondo

# 2
e
d) G, () = 2 (‘ —— dF e {(x+ Aur)
/ LN lSTcg_k,;J o 1+ a7 H ( ne )y
a sucessdo G, (+o) admite uma subsucessdo convergente
G;(+<) e, além disso, uma subsucessio fracamente conver-
gente G,(u), extraida da sucessdo G;(u), satisfaz a relagdo

() A seguir subentende-se que # | —oo0 ou #} +oco ao longo dos pon-
tos em que existe lim Gi(u).
o
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¢) lim G;(+o0) £ lim lim G; (%) — lim lim G; ().

it o uttw it +o #}—w if-tow

Quando ocorre a condi¢do necessdria e suficiente ante-
rior, entdo a sucessio X, correspondente a sucessio G; admite
constantes S; que a tornam uma subsucessdo convergente
extraida de a).

Caso a condi¢fio necessaria e suficiente se verifique para
certos indices 7 e para certas constantes assintéticas, sujeitas
a 6) e ¢), entdo ela verifica-se para os mesmos indices 7 e
para todas as constantes assint6ticas andlogas.»

Demonstragdo de V: Suponhamos primeiro que é pos-
sivel encontrar constantes .S, que estejam nas condi¢des do
enunciado.

Entado, escolhendo guaisquer constantes assintoticas 4,
de acordo com &) e ¢), sucede que a toda a subsucessio con-

ergente X;, extraida de @), fica correspondendo uma suces-
do de fungbes G;(u), extraida de d), tal que as {ormulas 14)

<

w
tn

i

e 17), com ¢ em lugar de #, permitem escrever Gf(u)—c> G (u).
Logo
im G;(F00) L G(F00) — G(—o0) =

7400
= lim lim G;(u)— lim lim G;(«).
#t4w 44w #{—0 {414

Acabamos de mostrar que a subconvergéncia das somas
de @) implica a condi¢io expressa no enunciado e passamos
agora a provar a implicacdo inversa.

Para este efeito, comegamos por admitir que existem
constantes assintoticas 4., sujeitas a 4) e ¢), tais que a
sucessdo G, (+<0) que se obtém de d), quando se pde =4 co,
possui uma subsucessdo convergente G;(+co).

Suponhamos primeiro que G;(+ c)— 0. Entdo, temos

Gj(’u)-—c—>0 e a relagdo ¢) é satisfeita trivialmente; doutro
lado, tomando constantes S; convenientes, correspondem
somas X; cujas leis tendem, de acordo com a demonstra¢io
de IlI, para uma lei limite i. d., a qual sai impropria [A, exem-
plo 1.2 de § 11].
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Suponhamos agora que Gj(+o)— J=0,c0. Entdo, a
sucessio Gj(u)/sup G;(+c) € de fun¢des de quase-distribuicio
y

e como tal reparte-se por subsucessbes G;(u)/sup G;(+),
J

cada uma das quais converge fracamente para uma funcio
de quase-distribui¢do [A, III' de § 5].
Considerando a subsucessdo especial referida no enun-

ciado, sai G;(u)—> G (u), onde G (u) é uma fun¢io de quase-
-distribuicfo, a menos dum factor constante. Se existisse
um ponto de continuidade » da funcio G tal que G(u) — J =
=¢>0, resultava, para ¢/ suficientemente grande, G;(u)>
>G(u)—e/2=[+¢/2>Gi(+); como isso é impossivel, tem-
-se /X G (), para fodo o valor de #, donde J > G (+<0). Dou-
tro lado, a relagdo ¢) implica J £G (+o00)— G (—co).
Concluimos nfio s6 que G(—w)=0 e G(+w) =/, de
modo que G (#) sai uma fun¢do de distribuicfio, a menos dum

factor constante nfio-negativo, como também que G; () — G ()
€, consequentemente, que podemos dispor das constantes .S;
de 15) por forma tal que as leis das somas X; tendam para
uma lei limite,

Para terminar a demonstrago, notemos que a condi¢fo
necessaria e suficiente, relativa a certos indices 7 e a certas
constantes assintéticas, sujeitas a 6) e ¢), implica que exis-
tem constantes .S; que tornam as somas X; convergentes e
que isso implica, por sua vez, a condi¢do necessaria e sufi-
ciente, com os mesmos indices ¢ e com guaisquer constantes
assintoticas analogas.

Observacies :

i2: O caso em que as varidveis X, de @) de V sdo
assintoticamente constantes, mas ndo infinitesimais, pode
resolver-se pelas translagdes referidas na observagio ao teo-
rema III.

221 Se a sucessiio G, (+oo) de d) de V tiver limite infi-
nito para certas constantes assintdticas sujeitas a 4) e c),
entdo ndo pode haver subsucessdo convergente extraida de @).
Mais, se a sucessio G, (+co) for ilimitada para certas cons-
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tantes assintdticas sujeitas a 6) e a ¢), entfo as leis das
somas X, admitem subsucessbes que saem divergentes, isso
sejam quais forem as constantes S,,.

8.1 Se Gi(+4oo)—J <4co e Gi(u)—>G(u), entiio, seja
qual for o indice 7 e seja qual for o ponto de continuidade u
da funcio G, temos sempre a desigualdade

| T~ G ()] 2] J=Gi( )] + | Gi(+00)—Ge(w)] +
+ ] Gulw)—= G (1) | + | G ()~ G (+9)],

da qual se depreende que G(+o) =/, desde que se verifique
a condigdo seguinte: Quando #?eo, ao longo duma sucesséo,
as fung¢des G;(u) tendem para G;{+ ), uniformemente ao
longo duma subsucessdo (infinita) de valores do indice 1, ou,
na alternativa, quando %1, onde % significa uma sucessido
extraida da sucessfo 7, Gj(u) tende para G(u), uniforme-
mente ao longo de pontos # (de continuidade da funcio &)
que formem uma sucessdo divergente para oo, — Substi-
tuindo na desigualdade acima referida J por 0 e 4o por
—eo, pode estabelecer-se uma condi¢io andloga a anterior,
debaixo da qual G(—o) = 0. '

4.*: Se tivermos em conta que toda a sucessio (numé-
rica) convergente ¢ limitada e que toda a sucessfo (infinita)
limitada admite uma subsucessfo convergente, entdo 4) de
§ 4 de B e as desigualdades que precedem VII' de § 7 de B
permitem afirmar que a sucessfo

ank (x + Aﬂk)

3 J T
1=t=t,J R 1+%

possui uma subsucessdo convergente ou (infinita) limitada,
quando e s6 quando existe um numero 0 >0 tal que a
sucessio

2 R hD (x) dﬁ‘nk (x+ Ank)

1=k=k,

admite uma subsucessio (infinita) limitada ou, equivalente-
mente, tal que as duas sucessdes
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2 .’XJ2 ank (x + Ank}

1=k=h, J |¥|=D

s [ dFu(x+ A,
./l-fl>D k( k)

1=k=<hy,

saem conjuntamente limitadas ao longo duma subsucessdo
(infinita) de valores de z.

21 A demonstracio feita esclarece que a convergéncia
da sucessio G, (o) ndo é suficiente para impor a existén-
cia de constantes .S, que tornem convergentes ou subcon-
vergentes as somas X, , salvo no caso G, (4-)—0, no gual
as leis das variaveis X, se podem fazer tender para uma lei

improépria.

§ 3) Teoremas gerais de convergéncis

Primeiro teorema de convergéncia. J4 usdmos, uma vez
por outra, o teorema de Guepenko € KuinrcHing, estabelecido
em § 2, para tratar casos concretos de convergéncia de somas
de variaveis casuais independentes. Passamos agora a fazer
o seu uso orientado em vista a resolugdo do problema geral
que é o objecto deste capitulo.

As formulas 14) e 15) de § 2 mostram que a representa-
¢do de Livy e Kmnrcume das leis i. d. associadas que se intro-
duziram através de d) de IlI de § 2 € caracterizada como
segue [A, 1) de § 11]:

1) a, =— 5, + 2 [Ank fR Ml—‘—l:x_?' dF (x + Ank)]y ‘

1=<k=k,
k3 xg
2) Gl = 2, f o T Fulrtdu).

Ora, a convergéncia das leis das somas de a) de III de
§ 2 para alguma lei limite é concomitante com a convergén-
cia das leis i. d. individualizadas pelas férmulas 1) e 2) para
a mesma lei limite e esta convergéncia, por sua vez, € gover-
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nada pelo teorema I de § 8 de B, com a particularidade de
ser possivel satisfazer 4 condi¢io a,— @, dispondo conve-
nientemente das constantes S, . Dai inferimos a parte prin-
cipal e de Il e III' de § 2 inferimos a parte final da propo-
si¢do seguinte, a que podemos chamar primeiro teorema de
convergéncia ;

1) «Dadas as varidveis casuais X,;, independentes por
linhas, infinitesimais® e tendo as fungdes de distribuicio
Fur(x), para que possam determinar-se constantes .S, que
tornem as leis das somas

Cl) Xn=)(m+)(m+"-+ ane,,~5n

(fracamente) convergentes para uma lei limite (infinitamente
divisivel), quando 71 e, ¢ condigdo necessdria e suficiente que,
representando por P e O dois numeros positivos arbitrarios,
existam constantes assintoticas 4,; (das variaveis Xor), sujei-
tas a restricdo de sair a desigualdade, valida para » suficien-
temente grande e uniformemente em 4,

b) inf [flxlél’ xdlfy (%), .AxléQ xdlF (’t‘)] — b L A £

£ sup [fmgP xdF (%), fmgg & dFn (%) ] + Lo,

onde &, e ¢, significam ntmeros ndo-negativos que satisfa-
zem a
¢) lim 2 &,=1lim 2 ¢,=0,

nto 1=k=k, ntw 1=hk=k,

e que exista mais uma funcfo & (#) que é de distribuicido, a
menos dum factor constante nfo-negativo, tais que as gran-
dezas 4,. e G (u) verificam a relacgéio

u x2 ¢
3 — L7 ) —> + oo,
d) . f_w a7 aF(x + Au)— G(u), quando 1t

() O caso em que as varidveis sZo assintdticamente constantes, sem
serem infinitesimais, pode resolver-se pelas translagles referidas na
observacgdo ao teorema III de § 2.
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Satisfeita esta condigdo, o conjunto das constantes .S,
admissiveis ¢ dado pela formula®

o X
e) Sn == 2 . [Ank +fR T:f—? dE;k (x + Ank)] —

1=h=Sk

onde a, representa o termo geral duma sucessio (real) con-
vergente arbitraria,

O limite da sucessdo a,, seja g, e a funciio G (1) caracte-
rizam a lei limite sob a forma de Lévy e Knintcnine,

Se a relagio d) ocorre para uma certa sucessio de cons-
tantes assintoticas sujeitas a 4) e ¢), entdo ela tem lugar para
todas as sucessdes analogas, sempre com a mesma funcfo
limite G (u).

Quando se pretende simultineamente que as somas de
@) sejam convergentes e que seja possivel tomar .S,-—» 0
(ou S, ==0), a condi¢do necessdria e suficiente continua a ser
a mesma anterior, mas acrescida da imposi¢io que os soma-
torios que figuram em ¢) devem formar uma sucessio con-
vergente.»

Observacdo : Quando convergem as somas de a), as leis
limite s6 podem diferir umas das outras, caso apresentem
valores distintos para o limite da sucessio a,. Ent4o, as cons-
tantes .S,,, definidas a menos dum infinitésimo, determinam
os termos da sucessdo «,, também a menos dum infinitésimo,
e vice-versa (III' de § 2). Logo, fixado o limite @ da sucessio
@y, a diferenga de quaisquer duas somas possiveis .S, + Ay s
correspondentes ao mesmo valor de », tem limite nulo,
quando 7zt eo, Dai pode concluir-se, escolhendo />0 de modo
que * U sejam pontos de continnidade de G(u) e pondo
A= vEuw (ver 4) de § 2), que

()
im 3 L AR, (ot g B =

nto 1=hsth, R 1+%7

() Ou por ¢} da observagdo seguinte.
() A justificagdo desta passagem dar-se-4 mais adiante na observa-
¢do ao teorema Il e em 12),
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P N I RIS
M7 jul<U

donde se tira uma variante de ¢), a saber

e)Su= 2 [y wdF ()~ (an—c(U)).

IES N
Uma alternativa curiosa ¢ fazer

Aup=vEu~+10m, com lm 2 wnu=mn,
nhoo d=mh=h,

escolha esta que é compativel com &) e ¢) de I, para obter
de ¢) e ¢;) a igualdade

HH] 2 f _‘—_’—x ) dFﬂk (x+ UE17k+W7;k)=_.n‘+C(U)'
wto 1<<h=sh,s R 1-+2°
Exemplo: Vamos retomar e completar o exemplo rela-
tivo ao teorema Il de § 2, com A4,p=ypf,,=0. A férmula ¢)
de I da agora

— =B .ﬁ@w>
Sn—— a,+ 15_%5” <9k 1 —i—ﬁ}za/Bf; +pk 1+ q%/Bf; ’
mas ¢ preferivel usar ¢;) que dd imediatamente S,= —a,.

Desejando, pode tomar-se .S, — 0 ou .S,==0, donde @=0.

Outro exemplo: Consideremos a sucessdo dupla de va-
ridveis casuais X,;(n=2,3,...; £=1,2,...,2#), indepen-
dentes por linhas e tendo as fun¢ées de distribuigfio

T n? x ®
. <—§« -+ arctg-k——> + " d(x),

nt—p
T 922

Fn/z (&L) ==

com J(x)=0 ou #? ou 1, conforme x£0 ou 0Lx<L1 ou 421,
Entéo, dado ¢ tal que 0<<:£1, tem-se

) Se a lei limite for simétrica com respeito a alguma constante real,
a funcdo ¢(U) aqui definida sai nula [B, II de § 2].
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SUp [Fu (=) +1=Fu ()] =
su 1—2—F0 w— k arct e ke 0
= — —_— ] —>
kp Tu 87 J n? !

quando #1o0, 0 que prova que as nossas variaveis sdo infi-
nitesimais. Além disso,

f xank(x) 2/‘3 e 2<2/~f> dn(2u+1)- (411_;_1)
= .

312 27 ut

donde concluimos que podemos usar I, com 4,,=0. Resulta

Gn(u) = ?f 1 1 x dﬁ‘nk (x) =

-9

Z[ £ arctgu — * carct wu) k- -
(etu%) B¥ T &% ) T re
% v xR .

v [ T aw)
em particular,

B R’ (n—F) )

Golro)=3[ 0L E (1 togy) |
Logo, tendo em vista que 2k2=#(2#+1), que
&

w—2u  nwl—k i1 1 1 1

e que

£ Z £
Su-t+nt — k+u? T 14-u7 oap-tnt = hint T 1+nd '

saem as relagdes G, (4o0)— 2+2(1—log?2) e, dado « {inito,

G,,(u)——»—% carctgu--1+4+2 f ~1—j%ﬁd5(x)=6(u),

a tltima das quais implica G(— )=0 e G(+0)=2+2-(1-log 2).
Portanto, G, (#)— G (), de modo que existem constantes .S,
que tornam as leis das somas de @) convergentes para uma
lei limite (i. d.). Finalmente, as constantes S, admissiveis
podem determ1na1 -se por ¢) ou ¢;), aqui de preferéncia por e),
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e calculam-se, através de contas elementares,em S,~4—w—-a,.
Acrescentamos que G (u)=(2/%) - arc tg u + 1 corresponde a
uma componente da lei limite que ¢ de Cavcny [exemplo 4.°
de § 11 de A, com a=2].
& ! £

Segundo teorema de convergéncia, Passamos agoraa repre-
sentar as leis i.d. de d) de IIl de § 2 e a sua lei limite, se
a houver, sob a forma de Lévy modificada.

Entdo, usando 1) e 2) do texto e B, 3) de § 3, com o sinal
+ na ultima expressdo(), obtemos as relagdes seguintes [A,
8)elde§ 5e 8)de§ 10]:

8)  4i=0; para u<0,M,()= 3 [ dFu(x+Au);

I=sh=kn

para u>0, NV, ()= 3 ;m dF(x4 Auw).

1<k=h,

Usando 1) e 2)do texto e B, § 3, 5) e a observacéo anexa a 11,
obtemos analogamente a relagdo seguinte, onde U significa
um nimero positivo arbitrdrio,

X
ay, (U):- ‘Sn—!—% liA.”k‘*‘ me ank(x’{‘ Ank)] +

3
P _* z _ f x )
+k < 1140 ({Ek(x‘!“Ank) % lxléUl‘_‘—“_*_xz dE;k(x'f'A k),

a qual se simplifica para

Y aU)==S+ 2 (At [y <o d Fs (et Aug) ]
Sabemos que a convergéncia das leis das somas de a)del

para alguma lei limite é concomitante com a convergéncia

das leis i.d. individualizadas pelas férmulas 8) e 4) para

a mesma lel limite e que esta ultima convergéncia é gover-
nada pelo teorema II de § 8 de B e a observacio anexa,

) Quer dizer, interpretamos os integrais do ponto de vista da medida,
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com a particularidade de ser possivel satisfazer a condicédo
a,(U)—a(U), dispondo convenientemente das constantes S
Este facto permite-nos imitar a dedugo que nos levou de 1)
e 2) a | para tirarmos de 3) e 4) outra proposi¢do, a qual
vamos chamar segundo teorema de convergéncia € que passamos
a enunciar:

II) «Dadas as variaveis casuais X, independentes por
linhas, infinitesimais® e tendo as fun¢Ges de distribuicio
F,:(x), para que possam determinar-se constantes S, que
tornem as leis das somas de «) de I (fracamente) conver-
gentes para uma lei limite (infinitamente divisivel), quando
ntoo, é condigdo necessdria e suficiente que existam constantes
assintoticas A, (das varidveis X,z), sujeitas a relagdes 6) e ¢)
iguais as relagdes homologas de I, e que existam mais uma
constante nio-negativa 6% e duas fungées, M (u) e IV (u), a pri-
meira definida para #<0, nfdo-decrescente (,semicontinua
a esquerda) e nula no ponto —oo e a outra definida para
#>0, nio-crescente (,continua a direita) e nula no ponto
< oo, ambas sujeitas a restri¢do

J_O; "’ dM(“)'*‘fots u?d NV (1)< o0, para qualquer ¢>>0,

tais que as grandezas A, 0% M(u) e IV (u) verificam as trés
relaces seguintes:

i) lim 2 Foup(u+ Au)=M (),

ntwo 1=h=k,
isso em todo o ponto %<0 que € de continuidade da fun¢io M,

dz) lim 2 [1—Fu(u+ Auw)=2N(u)

nio 1=Sk=k,

isso em todo o ponto #>0que € de continuidade da func¢do V, e

ds) lim limmax 2 flrl<€ %2d Fup (% + Au)=

el0 ntw 1=5k==hy

=lim limmin 2 o X2 d Fup (x4 Au)=0°
€0 who  1=hh, twl<e

(" Repete-se a nota ao teorema I.
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Satisfeita esta condigdo, o conjunto das constantes .S,
admissiveis ¢ dado pela formula®

¢) = 3 [ Aut [ w dFa(atAn) | —a, (V)

I=k=k,

onde U>0 ¢ arbitrario, debaixo da restricdo de U serem
pontos de continuidade das fun¢des M e IV, respectivamente,
e onde a,(U) representa o termo genérico duma sucessdo
(real) convergente arbitréria.

O limite da sucessio a,(U), seja a(U), a constante &°
e as funcdes M (u) e V(1) caracterizam a lei limite sob a forma
de Livy modificada.

Se as relacdes di) a d5) ocorrem para uma certa sucessdo
de constantes assintéticas sujeitas a 6) e ¢), as mesmas rela-
¢oes tém lugar para todas as sucessbes andlogas, a primeira
sempre com a mesma funcdo M(«), a segunda sempre com
a mesma fun¢io NV (#) e a tiltima sempre com a mesma cons-
tante 4%

Quando se pretende simultaneamente que as somas de
a) de I sejam convergentes e que seja possivel tomar S,=0,
a condicfio necessiria e suliciente anterior completa-se do
mesmo modo que na parte final de L»

Observacdo: Admitida a convergéncia das somas de a)
de I e escolhidos U>0 e uma sucesséo de constantes assin-
toticas A, de acordo com 1I, vemos, pelas expressbes ¢) de
I e II, pela primeira parte da observagdo ao teorema le pela
formula 138) de § 11 de A, que tem lugar a relagdo

lim [Zf e d Fop(x+ Aw)— Z { xdF,,k(erA,,k)]:
1+ el

nhoo
_—;f 4G (u) ——f u dG (1),
lz=U ¥ jul<U

a qual mostra que os dois somatérios convergem ou diver-

) On por ¢, )da observagdo seguinte.
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gem simultaneamente, quando # tco. Doutro lado, ¢ possivel
deduzir a igualdade

lim 2.[Iwi<f/ x dF o (%4 vEa) =0,

nteo %

a qual justifica a observagdo ao teorema I, prova que a ex-
pressio ¢) de 11 pode tomar o aspecto

e11) Se= 3 [LouxdFu(x)—a,(U)

1=h=k,

e permite concluir de ¢) e ¢z7) que se verilica a relagio

lim ZL£|<deFnk(x+ UEnk+w11k)=_ﬂ7

#nlo &

com respeito & qual valem as mesmas convengdes da obser-
vagdo anterior.

Exemplo: Retomemos o primeiro exemplo relativo ao
teorema I. Logo se vé que, para » suficientemente grande, as
somas contidas em d;) e em ;) de II ficam nulas; portanto,
sai M(x)=0 e N(x)=0 e s6 podemos ter uma lei limite de
Gauss [A, exemplo 2.° de § 11]. A soma de integrais contida
em ds) reduz-se, para » suficientemente grande, a

2 (@ pitpugi)| Bi=1,
de modo que resulta 5*=1. Finalmente, a f6rmula ¢) de II ou,
talvez melhor, a fé6rmula ¢;7) da S,=—a,(U).

Outro exemplo: Retomemos agora o segundo exemplo
relativo ao teorema I. Tendo em vista os calculos anteriores
e mais que a fun¢io M (4) da representacio de Lévy da com-
ponente de Caucny da lei limite é —2/(m«), para #<0, a rela-
¢do d;) de 1l permite estabelecer o resultado

® A deducdo desta igualdade far-se-4 em 12).
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2 24
lim 2 <1+arctg”/eu)=:[;—2—»

ntw 1==kt=2x 2 24

conforme %<0 ou %#>0.

Terceiro teorema ou teorema fundamental de convergéncia.
A comparagio dos integrais de d) e de ¢) de [ com os que
figuram em di) a ds) e em ¢) de Il sugere um certo ganho
de simplicidade no sentido dos primeiros para os tltimos
que € pelo menos formal e, muitas vezes, se torna efectivo.
Em contrapartida, os processos de passagem ao limite com-
plicam-se em geral, quando se passa da condi¢fio necessdria
e suficiente de I para a de I

Sejam quais forem os méritos relativos dos dois teoremas
referidos, eles padecem duma desvantagem comum: Embora
haja uma certa liberdade de escolha das constantes assinto-
ticas no Ambito das relagdes &) e ¢), esta liberdade estd longe
de ser completa e as constantes que se afiguram mais cémo-
das, os zeros, podem ficar vedadas. Assim se compreende,
quanto € importante remodelar a condi¢fio necessaria e sufi-
ciente de convergéncia das somas de varidveis independentes
e infinitesimais, por forma que possam usar-se constantes
assintdticas idénticamente nulas em todos os casos.

Conseguido este objectivo, ndo havera qualquer dificul-
dade em estender a condigdo necessdria e suficiente encon-
trada ao caso das varidveis assintdticamente constantes arbi-
trarias (nem sempre infinitesimais).

O desenvolvimento das ideias apresentadas conduz ao
terceiro teorema ou teorema fundamental de convergéncia, 0 qual
¢ devido a Gnebenko e constitui o ponto culminante de toda
@ teoria aqui feita. Ei-lo:

II) «Dadas as varidveis casuais X,;, com 1LkLk, e
ky—=c0, quando # 1, independentes por linhas, assintotica-
mente constantes e tendo as fungdes de distribui¢fo F.(x),
para que possam determinar-se constantes S, que tornem
as leis das somas
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a) X=X+ Xugt -+ X5, — S,

(fracamente) convergentes para uma lei (infinitamente divi-
sivel), quando # 1 co, ¢ condicdo necessdria e suficiente que exis-
tam constantes assintéticas A, (das varidveis X,;), uma
constante ndo-negativa 6° e duas fungdes, M (u) e N(u),
a primeira definida para %<0, ndo-decrescente (, semicon-
tinua a esquerda) e nula no ponto —o e a outra definida
para #>0, ndo-crescente (, continua a direita) e nula no ponto
+oo, ambas sujeitas a restricfio

fﬁ‘ wuid M (u) + foie u* d NV (u)< + o0, para qualquer >0,

tais que as grandezas 4,;,6%, M (u) e N (u) verificam as tres
relacdes seguintes:
by) lim 2 Fo(utdup)=Mw),

nfo 1=k=<ik,

isso em todo o ponto #<0 que é de continuidade da fungso M,

bs) Hm 3 (1= Fop (et )= N (1),

nheo 1Th=lk,

isso em todo o ponto #>>0 que ¢ de continuidade da funcao V, e

b3) lim max f{flsz X2 Al (x4 A) — [f(sz X dF(x+ Anle)]?} e

wtw

. . 4 2
lim min 2 {f;x(<e X2 dF o (x+ Aup) — [flx|<s x dF,,;.,,(x+Ank)] }
#ntoo % -
tendem para 4% quando ¢} 0.
Satisfeita esta condigfio, o conjunto das constantes S,
admissiveis é dado pela formula

C) Sn: 2 An/e +ﬁfi:<;U X ank (x+ Ank)] —a, (U),

L=k=tk,

onde U>0 € arbitrario, debaixo da restri¢do de FU serem
pontos de continuidade das funcées M e AV, respectivamente,
e onde a,(U) representa o termo geral duma sucessio (real)
convergente arbitrdria, :
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O limite da sucessiio a,(U), seja a(U), a constante &%
e as fungdes M (#) e IV (i) caracterizam a lei limite sob a forma
de Levy modificada.

Quando se pretende simultdneamente que as somas
de @) sejam convergentes e que seja possivel tomar S, —0
(ou S,=0), a condicdo necessaria e suficiente compreende
ainda as relagbes 4,) a b3), mas acrescidas da imposi¢do que
os somatoérios que figuram em ¢) devem formar uma sucesséo
convergente. .

Finalmente, se as rela¢bes 6,) a &3) ocorrem para uma
certa sucessio de constantes assintdticas das variaveis X,
as mesmas relagdes tém lugar para todas as sucessdes de tais
constantes, a primeira sempre com a mesma funcio M (u),
a segunda sempre com a mesma funcfo V(1) e a ultima sem-
pre com a mesma constante 5%»

Demonstracdo de I1/: Supondo escolhida uma sucessio
dupla qualquer de constantes assintéticas A,, das varidveis
Xz, podemos por

5) Xr!k:Xnk"Ank € S&:Sn‘ 2 An}a

1=k=4k,

e escrever a) sob a forma
61,) anX,il—i—)(ég—f‘ '}'Xr{k,,_ ii-

As variaveis X, sfo infinitesimais. Se designarmos por
Fx(x) as fungdes de distribui¢do dessas varidveis, entdo as
relacdes 6,) e b;) passam a ser

Dlim 2 Fi=Mwm)e b;)lim 2 [1—-F(u)]=N(u),

nto 1k<k, nto 1=k=h,

validas nos pontos de continuidade de M e de WV, respectiva-
mente, e a relacio b3) passa a ser

5) lim lim nlaxl§=li<;k,,{firi<s xﬂdF,ﬁk(x)—[/ﬂlxKe xdF), (x):}2 }:

€0 ntw

=lim limmin 2 {fM<€ xng,ik(x)m[ﬁjKe xdF (x)]2 }:zb?.

€)0 nhoo 1==k=Fk,
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Se trabalharmos com constantes assintéticas A4}, das va-
ridveis X, que satisfacam a rela¢bes analogas as de 4) e ¢)
de II ou I, as igualdades d;) e d;) de Il passam a ser

dj) lim 3 Fh(ut Aw)=M ()
e nlw 1=h=sh,
ds) lim 2 [1—Fh(u-t+du)]=4N (u),

ntw 1=k<k,

validas nos pontos de continuidade de M e de NV, respecti-
vamente, e a igualdade ds) de II passa a ser

4) lim limmax 3 f(xKex Al (x4 Ay)=

e}0 nhw 1=k =hy,

=lim limmin 23 fhKex dFi (x4 Alx)= 0%

€0 whtw 1k =Shy,

Sendo assim, provar a condi¢do necessaria e suficiente
de III ¢ a mesma coisa que provar a equivaléncia entre o con-
junto das relagdes 41) a b5) e o conjunto das relagées di) a d4).

Esta pois delineado o plano da nossa demonstracio.
Antes de entrarmos em pormenores, convém recordar a pro-
priedade [I' de § 4 de B]

6) sup | A |=L},— 0, quando 71 oo,

1=k =k,

Admitamos agora d{). Entdo, fixado um ponto de conti-
nuidade «# de M e dado d, com 0<d<—u, de modo tal que
#Fd sejam pontos de continuidade de M, tiramos da desi-
gualdade

7) 2 nk (M + Ank"_a)é 2 nk (u)é 2 nk (%+ Ank+8))

1=<h=<Thy, 1sk=ky, 1=<h=<k,
valida para # suficientemente grande, a relacio

M(u—3)Llim mmE ,,A(zt)éllm maxZFﬂ’k(u)/M(u—)—a),
o

nhoo

da qual sai 64}), fazendo ¢ 0.
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De 5i) e da desigualdade

8) 2o (u—0)Z2 Fip (u+ Ap) £ 3 Flr (u+4-9),
E k k

homoéloga de 7), concluimos semelhantemente pela relacéo df ).

Portanto, 41) e d{) séo equivalentes.

Em seguida admitamos d4). Entdo, fixado um ponto de
continuidade # de V e dado §, com 0<d<u, por forma que
# 0 sejam pontos de continuidade de &V, tiramos de 7) que
¢ valida, para # suficientemente grande, a relagio

W (= 3> 2[1— P ()] (),

a qual prova &;). Depois 4,) e 8) ddo df). Concluimos que
também &;) e di) sdo equivalentes.
Atendendo agora a 6), podemos estabelecer, para # sufi-

2 2 dF Ay L2 — Al dF (%)L
- ‘/"Ivl<€/2x k (x+ ])___ . lw|<<e (x 7) k (x)__..

23 [\ o P B (o A,
as quais provam que d44) é equivalente a

9) limlimmax 3 [ (r— AP dF(s)=

€|0 ntw 1==kh=ky

=1:1m limmin 2 ‘ flsz (x— A dF . (%)= 8%
e|0 ntw 1=k=<ky
O pentiltimo paragrafo do teorema 11 mostra que nfio ha

qualquer perda de generalidade, se tomarmos um numero
U>0 e pusermos

10) Al/zk: UEZI:: [x]§Ux dF;/zk (x)
nas relagbes i) a df) ou, equivalentemente, em df), d4) e 9).

Procedendo deste modo, considerando ¢>0 arbitrario, tomando
920 de modo que F-(¢—0d) sejam pontos de continuidade de
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M e de N, respectivamente, e pondo U >¢, tiramos de 6), 10),
i) e &5) que a desigualdade

|2 e (5 At A ()
e dFa@=fuuarabie]
22 {[fuerdPa@)[ =2 vBl- [ v dFh@)t oBit )+
+3 (0B [ dFA@) L [, ool dFi T+
FLE3 [ AR @[ L+ U sop [ dFi ()

2 / ey Ok (%),

tem um ultimo membro cujo segundo factor tende para
M (—e+0)+N (:—0) e cujo primeiro factor é evanescente
[B, 1) de § 4]. Portanto, fixado ¢, qualquer subsucessdo da
sucessdo natural # que leve as somas correspondentes de 9)
a um certo limite faz caminhar as somas correspondentes de
4) para o mesmo limite e vice-versa. Logo, sendo validas
as relagdes 61) e 6%) ou, equivalentemente, as relagdes df)
e di), também as igualdades &) e 9) saem equivalentes.

Assim fica provado que o conjunto das rela¢des df) a d)
é equivalente ao conjunto das relagbes i) a b5) ou, o que
vem a ser a mesma coisa, que o conjunto das relagbes &,)
a &3) do enunciado constitui de facto uma condi¢do necessa-
ria e suficiente.

Posto isso, vamos adaptar a expressio ¢) de II ao con-
junto das constantes S;, admissiveis, introduzidas em 5) e a’).
Sai a formula ’

1) Si= 3 [+ [lcom dFh (e A) | —an(U),
onde os simbolos tém os significados anteriormente expli-
cados.



36 PEDRO BRAUMANN

Escolhamos agora as grandezas 4/, de 11) de acordo com
10), o que n#o representa perda de constantes Sy (11 de § 2).
Entdo, fixado >0 de modo que T (U+ 9) sejam pontos de
continuidade de M e de W, tem-se, por causa de 6), i) e b)),

12 [0 ® dFh (ot A ] 3 [0 (e~ i) dF () | +
3 [ e (= i) dF () |+ 3 [ appew (4 ) dF ()~

=3 [ o (5= ) dFju() 123 [ o] A 4P (@) +

+

2 [l Al AP+ [ B Al () 2
~>2U [M(~U+3)-M(~U~3)+N(U-3)- N(U+3)], quando  + <o,

onde, ndo o esquecamos, a funcéo M é continua em — U e a
fungdo /V é continua em + U. Portanto, sai a igualdade

19) lim 3 [ xdF (st Au)=0, com i pEl.0)

nteo 1=k=k,

Pois bem, de 5), 10), 11) e 12) tiramos a relacio ¢) do
enunciado.

As relagbes 4;) a &3) e ¢) do enunciado envolvem gran-
dezas M (u), N(u), &* e a,(U) que figuram também em di)
a d;) e em 11) e que, por isso, caracterizam a lei limite das
somas de a/) (1I). Como as somas de ') e de @) sfo as mes-
mas, aquelas grandezas caracterizam também a lei limite
das somas de a).

O penultimo paragrafo do enunciado é uma consequéncia
6bvia da relagio ¢) do texto e de III' de § 2.

Por fim, o ultimo paragrafo do enunciado decorre ime-
diatamente do facto que a forma das expressées que figuram

() A relagio 12), com 4, £ e F em lugar de 4/, £/ e F/, permite
completar os célculos relativos as observagdes aos teoremas I e I1.
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em a') e em 4;) a b3) é independente da escolha das cons-
tantes assintdticas 4, que se queiram subtrair das varia-
veis X,

Fica pois completa a demonstragfo de IIL

Observacdo: Se designarmos por £, o termo genérico
duma das sucessdes de varidveis casuais i. d. que o teo-
rema Il de § 2 associa as somas de a'), podemos por

p »
E_n‘:g.nl“‘l—znil‘i‘ R R

onde I, — oo, quando #1eo, e as varidveis £,; sdo i.d. e infi-
tesimais e onde, além disso, dado #, as parcelas &,; sdo inde-
pendentes e idénticamente distribuidas, de modo que tém
uma funcio de distribui¢dio comum, a qual vamos representar
por ¢, (x) (ver texto antes de IV de § 2). Aplicando agora o
terceiro teorema de convergéncia simultaneamente as varia-
veis X e £, tira-se a relagio

lim 2 Fp(u+ Aw)=lim [/, - 0, (4)],
Hoo

nte k n

vilida nas condi¢oes de 4,), e mais a relagdo

lim 2{1—Fu (u—%—A.,,,c)]-:li?m {4 [(1—3. ()],

#ta k

valida nas condicdes de &y), tendo qualquer das duas uma
interpretacio probabilistica interessante.—Doutro lado, a rela-
¢io b3) de III refere uma convergéncia especial das somas
das variancias das varidveis X,—.4,x ou das variaveis &,
umas ou outras truncadas pelo intervalo aberto de —¢ a +¢,
para a varidncia da componente gausseana da lei limite
(isto &, da variavel parcela da lei limite que resulta de
fazer M(u)==0 e N (#)=0 na correspondente representa¢do
de Livy).

Nota final: E facil adaptar os teoremas I a Il a varia-
veis casuais X=X,/B,, com 1LkLn e B5,>0; basta usar,
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para o efeito, as férmulas de B, § 8, texto antes de I e obser-
vagido depois de 1lll. No § 7 ocupar-nos-emos dum problema
que compreende a adaptagdo referida como caso particular.

§ 4) Estudo duma variante do teorema fundamental de con-
vergéncia

Uma alternativa para a condiciio de convergéncia do teorema
fundamental, H&4 uma alternativa interessante para as rela-
cdes by) e by) de Ill de § 8, a qual vem exposta numa propo-
si¢do citada por Lo&ve. Vejamos:

I) «Dadas as varidveis casuais X,., com 1 £k <4k, e
ky — oo, quando 74 oo, independentes por linhas, assintotica-
mente constantes e tendo as fung¢bes de distribuigdo F. (%),
a relagdo 6,) de Il de § 8 verifica-se, quando ¢ sé quando
as funcdes de distribuicio dos termos da sucessio casual

inf (X.—A.) tendem para 1—e¥® nos pontos #<0 que
1=k <k,

sio de continuidade da func¢io J/. Analogamente, a relacio
b:) de Il de § 8 verifica-se, quando ¢ sé quando as funcdes
de distribuigfio dos termos da sucessfo casual sup (X,u—4u)

1=k =ky
tendem para ¢~V nos pontos #>0 que sdo de continuidade
da funcio V.»

Demonstracdo de IV : Como as varidveis X=X, — A,
sdo infinitesimais, as suas fun¢des de distribuicio Fh(x)=
=Fu(x+4a) satisfazem as duas relagdes seguintes [B, 1)
de § 4]:

1) a) lim sup £ (u)=0, para u<0;

niw 1=k=k,

b) lim inf Fy (u)=1, para u>0.

nlo 1=k=k,

Doutro lado, sup X, ¢ uma variavel casual [A, VI' de § 3]
k
cuja fun¢éo de distribui¢io /, (#) é dada pela expressio [A, 2)
ou 3) de § 7]
2) ]n (%>= I -F;;k (u)

1=k=ky
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Recordemos ainda a desigualdade [B, texto a seguir a 2)
de § 5]
3) log Ju(w)£— 2 [1—Fp(w)]

1=k=ky

e suponhamos que #>0 ¢ um ponto de continuidade da fun-
cio V.

Entdo, fazendo 1—77(#)=9, e atendendo a 1 &) e a 2),
obtemos, para 7 suficientemente grande,

—log /., (u)~,2 (1—Fo(u)]= ~§ [log (1 — 9u)+0m]=

1
:E ( Z "Dizk/l)_é ? " ’2 [??ﬂ»/(l _“()ouk)]ésup f?nk ‘ ? '-?::zk,
fe k 3

Eo2=i<w

onde o tltimo produto tem limite nulo, desde que 2o, seja
3

limitado. Ora esta hipétese verifica-se obviamente, quando
tem lugar a relagdo b,) de 1ll de § 3, e verifica-se também,
quando log [, (#)— — NN (1), por causa de 3). Deste modo fica
demonstrada uma das partes (a segunda) do nosso teorema.

Para demonstrar a outra parte, comecemos por notar que
o facto da variavel casual X ter a fun¢do de distribuicdo
F (1) implica que a varidvel —X tem a fun¢fo de distribuigéo
1--F(—u+0). Aplicando esta propriedade duas vezes consecuti-
vas, tira-se de 2) que a variavel casual h;fo,,/,;z-—sup(-X,ék)

ke k

tem uma fungdo de distribui¢do, seja /. (1), que € dada pela
expressio
4) Li(u)=1— T [1--F;(u)).
1=k,
Fazendo agora Fj,(u)={. e atendendo a 1 a) e a 4), sai
a desigualdade, vdlida para » suficientemente grande,

—log [1—1, ()] — 3 Fy (0) Z5up Yot - Z
k k I

a qual se junta a desigualdade

log [1— 1, (1)]< — 3 Fu (1),
k
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homéloga de 38). Sendo assim e supondo que #<0 é um ponto
de continuidade da fung¢fio M, torna-se facil completar a de-
monstragio do nosso teorema.

Exemplo: Retomemos o primeiro exemplo relativo ao
teorema 11 de § 8. Sai /, (#)=0, para u<—~1/B,, e, portanto,
lim 7, (4)=0, para #<0; depois /, (u)=1, para u>1/8,, e, por-
niw "

tanto, lim J, (#)=1, para »>0. Estabelecemos novamente que
#too

Mu)=0 e Nu)=0 e que a lei limite, caso exista, s6 pode
ser de Gauss. Depois completa-se o estudo, recorrendo a bs)
de Ill de § 3 ou, o que vem a ser a mesma coisa, recorrendo
a ds) de 11 de § 3.

®
#® #®

Outro teorema de Khintchine. Notemos agora que a cons-
tancia assintotica das varidveis casuais X, implica as rela-
¢Oes seguintes, respectivamente por1 a) e 2)eporld)e 4):

5) lim /,(#)=0, para u<0; 6) lim 7, (#)=1, para u>0.
#nteo . ntw

Na hipétese da constancia assintética ser forte (B, 1)e1)
de § 5], a igualdade 6bvia

7) sup | Xix| = sup (| sup X/, | inf Xiu|)
k k k
conduz a relagio
8) 1i¢m P(|sup Xj|>e)=1im P (|inf X} |x¢)=0,
i k nto k
valida com todo o ¢>0, ou ainda ao conjunto formado por
5) e 6) e mais pelas duas relagdes seguintes:

5) lim [, (#)=0, para u<0; 6') lim /,(#)=1, para u>0.
#nio #ntoo

Inversamente, se admitirmos conjuntamente 5), 6), 5')
e 6'), inferimos primeiro 8) e depois, por causa de 7), que as
varidveis X, sfo fortemente infinitesimais.
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Podemos resumir o estudo feito na proposi¢io (auxiliar)
seguinte:

II) «As varidveis casuais Xz, independentes por linhas,
admitem as constantes assintéticas fortes A, quando ¢ so
quando se verificam conjuntamente as relagdes 5), 6), 5) e 6"}

E 6bvio que II tem o seu interesse proprio no problema
da caracterizacio da constancia assintotica forte. A este pro-
posito ¢ bom observar que o conjunto das duas relagoes 5)
e 6) constitui uma condigfo necessaria, mas de modo nenhum
suficiente para que as variaveis X, admitam as constantes
assintoticas A,;, mesmo quando estas se encontram isentas
da exigencia de serem fortes. Exemplo: Sejam quais forem
n e b tome-se 4, =0 e X, de valores —1,0 e 1, qualquer
deles com probabilidade igual a 1/3.

Posto isso, podemos raciocinar como segue: Se as somas
de variaveis assintoticamente constantes de a) de Ill de § 3
convergem e se as varidveis sdo fortemente assintoticamente
constantes, entdo valem simultaneamente os teoremas I e II,
o que implica M(x)=0 e N (1#)=0 ou seja uma lei limite de
Gauss® [A, exemplos 1.° e 2.° de § 11]. Inversamente, se as
somas de @) de IIl convergem e se a lei limite ¢ de Gauss®),
nio s6 temos as relacdes 6bvias 5) e 6), como também I asse-
gura o conjunto das relagdes 5') e 6') e, consequentemente,
assegura a constancia assintética forte das parcelas de a).
O que precede prova que o seguinte feorema de KHivTcrINE:

1II) «Dadas as varidveis casuais X, independentes por
linhas, assintoticamente constantes e tais que existem cons-
tantes .S, que tornam as leis das somas

Xn=Xn1+Xn2+ o +anc,,_sn

(fracamente) convergentes para uma lei limite (infinitamente
divisivel), entio essas varidveis sfo fortemente assintotica-

() Se a lei for impropria, consideramo-la lei de Gauss degenerada.
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mente constantes, quando ¢ sé quando a lei limite sai de Gauss
(prépria ou impropria).»

Observagdo: Podem dar-se demonstraces diferentes,
porventura mais directas, do teorema Ill. A conclusdo deveras
interessante & que wma lei limile diferente da de Gavss ¢
incompativel com a constdncia assintdtica forte e que tal cons-
tancia implica uma lei limite, sim ou nféo, conforme se cum-
prir ou deixar de cumprir a condigéo 4;) de Il de § 3¢ (ver I
e 1I). Assim fica patente a importancia primordial que tem
a lei de Gauss no conjunto das leis limite possiveis.

CAPITULO II

MODOS ESPECIAIS DE CONVERGENCIA DE SOMAS DE VARIAVEIS
CASUAIS INDEPENDENTES

§ 5) Complementos aos teoremas gerais de convergéncia

Condigdes de validade dos teoremas de convergéncia primeiro
e segundo. O teorema III de § 3 e o teorema de convergéncia
que corresponde a 1 de § 4 apresentam a vantagem de serem
absolutamente gerais, mas incluem uma terceira relagdo um
tanto complicada na condi¢fio necessaria e suficiente de con-
vergéncia. Por isso tem certo interesse definir situagbes em
que essa terceira relagdo se deixe simplificar.

Consideremos as variaveis X, independentes por linhas
e tendo as constantes assintéticas 4,., e comecemos por ana-
lisar o caso em que a rela¢do 43) de III de § 8 pode tomar
o aspecto d3) de 1I de § 8, isso sem alteracdo das constantes
assintéticas envolvidas. Em tal hipotese, as relagdes b,) a bs)
de III de § 3 saem equivalentes as relagbes dy) a ds) de 11
de § 3 e estas, por seu turno, saem equivalentes a relagdo
d)delde§3([2)es)de§seBIellde§ s], apresentando
todas essas relacdes as constantes assintéticas iniciais. Por-
tanto, podemos usar indistintamente os teoremas de conver-

* Ou a sua versdo simplificada que aparece no capitulo seguinte.
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géncia primeiro ou segundo com as constantes assintoticas
presentes, nfio havendo necessidade de indagar, se as varia-
veis infinitesimais X,.— 4, admitem constantes assintéticas
que, além de serem idénticamente nulas, também satisfazem
as restricdes &) e ¢) dos enunciados daqueles teoremas.

Pois bem, considera¢ées elementares concernentes a limi-
tes de sucessbes mostram que a relagdo 43) de Ill de § 8 pode
tomar a forma simplificada ds)de II de § 8, quando e s6 quando
se verificar a igualdade

2
1 lim lim max 2 f xdFu (x+ Au) | =0.
) 640 e 1§;Ic§kn[ (7] <e nl( + M)]

Este facto e as reflexbes anteriores dio a proposigio
seguinte:

I) «As varidveis casuais X, independentes por linhas
e assintoticamente constantes, ajustam-se as condi¢cdes neces-
sarias e suficientes d) do teorema de convergéncia primeiro
e d;) a di) do teorema de convergéncia segundo, expressas
nas constantes assintéticas A, quando e sé quando estas
satisfazem 4 relagio 1) supracitada.»

Vejamos agora um coroldrio da proposigdo anterior.

I} «Para que as varidveis casuais X,;, independentes
por linhas e assintoticamente constantes, se ajustem as con-
dicbes necessarias e suficientes dos teoremas de convergéncia
primeiro e segundo, expressas nas constantes assintoticas 4.,
basta que a lei limite eventual tenha componente gausscana
(de variancia) nula e que, além disso, exista um par fixo de
ntmeros 7' e 7', com 0<y'Ly"<1, tais que se verifica, para
todo o # suficientemente grande e uniformemente em &,
a desigualdade seguinte, relativa a quantis,

1 1 .
a) 'X_le) - ‘ﬂizlc pd Ank Z ng ) -+ ﬂi,,/k,
onde 7 e 7, sio ntimeros nio-negativos que satisfazem a

lim 2 vi=lim 2 i=0»
nio 1=Sk=Sky, nto 1=k=k,
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Demonstracio de I's Caso as constantes assintoticas A
se sujeitem a 4) de I de § 3, elas verificam d,) a ds) de Il de
§ 3 e, se 20, verificam também &,) a &) de III de § 8. Por-
tanto, s6 falta provar que as hipéteses postas no enunciado
implicam a igualdade 1).

Suponhamos primeiro que a relagdo a) de I' tem o aspecto
particular

a”) ch) é Ank é ch ),

designemos por [, aquele dos dois intervalos —e<#<C0 e
0<x<: onde é maior o médulo do integral de x com respeito
a F)(%)=Fu(x+ Au), € recordemos a desigualdade de Liarou-
Nov de 4) de § 8 de B (com a=2, =1 € ¢=0). Sai

i:[fl-erxdF’/”“(x)]Zé%[fmsx | dF'/'k(x)Té

g P 0 777 7o
é% [Jflnk d[?;'k kx) ) 1/ Ink x dﬁ ék (x)._,'é

o

£ 7/1; -2 ? 7/4
——S%pflnde’(x) kf]xKex adf(x),

de modo que a definigdo de 3') de § 4 de B da

1—sup(1—7,7") . -
sup(1—7,7") '%[f&x\«xdﬂk (x)] Z[1—sup(1~7 "]

3 i # dF i (2) 23 e dFi@ = [ s Fa@] |,

onde o limite méaximo do dltimo somatério tende, por hipé-
tese, para zero, quando ¢ | 0 (IIl de § 8, com 4%=0). Dai se tira 1).

Caso as grandezas 4, sejam tais que L = A, com
0L L, basta ter em conta a desigualdade elementar
(x4+0n)Le - (#*+U) para que saia, com # suficientemente

grande, a relagdo

2 . ,
% [fli'Ks xdFy (x)] éfflx'}‘&',’,kKs (4L A (x+ X%))é

i !
é? ‘ % [1/7‘-‘4<23 x2 dEtlc (x”{—xg:{lc)) + cfnal» ! ./l\x.}<2e dE;k (x’*‘Xﬁtlu))] y
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onde o limite maximo do pentltimo somatério tende para
zero, quando ¢} 0, isso pela primeira parte da demonstracio
presente. Este facto e a hipdtese relativa aos numeros
i (20n) conduzem novamente a 1).

O caso XSQ};I)_L_AM=X$,:'}:/)+C£{k trata-se de modo anilogo.

Finalmente, os diversos casos podem sobrepor-se, quando
houver necessidade de fazé-lo. Assim fica completada a de-
monstra¢io de I'.

Exemplos: O teorema I’ aplica-se, em particular, as leis
improprias, de Poisson e de Cavcny [exemplos 1.9 3.° € 4.° de
§ 11 de A].

Outro tipo de simplificagdo da condigédo de convergéncia do
teorema fundamental. Passamos a encarar outro tipo de sim-
plificagdo da relagio &;) de Il de § 38 cujo estudo nos vai
conduzir ao resultado seguinte:

1) «Dadas as variaveis casuais X, independentes por
linhas e assintoticamente constantes, e dada uma familia de
leis infinitamente divisiveis que podem representar-se na
forma de Leivy pela mesma constante nfo-negativa 4% e pelo
mesmo par de fungdes M (x) e N (u), estas sujeitas as condi-
cdes usuais e, além disso, dotadas de secgoes de invariabili-
dade ndo-vazias, a primeira numa antevizinhanga e a outra
numa postvizinhanga da origem, dado tudo isso, é possivel
determinar constantes S, tais que as leis das somas

a) X;fx“:an‘l“XH?—}" et —'—X"k"—_S”'

sejam (fracamente) convergentes para uma lei da familia ante-
rior, quando ¢ sé quando existe uma sucessio (dupla) de cons-
tantes assintoticas 4, das varidvels X, para a qual se veri-
ficam simultaneamente as relagdes seguintes:

bl) lim 2 E;k (u + Ank) = M(”}y

nho 1Sh=ky
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vdlida em todo o ponto #<0 que é de continuidade da
funcio M,
bs) lim 3 [1—Fu(u+Ad.)]=N @),

nlo 1=Sh=<k,

valida em todo o ponto #>0 que é de continuidade da
fungdo W, e

bs) lim 2{ [ o dF (et Au)—[ [ e % A (x4 A) |} =7,

ntow k

valida para algum ¢>0 tal que e<d, onde 3 significa um
namero positivo que ndo excede a menor das amplitudes
das duas secgbes de invariabilidade,

Se as relagbes 4,) a 63) ocorrem para algum ¢<d e para
alguma sucessio de constantes assintéticas das varidveis, as
mesmas relagbes verificam-se para todo o e<d e para todas
as sucessGes de tais constantes, a primeira sempre com
a mesma fun¢do M (u), a segunda sempre com a mesma fun-
¢do V() e a ultima sempre com a mesma constante &%

Finalmente, as constantes S, admissiveis regem-se pelos
principios do terceirc teorema de convergéneia.»

Demonstragdo de [1: Admitamos primeiro que as leis
das somas de @) convergem para uma lei limite que se
encontra nas condi¢es do enunciado. Entfo, sendo 4, uma
sucessdo arbitrdria de constantes assintéticas das varidveis
Xy fazendo Fli(#)=F,i(x+ Ay, atribuindo a % e a v o
significado de numeros quaisquer sujeitos a desigualdade
0<z<u<d e tendo em conta as relagbes 4,) e bs)delll de § 8
(ou do nosso teorema), sai

|2{ [ aPls ()~ [ o dFa@ ]} -
2 fowwdbi@-[ [, vdFu@ ]| =

- (%{fv;m@ x dF’/"i(x)"[fvgHKuxdF’/‘k(x)]g} -
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—22 [fHKv % dF (%) 'fv§lxl<u % dFi()] ‘ =

Z3
k

+2- %[fm@. || dF e (%) - fvé|x1<u || dF o (x)]é

4 2 2 ‘Z deic -— 2 .
2(e+2u0)- 3 [, B () — u (u+29)

& dF () +

=il <lu

(M (—0)—M (=) + N (@)~ ()] =0,

donde concluimos que tanto o limite maxime como também
o limite minimo da sucessdo

3 [ rdFun @A)~ [ioe £ AP (5 + 401}

1Sk<<k,

quando #1teo, é 0 mesmo para qualquer ¢ entre 0 e 3.0 Este
facto e as relagbes &;) a b3) de 11l de § 8 mostram que as re-
lacSes b;) a by) do enunciado constituem uma condigdo neces-
saria de convergéncia.

Para tratar da condig¢fo suficiente, vamos supor que as
funcbes M (u) e N (u) tém as propriedades referidas no enun-
ciado e que existem constantes assintéticas A, das varidveis
X, para as quais se verificam as relagSes 6,) a b;) supraci-
tadas. Entdo, o calculo acima feito prova que o limite b% da
relagdo b3) do enunciado nio se altera, quando se faz variar
¢ entre 0 e J, e, em particular, quando se faz ¢} 0; consequen-
temente, verificam-se as relagdes 1) a b3) de III de § 8. Con-
cluimos que € possivel determinar constantes S, tais que as
leis das somas X, sejam convergentes para uma lei limite,
cuja representagio de Livy se faz precisamente a custa das
grandezas 6% M(u) e NV (u), conforme querfamos mostrar.

Quanto a parte final do enunciado, consideramo-la 6bvia
em face do exposto.

() Logo se vé que a conclusfo ¢ também valida para a sucessio
%-/ lel<e &2 dRak (x+Anlr)'
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Exemplos: O teorema II aplica-se, em particular, as
familias das leis imprdprias, de Gauss e de Poisson [exem-
plos 1., 2.0 e 3.° de § 11 de A].

#
E3 *®

Convergéncia de somas com varidncias limitadas: Estudo
geral, Suponhamos que as variaveis casuais X,. sdo integra-
veis e que admitem as suas esperan¢as matemdticas £, como
constantes assintéticas, isto ¢, tém desvios infinitesimais.
Entdo, podemos fazer 4,,=F,. e aplicar o terceiro teorema
de convergéncia ou, caso as esperan¢as mateméticas o con-
sintam, um dos dois primeiros teoremas de convergéncia.

Avancando agora um pouco mais nas hipoteses, pas-
$amos a Supor que as varidaveis Xﬂk tém variancias e vamos
estabelecer um teorema importante, devido essencialmente
a Bawvry, Ei-lo:

IIl) «Dadas as varidveis casuais X, independentes por
linhas, com fun¢bes de distribuigio £ (%), com variancias
Ve tais que
a) 2 Vo € limitado em relagio a

1=Sk=Sky
e com esperan¢as matematicas £, tais que
b) os desvios X,;— £, sio infinitesimais,

dadas essas varidveis, existem constantes .S, que tornam as
leis das somas

C) X7z=X7t1+Xn2+ e +Xn].~ﬂ—5;;

(fracamente) convergentes para uma lei limite (infinitamente
divisivel), quando e s6 quando é possivel associar as varii-
veis casuais X, uma sucessdo de variaveis casuais infinita-
mente divisiveis cujas fung6es caracteristicas tem logaritmos
definidos pela formula

d) loggu(t)=i-(-Su+ 2 Eu)-#+ 32 fR(e""-"~i)fl’z‘—"ﬂk(erEnk)

I=sk=hy 1=k=<hy

e cujas leis convergem para uma lei limite.
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A lei limite é a mesma para as sucessdes referidas em
¢) e em d)»

Demonstragio de III: Tendo em vista 4) de § 8 de B
(com a=2, =1 e ¢=0), podemos escrever a desigualdade

%[flr[gl) % d Fy (x+Enk):\2 Z
é% [f}xl>p dEt’f(x+E1zk) .fl-‘f\>Dx‘2 adF.. (x—{—E,,,J] Z

éSlip‘/‘Ix}>D ank (x+E1;k) ) %Vnky

onde o ultimo membro tem limite nulo, quando #te, por
causa das relagées a) e b) do enunciado. Por ai se vé que as
constantes assintdticas idénticamente nulas das varidveis
X,i—E, respeitam as restri¢des 6) e ¢) de Il de § 2. Este
facto e IIl de § 2 provam o nosso teorema.

Observagdo: Os desvios X, — E. sdo infinitesimais,
quando lim sup V.=0; pois, dado ¢>0, tem-se

nheo 1=Sk=Zk,

sup P ( l th’"Eﬂk ]ée)é

1=h=ky

2 1
Z sup [ %a’Fm(erE,,k)_é—z‘ sup V-
jvlze € €

Tk, 1=kl

Se representarmos as leis correspondentes a d) delll pela
forma de Livy e Kumrcuing, obtemos as igualdades (ver 14)
e 15) de § 2)

2) [p(+w)dGi= 5 [padPu(e+ )= 2 Vu

K=k 1=k=ky

as quais mostram que a variavel i.d. associadaa X, (n=1,2,...)
tem variancia igual a de X, [A, III' de § 7 e 15) e 19) de § 11].
Sendo assim, h4a vantagem em fazer

3) Co(—o)=0 e dC(u)= 2 u® AF (0 Eoue),

1=Sh=shy,
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donde
i .
fR_;an (U) = ii : %fodF‘uk (x+E1LIc):Oy
para transformar &) de Il na férmula

4) log gu(t)=1-(—S,+ 2
1=k

=hEsk,

et —1—itu
L3 f T 46w,

1=kl u

Enl;) : i""

a qual representa as leis associadas sob a forma de Korvo-
aorov [B, 8) e 9) de § 8], com

4’) Oy = —Sn+E1zl+E1;2+ e Enk,,;

de modo que a esperanga matemdtica de cada varidvel X, sai
igual a4 esperan¢a matematica da sua associada [A, 9)de § 4.

As considerac¢des precedentes conduzem facilmente a um
coroldrio de 11l que pode enunciar-se como segue:

Iy «Se as leis das somas de ¢) de III tenderem (fraca-
mente) para uma lei limite (infinitamente divisivel), esta
tem necessariamente variancia e, portanto, pode ser repre-
sentada sob a forma de KorvoGorov.»

Demonstracio de IIl': Quando se verifica a hipétese de
III'y as funcdes G, () da formula 2) convergem completamente
para uma fungio G (u), a qual € de distribui¢io a menos dum
factor constante nfo-negativo. Entdo, supondo que @ e 6>a
sdo pontos de continuidade da fungdo G e atendendo ao pri-
meiro teorema de Heiry-Bray, sai a relagio

lim lim [} (1442 dG, (= lim [+ dG (),

al—%,01+w ntw

a qual prova, juntamente com ) de IIl e com 2), que o tltimo
limite ¢ finito. Logo «? é integravel com respeito a funcio G
(8) de § 5 e I de § 4 de A]. Concluimos que a lei limite tem
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varidncia e, portanto, pode ser representada sob a forma de
Kormocorov [I11 e IV de § 11 de A].

IIT' mostra que as leis das somas de ¢) de IIl nunca podem
convergir para uma lei de Caucny [A, § 8, exemplo 6.°].

Observagdo: Quando se decompde uma varidvel casual
i.d., tendo a variancia V' e a esperanga matematica £, na
soma de s varidveis independentes, i. d. e idénticamente dis-
tribuidas, cada parcela fica com a variancia I’/ s e com a espe-
ranca matemadtica £/s [18), 19) e IV de § 11 de A], Este facto,
HI' e a observagio posterior a III permitem concluir que €
valida a modificagdo de IV de § 2 que resulta, quando se
substituem as expressodes Jeis, varidveis casuais, somas € cons-
tdncia assintdtica por leis com varidncia, varvidveis casuais com:
varidncia, somas de varidncias limiltadas e constincia assintotica
com respeito ds esperancas matemdticas, respectivamente.

Convergéncia de somas com variancias limitadas: Estudo
especifico, Estamos agora aptos a deduzir uma proposicio
importante a que podemos chamar feorema de convergéncia de
GNEDENKO ¢ BawLy,

1IV) «S3o dadas as varidveis casuais X,;, independentes
por linhas, tendo as fungdes de distribuicdo £, (x), dotadas
de variancias V. e assintoticamente constantes com respeito
as suas esperan¢as matematicas ;. Para que possam deter-
minar-se constantes .S, tais que as leis das somas

a) X1;=X21+Xn2+ P +Xﬂ7~’n_—sﬂ

sejam (fracamente) convergentes para uma lei limite (infini-
tamente divisivel) com varidncia e, além disso, as variancias
e as esperancas matematicas das varidveis X, tendam, res-
pectivamente, para a varidncia e a esperan¢a matemdtica da
lei limite, é condi¢do necessaria e suficiente que exista uma
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fungfio de distribui¢cfio a menos dum factor constante nio-ne-
gativo, digamos C(u), que verifica a relagio

6) > 22 d P (x+ Ew)— C(u), quando 71 oo,
1=<k=ky *
Caso a relagio 4) se enconire satisfeita, o conjunto das
constantes .S, admissiveis ¢ dado pela férmula

C) SﬂzEn1+Ey;2+ +Enk,,‘_°‘ny

onde «, representa o termo geral duma sucessio (real) con-
vergente arbitraria. ,

O limite da sucessio «,, seja 2 € a fun¢do C(u) caracte-
rizam a lei limite sob a forma de Kormogorov.

Quando se pretende que as somas de @) tenham as pro-
priedades expostas e, além disso, seja possivel tomar S,=0,
a condigdo necessdria e suficiente ¢ a relacdo 6) acrescida
da exigéncia que as somas E, 4+ E o+ - -+ + Eyu, formem uma
sucessio convergente, quando 7 { co.»

Demonstracdo de IV : A relagdo @) de III verifica-se, quer
se suponha que as variancias das somas X, tendem para
a variancia da lei limite, quer se admita a relagio &) do
enunciado, a qual implica

%V1zlc”"cw(+°°)<+oo'

Sendo assim, encontram-se realizadas todas as hipéteses do
teorema III, tanto no caso da condicio necessdria como no
da condi¢do suficiente, de modo que podemos transferir, em
qualquer dos casos, o estudo da convergéncia das leis das
somas de ¢) de Il para as leis i. d. associadas, isso sem pre-
juizo da lei limite eventual e também sem prejuizo das espe-
ran¢as matematicas e das variancias envolvidas (ver o texto
a seguir a observagio anexa a III).

Condi¢do suficiente : Primeiro, a férmula 8) e a relagido

] 2 . .
6) do enunciado mostram que C, (#)— C(u); depois, se fixar-
mos constantes S, convenientes em 4'), as esperancas mate-
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maticas «, convergem para o limite que queiramos escolher,
seja «. Dai resulta nfio sé que as leis i. d. com variancias de d)
de Il tendem para uma lei limite com variancia, caracterizada
pelas grandezas « e C(#), mas também que as varidncias
daquelas leis tendem para a variancia da lei limite [B, III de
§ 8). Finalmente, « ¢ a esperan¢a matemdtica da lei limite.

Condi¢do necessdria: Por hipétese, escolhidas constantes
S, convenientes, as leis i.d. de d) de IIl e as suas variancias
tendem, respectivamente, para uma lei limite com represen-
tacio de KorLmoGorov e a sua variancia. Isto implica a relagdo
4) do enunciado [3) do texto e B, III de § 3].

Satisfeita a relagdo b6), podemos obter constantes S,
admissiveis, tomando «,=0 em 4'). Este facto e III' de § 2
mostram que a relagio ¢) da todas as sucessdes de constantes
S, admissiveis.

Quanto a parte final do enunciado, consideramo-la evi-
dente.

Exemplo: Retomemos mais uma vez o exemplo relativo
ao teorema Il de § 2. Sai E.==0 e I,=p; q: /Bs. Entdo, para
n suficientemente grande,

2 _"mx2 dF . (x) vale 0 ou vale (1<12< brqi) [Ba=1,

1=k=n i=n

conforme #<0 ou #>0. Concluimos que as somas de 4) de [V
tendem completamente para a fung¢do C(#) que caracteriza
as leis de Gauss de variancia unitaria [A, exemplo 2.° de § 11].

A proposicdo III permite estabelecer um teorema de con-
vergéncia um pouco mais geral do que IV. Ei-lo:

V) «Dadas as variaveis casuais X,;, sujeitas as hipéteses
referidas em llI, para que possam determinar-se constantes
S, que tornem as leis das somas de ¢) de III (fracamente)
convergentes para uma lei limite (infinitamente divisivel com
variancia) e que tornem também as esperancas matemadticas
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das varidveis X, convergentes para a esperan¢a matematica
da lei limite, ¢ condigio necessiria e suficiente que, fixadas
quaisquer duas subsucessdes fracamente convergentes, ex-
traidas da sucessdo

b) Co()= 2 |7 x2dFu(x+Ey),

1=k=h,

os seus limites sejam fun¢des que difiram por uma constante
(possivelmente diferente dum par de subsucessdes conver-
gentes para outro),

Satisfeita essa condigdo, o enunciado pode completar-se
como em 1V, desde que se tome para funcio C () a funcio
que se anula no ponto —c e que dd uma constante, quando
subtraida de qualquer dos limites tirados de o).

Demonstracdo de V': Por causa de III e de I, o nosso
objectivo ¢ deduzir uma condi¢fo necessaria e suficiente para
que as leis das somas de d) de llI, de varidncias limitadas e com
representacbes de KoLvogorov caracterizadas pelas grandezas
ay € C,(u) das férmulas 4') e 8), tendam para uma lei com
representagdo de Kormogorov, caracterizada por uma cons-
tante real « ¢ por uma fungdo C(x) que é de distribui¢éio
a menos dum factor constante nfo-negativo. Mais, a relagio
@y—a deve juntar-se a condi¢io deduzida, caso ndo figure nela.

Pois bem, um retoque ligeiro da demonstracio de III de
§ 8 de B mostra que a condigdo necessdria e suficiente refe-
rida € que a,—a e, além disso, que os limites de quaisquer
duas subsucessdes fracamente convergentes extraidas da su-
cessdo C, (x) sejam fungdes (de quase-distribuicio a menos de
factores constantes ndo-negativos) que difiram por uma cons-
tante.® Este facto, as relacses 8) e a possibilidade de dis-

&) Condig¢do suficiente retocada: A hipstese C,(+o0)<{C <+oo im-
plica que a sucessdo C,(u) se reparte por subsucessdes fracamente con-
vergentes C{" (#) (p=1,2,3,...), as quais correspondem subsucessdes a?
da sucess@io «,. Dado p, sai o? >4 e CP (1) > C (u)+ ¢, com C (—o0)=0,
C(+oo)<<+oo e ¢® >0 constante. Logo, pelo segundo teorema de HerLy-
-Brav, iaff’ ¢4 [ (et —~1—itu)d Cm (u)/uﬂeiact—}-fR(e“"—~1——iz‘u) dC‘(u)/ug’
isso seja qual for . Ete.~ Condi¢do necessdria retocada: Também aqui existe
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por das constantes .S, de 4') provam a parte principal do
nosso teorema.

Depois completa-se a demonstragio de V nos mesmos
moldes que a de IV.

Exemplo: Sejam quais forem # e %, suponhamos que
Esu =0 e Fy i (#)=0 ou 1/(12%% ou 1—1/(6#%) ou 1,
conforme

+RP x=2,L—2n Ou —20<%2,£0 O 0L MLt
ou ”<x211y

e suponhamos ainda que

Eyni1,=0 € Fouy1,1(%)=0
ou 2/[8(2n+1) ou 1—1/[3(2u+41)] ou 1,
- conforme

A2 x= 1 L—20—~1 OU —2n—1<Ks,41L0

ou 0<xens1£2 - (22n+1) ou 220+ 1)<Hzuir.

Como de costume, consideramos as varidveis apresen-
tadas independentes por linhas. Logo se reconhece que elas
sfo (de desvios) infinitesimais (1) de § 4 de B].

Resulta

Cy,(#)=0 ou 1/8 ou 1/2,
conforme

+EP d=ssp L —2n ou —2n< U2 LN OU B<Ugy,

e Cout1(n)=0 ou 2/3 ou 2,

um ntimero nio-negativo v tal que C, (+c0) L C(+o0)+y<+oco. Sal a,—+a,
como anteriormente, Depois, existe uma subsucessio C{P (x) de C, (») tal que
CiV () > C ()4 ¢V, Se suprimirmos os termos de C{¥ (%) pa sucessdo C, (%),
entio a sucessfio remanescente admite uma subsucesso C () 3 C (u)+
-+ ¢, Etc.



56 PEDRO BRAUMANN

conforme

Fhty =ty L—2n—1 ou —2n—1<tsy L2 (20+1)
ou 2-(2%+1)<%2,;+1,

de modo que se encontra satisfeita a hipétese ) de IIl. Se
admitirmos que
2nf| k] e (2n+1)/| A,

tendem para +co, quando # 1o, sai
Con(u)—=>1/8 € Coyyr()—>2/3.

Podemos tomar S, =0==5;,, e obtemos somas convergen-
tes para a lei unitdria.

Vejamos agora um coroldrio de V relativo aos valores
das variancias presentes:

4} «Quando as varidveis casuais X,;, sujeitas as hipo-
teses referidas em III, verificam a condiciio de V, entdo
a variancia da lei limite nio pode exceder o limite minimo
da sucessfio formada pelas varidncias das somas X, de ¢)
de IIL.»

Demonstracio de V}: A sucessdo formada pelas varian-
cias das somas do enunciado é a sucessfio C,(+ o) que se tira
de 6) de 'V, fazendo #= +c. Suponhamos que a subsucessdo
Ci(+000)—C<L 4o, Entdo, podemos extrair da sucessio de
fungdes C;(#) uma subsucessfio fracamente convergente C;(»),
a qual, devido a condi¢io de V, é tal que Ci(u) — C (u)+c,
onde ¢ 0 significa uma constante. Se um ponto de continui-
dade # da fung¢fio C tornasse C (#)+¢— C=¢>>0, resultava, para
¢ suficientemente grande, a desigualdade absurda

Ci(u)>C(t)Fc—e/2=CHe/2>Ci(+0);

logo C(u)+¢—C£L0 para fodo o valor de # e, portanto,
CxC(+ )+ cxC(+), onde C(+o0) é a variancia da lei
limite, ficando assim demonstrada a tese.
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Outro coroldrio interessante de V é a proposi¢io seguinte:

1) «Dadas as varidveis casuais X, independentes por
linhas, tendo as variancias I/, e admitindo as suas esperancas
matematicas £, como constantes assintéticas, entdo a condi¢do

@) Vo= 2 VauLV<+e

1=k=hy,

assegura a existéncia de constantes S tals que a sucessdo
das leis das somas

b) X;;":Xn1+Xn2+ "“X;k,,"sn

se pode repartir por subsucessbes, cada uma das quais con-
verge (fracamente) para uma lei limite (infinitamente divisi-
vel com variancia) e tem esperangas matematicas que tendem
para a esperan¢a matemadtica da sua lei limite.»

Demonstracdo de Vi: Vimos, em 2) e 8), que a sucessio
I, se confunde com a sucessio C,(+). Pois bem, se esta
altima for limitada, entdo a sucessio (), () reparte-se por
subsucessbes fracamente convergentes tais que, sendo C(#)
uma qualquer dessas subsucessdes, a sucessido X, correspon-
dente satisfaz a condicdo suficiente de V. Assim fica provado
o nosso coroldrio,

Observacdo: Quando a sucessdo V, de Vi tem uma sub-
sucessdo (infinita) limitada, seja /', entdo as somas X,, tira-
das de &), podem ser repartidas do mesmo modo que se re-
partem as somas X, na hipotese a). Concluimos que o caso
V,—» 4+ oo € 0 Tinico em que néo podemos assegurar que exis-
tem constantes .S, tais que as leis das somas X, contém uma
subsucessdo convergente para uma lei limite (i. d. com varian-
cia) e as esperangas matemdéticas das leis dessa subsucessdo
tendem para a esperan¢a matemdtica da sua lei limite.

Fechamos este pardgrafo com um exemplo destinado
a mostrar que a condi¢io @) de Vj nio € necessdria para
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que se verifique a tese desse coroldrio. Com efeito, tome-se
ky=n?, Ey=0,V,,=1/n®, idénticamente em & e C,(4)=0
ou n/2 ou n, conforme u<—n ou —n<uLn ou u>n*), Sai
V,,=Cn(+00)=n1‘ +oo. Todavia,

« dC, 2
G, (u)= ~—~(f)—= ou #] ou—nr—,
—e 14-a% 1442 1472

[4
conforme #£ —n ou —u<usn ou u>n, de modo que G, () —0
e, pondo S, =0, as leis das somas X, convergem para a lei
imprépria de esperanga matematica nula.

§ 6) Convergéncia para leis de Levy

Um teorema sobre funcdes convexas. Iniciamos o paragrafo
por uma exposi¢io preparatéria, a qual pertence a teoria
das fung¢des convexas.

Recordemos que uma funcéo O (x), real e de variavel real,
se diz convexa ou convexa no sentido lato num intervalo de
valores &, quando ela satisfaz 4 desigualdade

1) O [(1+22)/2][O (1) +© (w5)] 2,

valida para quaisquer valores x; e x, pertencentes ao inter-
valo considerado.

A fun¢do 8 (x) diz-se convexa no sentido restrito num inter-
valo de valores x, quando ela satisfaz a desigualdade

2) ®(q1x1+qzx2+~-+qsxs)éq1-®(x1)+q2~®(x2)+'--+qs-®(xs),
com 0<q1,g92,... 1gs € git+qet - +gs=1,

() Ver a observacdo posterior a III

(9 Podem obter-se variaveis X,,, independentes por linhas e con-
formes com o texto, considerando primeiro varidveis i.d. X, de esperancas
matematicas nulas e de representa¢des de KoLmocorov feitas 3 custa das
fungBes C, (#) aqui citadas e decompondo depois cada X, na soma de #2
parcelas independentes e idénticamente distribuidas.
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valida para qualquer numero natural s, para quaisquer valo-
res Xi,Xz,...,%s pertencentes ao intervalo considerado e para
quaisquer constantes ¢i,¢2,...,¢s que satisfacam as restri-
¢Ges indicadas.

Postas estas defini¢bes, estamos aptos a enunciar a pro-
posicdo seguinte:

I) «Se uma funcgio for convexa num intervalo aberto
e se for limitada superiormente num intervalo significativo,
interior ao primeiro, entfio a fungfo, considerada no intervalo
primitivo, goza das propriedades seguintes:

E limitada superiormente em gualquer intervalo interior;
€ continua e convexa no sentido restrito; tem as duas semi-
derivadas laterais, a esquerda e a direita, em toda a parte,
nio podendo o valor da semiderivada esquerda num ponto
exceder o da semiderivada direita no mesmo ponto; quando
a varidvel independente passa dum valor para outro maior,
o supremo das duas semiderivadas relativo ao primeiro nfo
pode exceder o infimo das mesmas relativo ao outro valor;
tem derivada em qualquer ponto que nfo pertence ao con-
junto de pontos, finito ou numeravel, nos quais a semideri-
vada esquerda é descontinua a direita e, simultdneamente,
a semiderivada direita ¢ descontinua a esquerda; finalmente,
se uma das semiderivadas for continua num ponto, a outra
sal também continua no mesmo ponto.»

Demonstragdo de I: Seja O(x) uma fun¢io convexa no
intervalo aberto a<<x#<(4 e seja c£LxLd, com ¢<d, o intervalo
interior ao primeiro em que a fungdo O (x) sai limitada supe-
riormente, o qual consideramos fechado (sem qualquer perda
de generalidade).

Se x1,%2,%3, ... forem valores arbitrdrios de x no inter-
valo primitivo, entdo nfo s6 temos a desigualdade 1) como
também, supondo que # ¢ um numero natural e que se veri-
fica a relagdo

O+ -+ Faenm)/271]L[O (1) 4 - +O (agn-1)])/ 27,
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resulta a nova relacio

@[(x1+ s +x2m)/2m]é
L] O[(Ft - +am1)[27 14O [(wgnt 1+ - ) [27~1] | /22
L0 @)+ - +0 (x2m)]/ 27,

Concluimos, por indugio finita, que a desigualdade entre
os membros extremos da tultima relacdo & valida para qual-
quer numero natural .

Mais, se p>>1 for um namero natural qualquer, escolha-se
m por forma que 27—1<pL2% e, caso seja p<2”, ponha-se

Xppr= - =Xgm=(%y + -~ +xp)/]5=x0;
entio

Gk )2 = [t (37—p) - w27
€ sal

O ()0 (1) - +O () +(275) O (w))/27,
donde

O (%) £[O (x1)+ -+ +0(x))]/p.
Concluimos assim que tem lugar a desigualdade
8) Ol(mtaat - +2)/ L0 (0)+ 0O (w)+ - +0O(,)]/5,

valida para todo o numero natural p.

Se 71,75, ... ,7 forem quaisquer mimeros racionais posi-
tivos de soma igual a 1, podemos fazer ro=i/p(o=1,2,...,s),
onde supomos que as s fracgbes sdo de termos inteiros e posi-
tivos. Nestas condi¢oes, a formula 3) da

Ollmtiadat 4 ) [PlLlin© (1) + 13 O @) 4 - +4,-0 ()]
ou, equivalentemente,

4) @(r1x1+rgx2+'-~+7‘sxs)éf1-®(x1)+f2~®(xg)+---+7fs-®(xs),
uma desigualdade que se confundiria com 2), se os coefi-

cientes 77 ndo estivessem sujeitos a condigdo de serem
racionais.
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Sejam agora a' e &' dois numeros tais que a<a'<c e
d<<d'<b.

Pois bem, se escolhermos um ponto x de modo que
@' <x<¢, existem numeros naturais ¢ e 7, com /<, tais que
y=a'+j (x—a')/i pertence ao intervalo c£Lx2d, no qual O (x)
tem, por hipotese, um supremo finito que vamos designar
por S. Portanto, usando 4) no caso s=2, podemos escrever

O@)=0|[iy+(j—i) a]/jl<L
L0/ +(7—1) 8(@)j<[i S+(j—i)- 0(d)]/j<
<sup[[S|,[0 ()],
o que prova que a fun¢fio ©(x) é limitada superiormente no

intervalo a'<x#Zd. De forma semelhante se vé que, seleccio-
nando um ponto x de modo que d<x< ', sai

O @) <Lsup[[S],10()1],

0 que prova que a fun¢do O(x) é limitada superiormente no
intervalo @' <x<é'. Como esta conclusdo é valida, seja qual
for a escolha de @' e 4' nas condi¢bes acima indicadas, pode-
mos afirmar que a fung¢fo O(x) tem a primeira propriedade
referida no enunciado.

Ora, dados os ntmeros naturais 7 e j>7 ¢ dado um nu-
mero ¥ situado entre a e 4, existem sempre numeros positvos n
tdo pequenos que os pontos x+ 7y também se situam entre
a e b. Por isso e por causa de 4), obtemos as duas relagées
seguintes, uma para o sinal 4 e a outra para o sinal —,

O@Lin=0|[i (xLjn)+(j—) «]//|<
£i- O jn/i+(—1) Ox)/],
as quais implicam
5)  [O(xtin—0@)))iL®(x+ 7 —O )]/, com i< .
As duas desigualdades 5) e mais a desigualdade

2-0(x)LO(x—in)+0(x+7in),
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esta uma consequéncia imediata de 1), permitem escrever

6) [0 (%)~ 0 (5—5 )]/ [0 () —© (v—i m)) i
Z[O (w+im)—0 (1)) [0 (x-+57)— O (8))/, com i< j.

Em 6) fixemos 7, facamos »— 0 continuamente e ponha-
mos j—+co de modo tal que os pontos x 1 jv se conservem
num intervalo interior ao intervalo compreendido entre a e b.
Entdo, a primeira propriedade da fung¢fio ®(x) implica

lim O (x—¢2)=0 (x)=1im ® (x+in),

o> 0 n->0

o que prova que a funcio ®(x) é continua em qualquer ponto x
situado entre a e b.

A continuidade que acabamos de estabelecer e a desi-
gualdade 4) permitem chegar a 2), fazendo tender os #» para
os gg. Portanto, a fun¢io O(x) é convexa no sentido restrito
em a<x<b.

Retomemos a férmula 6) e ponhamos nela jn=¢ e in=2. Sai

D [O@)—0(x—))/:L[0(%)—-0 (x—-9)]/0L[O(#+9)—0 (#)]/0L
£[0 (x—}—e)—@(x)]/g, com d<Ce.

Aqui podemos considerar ¢>0 arbitrdrio, contanto que x-¢
e x—¢ se situem entre @ e 4, mas J parece estar sujeito a res-
tricio d=7¢¢/s; contudo, dado ¢, a continuidade de O(x) alarga
7) a valores positivos quaisquer de § (nfio superiores a ¢).
Portanto, quando ¢|0,[®(v—¢)—0(x)]/(—¢) ndo decresce e
[O(x+e)—0O(x)]/c ndo cresce, pelo que existe o limite de
qualquer dessas duas razdes incrementais, quando ¢—0,
o limite da primeira € ©,(x), a semiderivada esquerda da fun-
¢do © no ponto x, e o limite da outra é Oy (x), a semiderivada
direita correspondente,
Em face de 7) ¢ 6bvio que se verifica a relagio

8) 0, (%) L0 (x) para a<x<d.
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Posto isso, facamos x—0=x1, =43 € x+c=x3 em 7) e ite-
remos a desigualdade resultante; obtemos

9) [0 ()= (@) (m— 20 Z[O (1) — O ()] (3 ts) £
Z[© (x1)— O (w)]/ (02— x3),
COM A< < X< 324D € KHo— X LA3— X LXy— X3,

Quando x4 4, € a3 1 x4 em 9), sai O} (4,)L0; (v,). Esta rela-
¢do e 8) permitem escrever a desigualdade

10) O, (1) L0 (1) L), (2) L0 (),

da qual se depreende que o supremo das duas semiderivadas
da funcio @(#x), tomado num ponto de a<x<), ndo pode
exceder o infimo dessas semiderivadas, tomado em qualquer
ponto ulterior do mesmo intervalo.

Ora bem, se x [ou x4] for um ponto em que a semideri-
vada esquerda [ou direita] da fungdo O saia continua 2 direita
[ou A esquerda], basta fazer xy— % [ou # — x,] em 10), para
que resulte ©,(x)=0}(x;) [ou O;(xs)=05(x,)]. Consequente-
mente, a fungdo O (x) s6 pode deixar de admitir derivada no
conjunto dos pontos do intervalo a<<x<b, nos quais a sua
semiderivada esquerda for descontinua a direita e, simulta-
neamente, a sua semiderivada direita for descontinua a
esquerda.

O conjunto de pontos que acabamos de mencionar per-
tence ao conjunto dos pontos em que as duas semiderivadas
de ©(x), ambas func¢Ses monoténicas, sdo simultineamente
descontinuas e como tal é um conjunto finito ou numeravel.

Suponhamos, {inalmente, que a fun¢do ©,(x) ¢ continua
no ponto y situado entre a e &; logo ©; (y) 04 (). Tendo em
vista 10), podemos agora raciocinar como segue: Se ¥' <y, sai

0:(5)£0a(5)<£0: (),
donde, fazendo y'1y,

lim @ (9")=0,(5)=04(y);
I
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se pU>y">y, sal O,(9)L0:(y") <O (5,
donde, fazendo »" |y,
lim O} (y")=0.(y).

y'y
Portanto, a fun¢do &;(x) é também continua no ponto y.—
Semelhantemente se mostra que a continuidade de ©}(x) no
ponto y implica a de O,(x) no mesmo ponto.
Estd assim completada a demonstragio de I

Observagdo: Se trocarmos o sinal £ da férmula 1) por X,
obtemos a defini¢fio de fungdo céncava ou céncava no sentido
lato e, se trocarmos o sinal da desigualdade em 2), obtemos
a definicfio de fungdo céncava no sentido restrito. Se uma fun-
¢do O (x) for concava num qualquer dos dois sentidos, entdo
—0 (x) sai convexa no mesmo sentido. Sendo assim, podemos
estabelecer um teorema para fungdes concavas, o qual resulta
de I por pequenas modificagdes 6bvias.

Ed
Ed ®

Novas propriedades das fungdes caracteristicas, Seguem
mais algumas consideragdes preliminares do assunto que
pretendemos estudar neste paragrafo.

Para comegar, chamemos a uma f. c. prdpria, quando e s6
quando a sua lei for prépria. Entdo, podemos apresentar
a proposi¢do auxiliar seguinte :

II) «Uma fungdo caracteristica prdpria nio pode ter
moédulo idénticamente igual a 1.»

Demonstracdo de I/: Admitamos que existe uma f{.c.
propria f(2) tal que | f(#)|=1 e vamos representar por F(x)
a fun¢do de distribui¢do correspondente. Entdo, sendo 4 e #
dois ntimeros reais significativos que tornam # /¢ irracional,
existem numeros reais t,(s=1,2) tais que f(%)=¢". Tendo
agora em vista a defini¢do de f.c, sai a relacio

1ot f(t)= el HedF ()
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a qual implica
[ e[1—cos (s t—J) dI (x)=0,

onde a funcdo integranda é ndo-negativa. Concluimos que,
fixado o indice s, a fun¢io F(x) s6 pode crescer num x tal
que xt;—7,=27% A, onde X significa um ntmero inteiro; dou-
tro lado, a hipotese duma 1. c. propria obriga F'(x) a ter (pelo
menos) dois pontos de crescimento distintos, sejam x e x,
Portanto, para cada s existem dois numeros inteiros distintos
¥ e ¥ tais que se verificam as igualdades

At—re=274 e A'ty—rs=27N,
as quais implicam
la'—a"| - |t |=2%- D=1 (s=1,2)
Por divisdo ordenada sai
[t = = |

de modo que se infere o resultado absurdo que |#/%| € racional.
Assim fica demonstrada a proposi¢do auxiliar.

A demonstragio que acabamos de fazer contém o coro-
lario seguinte:

II')  «Uma fung¢do caracteristica propria f (t) ndo pode ter

o sew mddulo igual a 1 pava dois valoves de t cuja razdo seja
irracional.»

Passamos a apresentar uma definigdo:

Uma lei de fun¢do caracteristica f(t) diz-se autodecompo-
nivel, quando a cada wibmero vy, positivo e menor que 1, corves-
ponde wma fungdo caracteristica fy (t) que verifica aigualdade

11) FO=Ff (1) f1(D), seja qual for t real.
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Logo se vé que wina lei impropria é autodecomponivel, pois,
sendo ¢ uma constante, tem-se g% = gic¥ . gic(i-1)¢,

Agora propomo-nos demonstrar a proposi¢do seguinte:

III) «A fungdo caracteristica duma lei autodecom ponivel
¢ significativa em todo o campo real.»

Demonstracio de I11: Se a f.c. f(/) duma lei autodecom-
ponivel se anular para algum ¢ real, entfio a sua continuidade
e a igualdade f(0)=1 imp6em a existéncia dum ntumero bh=+0
tal que

f2h)=0 e f(f)+0, para |1|<2|4].

Tendo em vista 11), concluimos que

fi2h)=0 e ()0, para [¢]<2 (4.

Sendo assim, IT e IV de § 8 de A mostram que

1=1—| AW 24 [1—|f()F], donde 1—|f (&) P 1/4;

doutro lado, fazendo 11, tira-se de 11) que

Sr(to)=F ) f(74)—1 e, portanto, 1—|fy(#)[2—0.

Fica assim demonstrada a tese, por redugdo ao absurdo.

Observacdo: Supondo que certa varidvel casual se sujeita
a uma lei autodecomponivel, podemos interpretar a definicio
acima dada como segue: Fixado um alargamento qualquer
de escala, a variavel considerada é sempre a soma da sua
transformada pelo alargamento com outra variavel bem
determinada e independente dessa transformada. Nao oferece
interesse encarar uma mudanga de escala, consistindo numa
contrac¢do, a qual corresponderia a desigualdade y>1, pois
a relagdo 11) dava | f(y2)|x| f(2)|[A, § 6, III], donde

IO DS S - Slim | £E)=| f(0)1
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e, portanto, | f(#)!==1, o que implicava uma lei impropria (11).
Finalmente, y=1 conduz ao resultado trivial fi(#)=1 (ver
a proposicdo [I').

Qutro teorema de KHintcHiNe, Suponhamos agora que as
variaveis casuais X, admitem as constantes assintoticas A
e sio da forma X;/B,, com 1LkLn, onde 5, significa o termo
geral duma sucessio simples de constantes posifivas e onde
X, significa o termo geral duma sucessfo simples de varidveis
casuais independentes. Recordemos, a propdsito, as igualdades
A=Al B,, introduzidas no principio de § 8 de B.

Terminamos as nossas consideracées preliminares, estu-
dando as restri¢ées a impor as grandezas B, para que possam
existir constantes .S, tais que as leis das somas

12) Xl/Bn“}‘XE/Bn_{”‘ ‘f_)(n/gn*su

tendam (fracamente) para uma lei limite (i. d.,, por causa de
IV de § 2), isso pelo menos na hipotese em que tal lei € pro-
pria. A este respeito esclarece-nos a proposi¢do seguinte,
devida a KuiNTcHINE:

IV) «Se as leis das somas 12), de parcelas independen-
tes por linhas e assintoticamente constantes, convergem (fra-
camente) para uma lei limite (infinitamente divisivel) prdpria,
entio B,—+o € B,;1/B,—1, quando 7} co.»

Demonstracdo de IV: Seja fi(t) a f.c. da varidvel X.
Por hipétese, a f.c. da soma genérica 12) ou seja a fungéo

MO ]<EI<H S (2] By)

tende fracamente para alguma f.c, f(¢) que ndo ¢ da forma
e, com ¢ constante [A, § 8, exemplo 1.°].

Se tivéssemos B,—0, quando #to, a hip6tese de as
variaveis X,/B, admitirem as constantes assintéticas /5,
implicaria X,= A, para todo o %, pois a nio ser assim 2)
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de § 4 de B conduziria a uma contradigio; logo resultaria

Se(f)=e4s e, portanto, it-(—S,+ I Ai/B,)->log f(2),
1=k=n
donde a conclusio absurda
log f(t)=ict, com c%1i11](~5,,+ 2 AB,).
1

o =k=n

A

Acabamos de provar que B,—0 é impossivel e de modo
analogo se prova que a sucessio de termos 5, nio admite
nenhuma subsucessio evanescente.—Posto isso, se B, nfo
tendesse para -+ co, existiria uma sucessio crescente de nu-
meros naturais de termo genérico m tal que B,,— B 0,00,
quando # 1 oo entdo, fixando um valor arbitrario a £ e tomando
um valor qualquer para a varidvel real 7, teriamos a relacdo

g~ 1| By, e (¢ Bm) 2o ,
uma consequéncia de VII de § 4 de B, a qual implicaria, por
causa de V de § 6 de A,

Ju(t|B)=e 1B ou, equivalentemente, Jie(8) =it

um resultado que ja se reconheceu como absurdo. Logo
B, —> + o0, quando # 1o, e fica demonstrada a primeira parte
da nossa tese.

Para demonstrar a segunda parte, comecemos por notar
que as varidveis

)/;14—1: 2 -X/f/Bil+1_Sﬂ+l € Z;z=( 2 )(k“}‘An-}-l)/ankl“Sn—{—l

1=k=nt1 1= =n
tém as fung¢des caracteristicas

Gori()=eSm . T fi(tBuyy) e

1=k=nt1

bu(B) = e SmimdiniBd . 0L £ (4B, 1),

1I=k=n

respectivamente, a primeira das quais tende, por hipotese,
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fracamente para a f.c. prdpria f(¢) e a outra tem o mesmo
comportamento, porque

gt AutilBust . £, (1 B,p1)—1 [VII de § 4 de B].
Como ’

Z1¢=Bn K,/B,;Jrl + C,,, onde Cn= —‘S1¢+1+(Bn Sn+ An+1)/Bn-}—1 3

sai, fazendo =By By,

bu () =" 0. (Bu?) € 2 (D)=l (2]00);
logo Fou ()], 19n @) 5190 (Ba D1 [ (2180 | — | £ ()]

Posto isso, consideremos uma sucessio crescente qualquer
de ntumeros naturais m tal que leve f,, a um limite f, quando
m t oo} & 6bvio que B0, Se tivéssemos <1, aplicavamos A, V
de § 6 elle VIde§ 8 ao segundo membro da desigualdade

/@O~ 0m(@u ) PIZI FBOP~ S Eut) P+ [ B )P 20a (B )7

para concluir primeiro que

| 2 (B £) [2— | F(B )2

e depois que, seja qual for #,
fO=1FBDI=IfE D= =|FO)|=1;
se tivéssemos >>1, concluiamos semelhantemente que
[ (21B0) B = | F (LB

e depois que, seja qual for ¢/,

| fO)=f @B =)= - =[f(O)]=1.

Como | f(¢)|=1 implica a conclusfo absurda que f(#) néo
¢ f.c. propria (11), inferimos que @, — 1, quando 71t o, e fica
assim completada a nossa demonstragao.
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A proposicdo IV admite um coroldrio que nos vai ser
util na continuacéio deste estudo. Ei-lo:

IV') «Se as leis das somas 12), de parcelas indepen-
dentes por linhas e assintdticamente constantes, convergem
para uma lei limite prdpria, entio, dado qualquer nimero 7,
com 0LyL1, existem numeros naturais /=/(n)<<# tais que
Bi|B,—>7, quando # 1 co. Se 0<y<1, tem-se [—»oo & 11— [—»co
quando 721 co.»

’

Demonstragdo de [V': Se y=0, basta tomar I(m)Lhy<< + oo
e atender a B, —>co; se y=1, basta tomar /(#) de modo que
n—I(n)Lny<+o e atender a B, /B, 11— 1.

Examinemos agora a hipétese 0<y<1, na qual se tem
for¢osamente /(1) oo e 1# —1I(n)—> oo, pois no caso contrario
a sucessido de termos B,/B, admitia sublimite nulo ou igual
a 1. Se a tese do corolario ndo fosse correcta, existiriam uma
sucessdo infinita crescente de numeros naturais de termo
genérico m e um ntmero ¢ com 0<s<inf(y,1—7y), tais que,
escolhido um s qualquer, verificar-se-ia a desigualdade
71— BB, y+¢, isso fosse qual fosse o valor de A<m.
Pondo m suficientemente grande, ter-se-ia BB, £y—¢ para
os primeiros valores de /4 admissiveis e B/,/B,,,:_q»f—e para os
ultimos valores de % admissiveis; portanto, a cada m corres-
ponderiam dois valores particulares consecutivos de %, sejam
A e k') tais que

By|Bu.Zy—~¢ e B,|BuLl/(y+5), donde B |Bu<1—¢fy.

A qltima desigualdade s6 é compativel com a propriedade
B,[Buy1—1, se A" for limitado, coisa impossivel, porque
Bui|Bu>y+: e B,,— 4. Assim fica demonstrado o corolario.
*
ES £
Teorema basico de Leivy, O problema de caracterizar
a familia das leis (i.d.) que podem ser limites (fracos) de
somas 12), de parcelas independentes por linhas e assintoti-
camente constantes, fol proposto por KuintcuiNe e foi resol-
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vido por P. Leévy. Por isso, ndo parece mal chamar leis de
Lzvy as leis da familia mencionada.

Comecamos o estudo das leis de Livy por uma proposi¢do
sumamente interessante do ponto de vista teorico, a qual
podemos chamar #orema bdsico de LEvy:

V) «Toda a lei autodecomponivel é uma lei de Livy
e reciprocamertite.»

Demonstragdo de V: Suponhamos que a lei da f.c. f(#)
¢ autodecomponivel, fagamos corresponder a todo o numero
natural 2 uma fraccfo y,=(2—1)/% e, recordando I, ponhamos

on (1) = fr. (R E)=[ f (RIS ((#—1)2)].

Entdo, substituindo em 11) a constante y por y, e a varia-
vel ¢ por k¢, reconbece-se que g(¢) € uma f.c. para qualquer
k, a qual se reduz a f(¢) para 2=1. Pois bem, se fizermos
corresponder varidveis casuais independentes X as f.c. o ),

ficam as somas 2 Xi/n com as fun¢des caracteristicas
1=Sh=n

b= I a(tin=f()

=h=n

de modo que sai ¢, (t)—i‘f(t), quando # 1 . Portanto, se con-
seguirmos mostrar que as parcelas X/» sdo assintoticamente
constantes, ficard provado que toda a lei autodecomponivel
¢ também uma lei de LEvy.

Escolhido um valor para £, designemos por p o infimo de
| f(u)], quando « percorre o intervalo fechado de 6 a #; resulta
Fl(B—1)t/n}|xp, para 1LkLn, € tem-se tambeém p>0, por
causa de Il e da continuidade de f(x). Como 7 1co implica

| f(kt[n)—f[(k—1)¢[n]|—O,

uniformemente em &, por causa da continuidade uniforme
de f(u), concluimos que

| f(kt[m)] fl(k—1) 2] n]—1|—0,
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também uniformemente em %, ou, equivalentemente, que

sup |9 (¢/n)—1|—0,

1=k
o que mostra que as varidveis casuais X/n sdo infinitesimais
[VII de § 4 de B] e, portanto, sdo assintoticamente constantes
dum modo particular.

Falta provar que toda a lei de Livy € autodecomponivel.
Mais precisamente, falta provar que toda a lei de Livy prd-
pria é autodecomponivel, pois ja vimos que uma lei impro-
pria é sempre autodecomponivel.

Para o efeito, vamos supor que as parcelas que figuram
nas somas 12) sfo assintoticamente constantes, vamos designar
por fi(#) a f.c. de X, e vamos admitir que

13) 0,(N)=e - T [ fi(¢/Bn)]— f(t), quando #1eo,

1=k

IA

H

onde f(2) é f.c. propria, i.d. e jamais nula [A, § 9, I].

Escolhido um nudmero 3, com 0<y<1, sabemos, por IV,
que existem nameros naturais I={(m)<n tais que ntoo im-
plica [—> oo, n—[—c0 € B,/B,,~— 7. Entido, fixado /e dado >0,
tem-se, para / suficientemente grande,

|y )=0u(Bit| B\ <] f (v )~ F (Bit]Bn) |+
+{f(Bit]B,)—0:(B:2|By) | L2 24¢[2=¢,

porque a fun¢fio f € continua e a sucessdo O, converge uni-
formemente para f em qualquer intervalo fechado [VI de §8
de A]. Quer dizer:

14) o8 (B;t/B,,)——if(y #), quando #1eo.
Visto que podemos escrever

15)  0,(8)/@u(Bi#By=¢ S BlB=S0t. T [ fi(21B.)],
I<h=n

tiramos de 13) e de 14) que o segundo membro de 15) tem
o limite f(#)/f(y¢), quando n 1o, isso seja qual for 4 Como
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o segundo membro referido ¢ uma f.c. para qualquer » [1) e
I de § 8 de A}, o seu limite ¢ também uma f.c. [VII' de § 8
de A], a qual é inteiramente determinada pela escolha de 7,
de modo que pode representar-se por fy(#). Concluimos que
f(#) satisfaz a defini¢do de f.c. duma lei autodecomponivel,
o que termina a demonstragio de V.

V admite um coroldrio interessante e tutil para a conti-
nuagio deste estudo:

V') «Uma lei autodecomponivel e as suas componentes
sdo leis infinitamente divisiveis.»

Demonstragdo deV': E obvio que basta considerar leis
autodecomponiveis proprias (ver o texto a seguir a 11).

Se f(¢) for a f.c. de tal lei,entdo, dado y, positivo e menor
que 1, temos a decomposi¢do, valida para qualquer

F@O=f@ ) f ()

onde fy(#)¢é uma f.c.. Pois bem, f(#) ¢ a f.c. duma lei de Livy
(V) e como tal é i.d. IV de § 2); f(7¢) é também i.d.[Ide § 2
de B]; finalmente, fy(z) é i.d., porque 15) mostra que a lei
correspondente é limite das leis das somas

Xl+1/8u+ e +Xn/an+Sl Bl /Bn“‘sny

onde #—/— o, quando # 1 o, € as parcelas sdo independentes
por linhas e assintoticamente constantes.

&

# #

Primeira caracterizagio das leis de Lévy. Como a f.c
duma lei de Livy é i.d. (V e V'), podenios representar o seu
logaritmo sob a forma de Liévy e KniNTCHINE!

. [ itu 1-41®
16) logf(t)::Zdt*‘{—kaet —‘l-dm" 0 dG('M),

onde valem as convencdes explicadas a proposito de I de § 11
de A, as quais invocaremos a2 medida que for oportuno. Assim
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poe-se a questdo de procurar a condigdo necessaria e suficiente
a que devem sujeitar-se os parametros de 16) para que a lei
correspondente seja de Levy.

Escolhido um numero y, positivo e menor que 1, substi-
tuamos a varidvel £ de 16) por y £ Como

w2 w?)=(1/7) - [(7 )] (1472 u%)]

¢ integravel com respeito a G (u), sai

17) logf<~/t>:z'a't+f <6""’“*1— Al > LR 4G w),
R

1+72u?)  u?

com a’=7-[a+(1—72)-f 1+/u a’G(u)]

Facamos agora ¢'=a—d', substituamos 7 por # no inte-
gral que figura em 17) e recordemos que podemos interpretar
os integrais de 16) e de 17) como integrais de Rizmann-

-STIELTIES ou seja como f (simbolicamente). Obtemos a relacio

f(t) ) R ) itu > 1422
18 1 - Hle 1tu___1__ ll7 -
T T IR A ) e 10
@ .f‘ 1 2 1 2/.2
_f gt 1 tru > +u . o // dG(Zl//y).
R 1) w14y

Como (14u*/y")/(1/7*+u%/7?) € integravel com respeito
a G(u/y), existe uma funcfo de distribuicdo a menos dum
factor constante nfo-negativo, seja Hy(x), definida pelas
igualdades

Hy(—o0)=0 e dHyu)="+u%)dG (u]7)](1+u2).

Sendo assim, basta estender 8) de § 10 de A ao intervalo
de a=—oc0 a f=+co, para tirar de 18) a relagfio

f()
D

R . ity 122
it .
+f <e 1 I u2> v (G (u)—H, ()],

19) a4
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onde a diferenca G (u)— Hy (1) é uma funcio de variagdo limi-
tada, a qual se anula para #=-—co. Doutro lado, se f(¢) for
a f.c. duma lei de Livy, sai f(2)/f(y#) uma f.c. i. d. (V e V')
e, portanto, existem uma constante @y e uma fungio de dis-
tribui¢do a menos dum factor constante ndo-negativo, seja
Gy (u), tais que se verifica a relagdo

20) log

! R 12 142
f( ) =1.(l\"t+f <eilu‘__1___ L u‘)>, +”
Sy) R 1402 u?

Tendo em vista I' de § 11 de A, concluimos de 19) e 20)
que sfo validas as igualdades

dG'r (Zt).

a =a' e Gy(u)=G(u)—Hy(u) para todo u real.

O que viemos expondo prova que a fun¢fio G (u) corres-
pondente a representac¢io de Lévy e Kuinrcnine duma lei de
Lévy torna ndo-decrescente (na varidvel «) a diferenca

11 .,,2_‘_7}2
G| I a6y,

isso seja qual for o numero y, positivo e menor que 1.

Suponhamos agora que a fun¢fio G () correspondente
a uma f.c. i.d. f(#) goza da propriedade que acabamos de
referir. Entdo, dado qualquer y, positivo e menor que 1, sai
G (u)—H+(x) uma fun¢io de distribui¢io a menos dum factor
constante ndo-negativo e, portanto, definindo 4" como ante-
riormente, resulta de 19) que J(¢)/f(y#) € uma f.c. (i.d.), o que
prova que a lei de f(f) é autodecomponivel e, consequente-
mente, € de Levy.

Posto isso tudo, estamos aptos a enunciar outro feorema
de Livy:

VI) «Uma lei (infinitamente divisivel) é de Levy, quando
e s0 quando a fungio G(u) da sua representagio de Livy
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e Kuintcuine é tal que, dado um numero arbitririo ¥, com
0<y<1, a diferenga

2 a?_}_y? N .
G- [ a6y

sai ndo-decrescente em —oo<<u< Foo.»

Oferece interesse exprimir o resultado alcangado em VI
dum modo diverso.

Se passarmos da representacio de Livy e KuminrcHing
duma lei i.d. para a sua representacio de Levy (Il e 12) de
§ 11 de A}, entdo, dado y entre 0 e 1, sai, atendendo a 8)
de § 10 de A,

[F 2R a6 -me)-

e V2
"t “ 140y
=fﬁm " dG(u)—J[_deG(y/y)-_
=Mu)—=M(uly), se u<o, e
2[G (0)—Hy()]=N(u)—N (1]7), se wu>0,

jn-f—oo 1+7}2

2
s |~ v

de modo que o n#o-decrescimento de G(u)— Hy(4) em
—oo{#<+co implica que M(u)—M(u/y) e N(ujy)~N (u)
saem nfo-decrescentes, respectivamente em —oolu<0 e
em O0<u<< oo,

Suponhamos agora que as funcoes M(u) e N (u) corres-
pondentes a lei i.d. considerada gozam das propriedades que
acabamos de referir. Entdo, dado y entre 0 e 1, as fungdes
M(u)—M(1/y) € N(u)—N(u]y) correspondem a representagio
de Livy de certas leis i.d. [II de § 11 de A]. Portanto, sendo
#>0, as igualdades

to g2
[ e - v e

2

4o -+ 2 /a2
_ fu 4G (2)— f , (—ii_—_;)//772 4G (0)7) =

=[G (20)— Hy (+ )]~ (G (1) — H (u)]
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tém um primeiro membro n#do-crescente na varidvel u, de
modo que tornam a diferenca G (u)— /1y () nfo-decrescente
na mesma varidavel. Semelhantemente se mostra que essa di-
ferenca é nio-decrescente em —oo<l#< 0. Finalmente, tem-se

[G (+0)= Hy (+0)]~[G (—0)— Hy (=0)] = (1= "0,

independentemente de qualquer hipotese relativa as fun-
coes M e V.
O estudo precedente prova o seguinte coroldrio de VI:

VI') «Uma lei (infinitamente divisivel) € de LEvy, quando
e s6 quando as fung¢des M (u) e /V(x) da sua representacgio
de Livy sfo tais que, dado um numero arbitrario 7, com
0<y<1, as diferencas M (u)—M(u]y) e N(u/y)— N (u) saem
ambas fun¢des nio-decrescentes da varidvel », a primeira em
—oo<luu<C0 e a outra em 0<{u< 4 co.»

Se a lei i.d. considerada tiver variancia, ela pode repre-
sentar-se pela formula de Kormogorov [IV de § 11 de A]. Entdo,
tendo em vista 12) e 15) de § 11 de A, saem as relagdes

“ dC(z
u-m)= [ D e <o, e
ufY )
“f dC
N (—0)—N (u]y—0)= f (v), se >0,

as quais nos habilitam a enunciar um #zovo coroldrio:

VI") «Uma lei (infinitamente divisivel) com variancia
¢ de Lgvy, quando e sé quando a func¢io C(x) da sua repre-
sentacdo de Kormocorov é tal que, dado um numero arbitrario
7, com 0<y<1,

o dC(e)
] nio decresce em —oo<u<0 e

ay  V°

“T dC (v
f —*Qnﬁo cresce em O<<#<+oo»

. 22

N
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Outra caracterizagdo das leis de LEvy. Embora as proposi-
¢oes VI a VI" revelem algum progresso, quando comparadas
com V, convém dar um aspecto mais pratico a condi¢io neces-
siria e suficiente para que uma lei (i. d.) seja de Livy, Eis o
motivo das considerag¢bes que vamos empreender em seguida.

Comegamos por enunciar outro teorema de Livy.

VII) «Uma lei (infinitamente divisivel) &€ de Livy, quando
e s6 quando as fung¢bes M (u) e N(u) da sua representaciio
de L&vy gozam das propriedades seguintes:

A fun¢do M (u), considerada em —oo<Zu<0, sal continua
e as suas semiderivadas M](u) e M} (u), respectivamente
a esquerda e a direita, existem ambas em qualquer ponto;
além disso, os produtos u- M, (x) ¢ u- Mi(u) sio tais que
o seu infimo em qualquer ponto #, nfo pode ser menor do
que o seu supremo em qualquer ponto us>>u.

Simultaneamente, a fungio N (), considcrada em 0<Zu<
< +eo, sai continua e as suas semiderivadas N, (u) e Nj(u)
existem ambas em qualquer ponto; além disso, os produtos
u- Nj(u) e u- Ny(u) sdo tais que o seu supremo em qualquer
ponto #; nfo pode exceder o seu infimo em qualquer ponto
Uy > ty»

Demonstracdo de VII: Suponhamos que as funcées M ()
e NV (u) correspondem a representagio de Livy duma lei de
Livy e seja y um namero arbitrario, contanto que 0<{y<1.

O nio-decrescimento de M (u)—M (u/y), assegurado por
VI, impde a desigualdade

21) M(w]7)—M (0]7) £M (@)~ M ()

para quaisquer numeros 7 e w tais que v<<w<<0.
Fazendo agora v=—e¢Y, w=—e¢° e y=¢*>, transformamos
21) primeiro na relacéo

M(—er)—M(—e=) LM (—e%)— M (—e?)

e depois, pondo M (—e")=0(x) para —oco<lx< +oo, na desi-

gualdade
0(»)<[0(=)+0(2y-2)]/2
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a qual prova que ©(x) ¢ uma func¢fio convexa no campo real.

A forma como definimos O(x) mostra claramente que
existe um intervalo significativo da varidvel x, onde a fungédo
© ¢ limitada, de sorte que pode aplicar-se-lhe a proposic¢io L
Portanto, a fun¢io ©(x), considerada em —co<lx< 400, sai
continua e tem as duas semiderivadas em qualquer ponto;
além disso, o supremo das duas semiderivadas num ponto x»
ndo pode exceder o infimo dessas derivadas noutro ponto
%1 >%,. Como qualquer semiderivada da fun¢fo ® num ponto x
¢ igual a semiderivada contraria da fun¢do M no ponto u=
= —¢%, multiplicada por u, concluimos que a fun¢do M (),
considerada em —oo<{# <0, tem as propriedades referidas
no enunciado.

De modo semelhante se mostra que a fung¢do /N («), con-
siderada em 0< u<+oo, satisfaz as propriedades atrds men-
cionadas.

Para demonstrar a parte restante de VII, suponhamos
que as fungbes M (u) e N(u) correspondem a representagio
de Liévy duma lei i.d. e que elas se sujeitam as condigdes
descritas no enunciado.

Entdo, dado um namero y, arbitrario, contanto que 0<y <1,
tem-se, para qualquer #<0,

inf{{(ufy) - Mo (7)) [(ufy) - M (ufy)]| sup - Mo ()], [ - M ()
ou, equivalentemente, a relacio
22) (/7)) sup[Mo(u/y), Mi(u/7)]Lind [M; (u), Ma ()],

na qual s6 figuram semiderivadas ndo-negativas.

Ora, dados dois nimeros negativos #, e us>u;, podemos
estender o teorema dos acréscimos finitos a fungbes continiias
em wyLuLlu, que tenham semiderivadas esquerda e direita em
w1 <<w< us para obtermos a desigualdade

28) int [ M] (usg) ) M (143)) L[ M (205)— M (281)) ] (2—141) £
Zsup (M (), M (us),

valida para algum ws situado entre #; e #,.
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Doutro lado, de 22) tiramos, fazendo # =1, e escolhendo y
por forma que u;=1u/7, a relacdo

22") sup [M; (u1), Ma (w0:)] LInt (M7 (005) y M (145)],

a qual prova que, fixados os numeros negativos v e w>,
qualquer das fun¢6es ndo-negativas

sup (Mi(u), Mi(u)] e inf[Mi(u), Mi(w)),

considerada no intervalo de v a w, sai ndo-decrescente e,
consequentemente, ndo pode exceder o seu valor no ponto w,
valor esse que é necessariamente f7uifo, porque a hipotese
contraditéria dava o resultado absurdo M'(#)=- o para
w<u<0. Nestas condi¢des sabe-set que o intervalo deva w
¢ um intervalo de integrabilidade no sentido de Rizmann-
-StieLTies nfo s6 de # com respeito a qualquer das duas fun-
¢Oes mencionadas, mas também de qualquer dessas func¢des
com respeito a #. Portanto, dado y entre 0 e 1, a definicdo
de integral de Rigman~n-StisrTies conduz a relagio

w' 7 R u
M(—\—M[{=)= fodM|{—) =
<"/> </> I (7)“
u du

R - R
SO0

£ f AM ()= M (w)— M (v),

a qual prova que a diferen¢a M (u)—M (u/y) ¢ uma fungdo

nido-decrescente da varidvel # no intervalo —co<<%<0.
Semelhantemente se mostra que qualquer y entre 0 e 1

torna a diferen¢a N (#/y)—V (4) uma fun¢do ndo-decrescente

(+) Veja-se, por exemplo, os teoremas 8 de § 3 e 12 de § 5, ambos do
capitulo VI da parte Il do tratado intitulado Moderna teoria delle funsiont
di variabile veale por G. ViTaLi ¢ G, SAnsonE.
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da varidavel # no intervalo 0<#< 4o, de modo que VI' per-
mite completar a demonstragio de VIL

Passamos para um coroldrio de V1I, a saber:

VII) «Uma lei(infinitamente divisivel) € de LEvy, quando
e so quando a fun¢do G(») da sua representacio de Livy e
Kuinrcuing goza das propriedades seguintes, tanto no inter-
valo —co<<u<<0, como também em 0<z<+oo!

E continua e admite as duas semiderivadas G/(u) e Gu(u),
respectivamente a esquerda e a direita, em qualquer ponto;
além disso, as expressdes (1+u?)- Gi(u)/u e (1-+u?) - Ga(u)/n
sfo tais que o seu infimo em qualquer ponto #, ndo pode ser
menor do que o seu supremo em qualquer ponto #,>u;.»

Demonstracdo de VII': Dados qualquer #>0 e qualquer
k=0 tais que u-+A>0, basta aplicar o teorema do valor
médio aos integrais da igualdade

R R
‘/'u—{—h (1 +7}2) dG ('2/)2 _ fz;+h 7)2 dN (v)

para poder afirmar a existéncia de dois nimeros » e &, ambos
compreendidos entre 0 e 1, que verificam a relacio

24) [ ) - (G (st )= G ()] =
= —(u+2h)? [N (u+h—0)—N(u—0)].

Supondo %2>>0 e fazendo 21— 0 em 24), vemos que a con-
tinuidade de G e a de /N no ponto # se implicam mutuamente.
Admitindo agora que N é fun¢do continua no seu dominio,
dividindo ambos os membros de 24) por 4 e fazendo 4—0
por valores de sinal fixo, ndo s6 concluimos que a existéncia
duma semiderivada duma das func¢des G e /V no ponto con-
siderado implica a existéncia da semiderivada homéloga da
outra funcio no mesmo ponto, como também tiramos as
igualdades (eventuais)

25) (14u?) G, (u)ju=—u N;(u) e (1+u?) Go(u)u=—u-Na(n).
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O caso #<0 trata-se dum modo semelhante e conduz as
igualdades que resultam de 25), quando se substitui ai —/V/ ()
e —Ni(u) por M, (u) e My(u), respectivamente.

Pois bem, a proposi¢do VII e as consideragdes que aca-
bamos de fazer provam VI,

Exemplo: Sio leis de Levy as que correspondem 2 fun-
¢do G(u)=0 ou u ou 1, conforme #.£0 ou 0LuL1 ou ux1.

Segue outro coroldrio :

VII") «Uma lei (infinitamente divisivel) com variancia
¢ de Livy, quando e s6 quando a fun¢fio C(«) da sua repre-
sentagdo de Koumocorov goza das propriedades seguintes,
tanto no intervalo —eo<<22<C0, como também em 0<<u< oo

E continua e admite as duas semiderivadas C} () e Ci(u),
respectivamente a esquerda e a direita, em qualquer ponto;
além disso, as expressbes C](#)/u e C}(u)/u sdo tais que o seu
infimo em qualquer ponto «; ndo pode ser menor do que o seu
supremo em qualquer ponto #;>u;.»

Demonstracdo de VII': Sendo w e u+% do mesmo sinal,
tem-se a igualdade

R R

fu+h dC(v)= /““’ (1+2%)dG (v),

aos integrais da qual se aplica o teorema do valor médio.
Em seguida, procede-se como na demonstracio de VII' e al-
cancam-se as igualdades

Cou)u=04u?)-G(w)]u e Ciw))u=1-+u?) Gi(u)lu,

em face das quais é fdcil terminar a demonstracso.

Proposi¢des complementares. O estudo precedente per-
mite deduzir a proposi¢do seguinte:
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VIII) «Se alguma das func¢bes M(u) e V(u) da repre-
sentacio de Livy duma lei de Leévy for limitada no seu
dominio de existéncia, entio a mesma func¢do sai idéntica-
mente nula.»

Demonstragio de VIII: Suponhamos que IV (u)é limitada
em 0<u<-+oco e fagamos

|supfu - N, (u),2 - Nj(u)]|=23i(u).

Entao, dado ¢>>0 e supondo ¢ tal que 0<:<9, sai, em vir-
tude da desigualdade 28) (adaptada a fung¢do /V), da proposi-
cdo VII e do texto posterior a 22') (também adaptado a fun-
cdo V),

R R
+o°>fu>0 dN(ﬂ);——ff dN(u);ff | sup [V (), Ny(n)]| - du=

R
szB_ZT.az(u)du;az(a).(10g,5_10g€>,

seja qual for ¢, donde concluimos que 97(#)==0 ou, atendendo
a IV (+o0)=0, que N (u)==0.

De modo semelhante se prova que M (#) s6é pode ser limi-
tada em —oo<#<0 quando M (#)==0, completando assim a
demonstragio de VIIIL

A proposicio VIII admite o coroldrio imediato seguinte:

VIII') «Caso as fungbes M («) e N(u) da representagio
de Lévy duma lei de Livy sejam simultdneamente limitadas,
a primeira em —oo<<u<0 e a outra em 0<<u<+co, a lei consi-
derada sai necessariamente de Gauss (propria ou improépria).»

Atendendo a 12) de § 11 de A, tiramos de VIII' um #novo
coroldrio, a saber:

VIII") «Caso (1+u#?%)/u® seja integravel na regifio |« |>0
com respeito a fun¢do G(#) da representacio de Livy e
Kuintcuine duma lei de Livy, a lei considerada sai necessa-
riamente de Gauss (prépria ou impropria).»
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Observagido: Caso as fungdes M (u) e N(u) da represen-
tacdo de Lévy duma leii. d. tenham sec¢ées de invariabilidade
nio-vazias, a primeira numa antevizinhan¢a e a outra numa
postvizinhanga da origem, resulta de VIII' que a lei conside-
rada so pode ser de Lévy quando for de Gauss.

£
£ *

Exemplos. Vamos agora analisar, quais das leis dos exem-
plos1.ca4.°dofinalde§ 11 de A sdo leis de Lévy e quais nio sio.

As lets impropria, de Gauvss e de Cavcny sdo leis de Livy,
porque tém fungbes M e N que satisfazem as condices
de VIL.®

Pelo contrario, a /lei de Porsson (propria) ndo é de Livy,
porque a sua fungio G é descontinua em /=40 (VII). ¢ Assim
se explica a raridade com que essa lei aparece nos estudos
de convergéncia cldssicos, dedicados quase exclusivamente

aos casos em que a lei limite é de Livy.

Alusdo as leis estdveis, Nio pormenorizamos aqui o es-
tudo da convergéncia de leis de somas 12), de parcelas inde-
pendentes e assintoticamente constantes, para uma lei de
-Lévy, quando se da o caso das varidveis X,,Xz,...,X,,...
serem idénticamente distribuidas, isto é, de terem todas a
mesma lei. Mencionamos apenas, sem prova, que toda a lei
limite que pode aparecer no caso apresentado é uma lei estd-
vel ou seja tal que a soma de duas variaveis casuais indepen-
dentes do tipo dessa lei da uma varidavel do mesmo tipo, ¢+

() Notando que as diferencas log f(¢)-log f (y#) das trés leis cita-
das sdo, por ordem, ic (1~y) ¢, 4a (1~y) #-6% (1-42) £2/2 e iB (1)) t-o (1-y)-|£],
reconhecemos ndo s6 que se trata de leis de LEvy (V), como também que
qualquer delas é tal que as leis componentes referidas no segundo mem-
bro de 11) saem da mesma natureza que a composigéo.

() Também podemos invocar a observacio feita a seguir a VIII”,

(»») Referimos ainda, também sem prova, que toda a lei estivel
¢ limite de leis de somas 12) que se encontram no caso particular citado.
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§ 7) Transformagdo de sucessdes simples em sucessdes
duplas convergentes

Posicdo do problema. Caso duma lei limite imprépria. E 6bvio
que o problema da convergéncia das leis de somas como as de
12) de § 6 para alguma lei limite fica resolvido pelos teoremas
de convergéncia de § 8, § 4 e § 5, adaptados convenientemente
ao caso X,=X,/B, (ver a nota final de § 8). Se existir lei
limite, esta e as constantes 53, estdo sujeitas as restrigles
estudadas em § 6.

Um problema complementar do que acabamos de referir
é o seguinte:
Sdo dadas as variaveis casuais independentes X, Xs,..

ey Xu,... e pretende-se achar constantes 5,>0 e .S, tais
que as somas

1) XI/B/z+X2/Bn+ ‘,‘)(;:/Bn_"sn

tenham parcelas assintoticamente constantes e as suas leis
tendam (fracamente) para alguma lei limite, a qual sai neces-
sariamente uma lei de Lgvy.

Caso desejemos uma lei limite impropria, a resolugdo
do problema posto tem uma teoria muito simples,
Com efeito, podemos fazer corresponder a cada » um
ntmero %, tal que P(]1<]2< Xi|>hy)<1/n.¢) Portanto, dado
—=hI=n

¢>0, tem-se, para n suficientemente grande,

P(] 2 Xi/(nh,)|x)<i/n—0, quando #1}co,

1=k=n

(*) A relagio do texto & satisfeita pelos nimeros 4, tais que se veri-
fica a relagdo P(sqpiX,([>h”/n)<1/n e esta, por sua vez, & satisfeita
pelos ntmeros #4, llque tornam P (sup X,>%,/n)<<1/(2#) e, simultanea-
mente, P(irI}fX,;<~h,,/M)<1/(2 z). Igois bem, podem achar-se nameros /%,

que satisfagam ao dltimo par de desigualdades, recorrendo s férmulas
2) e 4) de § 4.
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0 que prova que as somas 2 X,/(nh,) resolvem o problema
1=k=wn

posto no caso duma lei limite unitaria [1), [ e IV de § 7 de B].
Consequentemente, sendo ¢ um ntmero real arbitrario, as

somas 2 X;/(nh,)+c¢ resolvem o problema no caso mais
1=k=n

geral duma lei limite imprépria de f.c. ¢,

O que precede justifica amplamente que a seguir nos
limitemos quase sempre a estudar a convergéncia para leis
préprias.

Resultados preliminares, Comegamos por estabelecer a
proposi¢do auxiliar seguinte:

I) «Dadas as varidveis casuais independentes Xj, Xs,. ..
vy Xy, ..., as constantes B,>0 e outras constantes B, >0
tais que B,./B,— pzc, quando ntes, a hipétese que as
variantes casuais X;/B,, com 1£k<n, admitem as constantes
assintéticas A,./B, implica que as varidveis casuais X/ B,
admitem as constantes assintéticas A4;/5) e a hipotese que
as constantes .S, tornam as leis das somas

a) Xl/Blz+X2/Bn+ +‘X'n/Bn—Sn

(fracamente) convergentes para uma lei (de Livy) prdpria de
fun¢do caracteristica f(#) implica que as leis das somas
modificadas

(l/) Xl/ ;1!‘f‘X2/B;;+ +X71/B;z"‘Bn ‘ Sn/Bﬁz

convergem (fracamente) para a lei (de Livy) de fungio carac-
teristica f(p¢).»

Demonstra-se I, pondo p,=5,/B, em I de § 2.

Observacdo: A proposi¢do 1 continua a ser vilida na
hipotese de as leis das somas de @) convergirem para uma
lei impropria.
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De I tira-se o coroldrio seguinte:

I} «Caso as leis das somas de @) de I sejam (fracamente)
convergentes para uma lei (de Lévy) prdpria, as sucessdes de
constantes 5,>0 que tornam as leis das somas modificadas
de a') de I também (fracamente) convergentes para leis (de
Livy) proprias sio as que fazem B,|Bl,— p=-0,c, quando
7100, € SO €55a8.»

Demonstragdo de I': Tendo em conta I, basta mostrar
que a convergéncia duma sucessio de somas de @') para uma
variavel prépria de f.c. v(¢) obriga-a B,/B},— p 0, . Pois
bem, a razio B,/B, ndo pode ter sublimite nulo, porque
i1sso implicava o (f)==1, nem pode ter sublimite infinito, por-
que isso implicava f(t) =1, nem pode ter dois sublimites
finitos e significativos ¢ e » tais que ¢<», porque isso impli-
cava f(qt)= f(r?), donde, seja qual for ¢,

F@O)=f(qt|n)=f(@*tr)= ... =f(0)=1.

Segue outra poposi¢do auxiliar, esta devida essencial-
mente a Gyepenko e GRosHEV ®

II) «Se as variaveis casuais proprias independentes
Xu(n=1,2,...) tém as fungbes caracteristicas f,(f) e se
certas constantes 5,>0 e S, tornam as parcelas das somas

61) Xl/Bﬂ+X2/Bil+ +)(n/Bn"‘Sn

assintoticamente constantes e tornam também as leis dessas
somas (fracamente) convergentes para uma lei (de Livy) pro-
pria, cuja representacio de Livy e KuintcHine é caracterizada
por G (#), uma funcéo de distribuicdo a menos dum factor
constante positivo, entdo, sendo & (x) (k=1,2,...) a fungio
de distribuic¢do correspondente a fungao caracteristica | f; (),
existe um numero natural »; tal que as igualdades

b) 2 f dd;,(x) 2-G(+o), com nXn,
1=k=n ) g Bat
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determinam (univocamente) constantes $,>>0, as quais satis-
fazem necessariamente a rela¢io B,/f, — 1, quando 7 {co.»

Demonstracdo de I/: Vamos usar a técnica de simetrisacio,
descrita a propésito da demonstragio de Ill de § 7 de B, asso-
ciando as varidveis X, outras Y,, independentes entre si
e das primeiras e escolhidas de modo tal que, dado #, a varia-
vel Y, tenha a mesma lei que X,. :

Entdo, as varidveis Z,=X,-—Y, ficam independentes
e com as fungdes de distribuicdio &, (x). Mais, as varidveis
ZiB, (=1,...,n) sdo independentes por linhas e ficam
com as i.c. reais | f:(¢/B,)|?, pelo que saem simétricas [8) de
de § 8 de AJ.

Como, por hipotese, as variaveis X,/B, sfo assintotica-
mente constantes, existem grandezas 4;/5, tais que se tem,
para qualquer ¢ real,

Hm [eFidi?! B . fi(+ ¢]B,)]=1, uniformemente em 12k2n,

ntw

donde se tira, também para qualquer ¢ real, que
lim| fi.(#/B,)F=1, uniformemente em 1ZLkLn,
#nto

ou seja que as varidveis stmétricas Z,/B, sio infinitesimalis,
Consequentemente, verifica-se a relagdo 1) de § 5, com

é,;—’:ﬂ, Au=0 e Fu (9">:L’7k (-Bn x)

A hipotese que as leis das somas de a) convergem para
uma lei de Lévy de f.c. f(#) implica que

0| f(t/BYE=>| f(5)F

1=h<n
donde concluimos que as leis das somas
2) Zl/sz+ZE/sz+ T +le/B1L)

de termos independentes e infinitesimais, tendem para a lei de
Livy de f.c. | £(2)|% cuja representa¢io de Livy e Kuinrcuing
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¢ caracterizada por uma fungdo @(«), a qual é de distribuigéo
a menos dum factor constante nfo-negativo.

Aplicando agora I de § 5 e d) de I de § 8 as somas 2) e
tendo em vista que @(«) € funcgio continua para u =0 (VII'
de § 6), sai

Byu

x?
3 lim 2 —————d G (%) =C(u
3) im ) Be # (%) =9 (u),

para qualquer # =~ 0, finito ou infinito.
Em particular, temos

Le]

3 li 2 ' La"-ﬂ. X) =@ o).

ntw 1=Jkh=n

Se interpretarmos o integral que figura na representagfo
de Lévy e Kuinrtcuine duma lei i. d. como integral de Riemanx-
StieLTies, podemos escrever primeiro, por causa da proprie-
dade aditiva desse integral, quando se integra com respeito
a duas fungbes diferentes,

log|f(#)]*=
:f <eim_'1* = > Y 416 )+ G (+) — G (—u+0)),
J R 1422 ?

e em seguida, tendo em vista a parte final de I de § 11 de A
e o tipo de continuidade das fungdes G () e @(»), decorrente
de VII' de § 6,

4) Q(u)=G(u)+ G(+oo)— G(—wu), para u=0, finito ou infinito.

Como a lei limite correspondente a & () é prépria, tira-
mos de 4) a relagdo®

4 Q(4o0)=2 - G(+0c0)>0.

() Se ndo houvesse interesse em apresentar 4), a relagio @(+oc0)>0
podia deduzir-se mais simplesmente como segue: A hipétese que a f.c.
f(2) é propria torna impossivel que se tenha |f(2)|?=1 (11 de § 6) e, por-
tanto, torna impossivel (4 c0)=0.
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Inferimos de 4') que, fixado >0, corresponde >0 tal que

+3 Bn x‘z

5) 2:=@(+0)—g(—d=lim 3 f d (%),

ntw 1=kz=n -3 B. B,‘f-{— xQ

onde a igualdade final se justifica a partir de 3).

Entdo, sendo &;, o termo geral duma sucessdo arbitrdria
de numeros positivos, a relagdo 5) implica que existe um
numero natural »' tal que sai, para #>#',

X 2 2
b f Y L s
1=ksn /) p e‘/}f,—}—xz Bﬁ_}‘xg

’ BQ‘”C 31 ;
=18l 3 [ o dnws D
1=i=n) g (B +2") (Bata°) Br+0* By,
+o B ’ 1— ;21 ;21
2 ———x~— dF: (%) > _I___ﬁ%_._/é_'_ Ce;
1=ksn) _yp, Bhi+x® BB+
logo, pondo
x'l
6 E)n 06/331 = 2 ———————-dc‘/—
) ( 7 ) 1§k§_nfR c%?x—{—x"’ A(x>,

tica a desigualdade
T) |0 (81)— 0, (BY) e - | 1— 5/ BL (5[ Bik-#), para nn.

Mais abaixo faremos uso de dois casos particulares de
7), a saber

() |0, (5:/2)—0, (B3 >e/(1+20%, para nxn!, e
7" [0,(25,)—0,(8:)|>¢/(2+3%), para nX7n'.
Pois bem, dado #, a funcdo ©,(s#%), considerada em

0<&B,<oo, € uma fung¢fo positiva®, continua e de derivada

(v} Talvez convenha lembrar a hip6tese que nenhuma varidvel X, é
imprépria ou, equivalentemente, que nenhuma variadvel Z, é idénticamente
nula (ver II de § 6).
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negativa [III, e III; de § 4 de A]; além disso, fazendo
n=¢-inf{1/(1+420%,1/(243%],

resulta de 3) que existe um numero natural »'" tal que se
verifica a desigualdade

G (+o00)—0<0, (B <G(+0)+n, para nxn'.

Entdo, dado n>n=sup (#', #"), as propriedades da fungio
0,(8.) que acabamos de indicar, juntamente com 7°), 7') e
4"), mostram primeiro que sai

0, (Bi/2)>6(+)>0, (2 B

e depois que a equacio 0, (8,)=2-G (4cc) tem uma e uma so
solucio positiva, seja f2, compreendida entre B;:/2 e 2 B;.
Esta conclusio é valida para qualquer X,

Sendo assim, podemos usar as relagbes b), 8'), 4') e 6)
para reconhecer que |0, (8})—®, (B;)|—0, quando 7 {co. Este
facto e 7) impdem B, /B, — 1, quando # t co, de modo que fica
completada a demonstragio de IL

Vejamos agora um coroldrio de IL

I «Se as varidveis casuais préprias X, verificam todas
as hipoteses de I, entdo, dado qualquer ntimero positivo p,
corresponde um numero natural #, tal que as igualdades

x? 1_{_7/‘2
2 ——d & =9 p?. % a6 co 72,
a) 1___<__k§1lfR ﬁ?ﬁ + x@ ke (x) P fR 1 _‘%—p_z Zte (%), m %_7;1,,

determinam (univocamente) constantes (3,>0, as qualis satis-
fazem necessariamente a relacio B,./B,— p, quando #71tco.

Quando p cresce estrita e continuamente de 0 a oo,
extremos excluidos, o segundo membro de @) faz o mesmo.»

Demonstracdo de II': A hipotese que as somas de a)
de II tém parcelas assintoticamente constantes e leis que
convergem para uma lel propria de f.c. f(#) implica que,
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dado o numero p>0, essas somas, multiplicadas por p, tém
parcelas também assintdticamente constantes e leis que con-
vergem para a lei prépria de f.c. f(p?) (ver I), a qual corres-
ponde uma func¢do G, (#) na representagio de Levy e Kuint-
cHiNE. Logo vale a conclusiio de 11, quande se substitui ai B,
por B,/p e G(u) por (compare-se com 18) de § 6)

ulp 1 +7}2

8) Gp(u)=p* - W

dG (v),0)

ficando assim provada a primeira parte de II.

Quando p>>0 percorre crescentemente um intervalo fe-
chado, a expressiio p%(L+#%)/(1+ p*#?), considerada como
fungdo de p, sai positiva, continua, de derivada (finita) posi-
tiva e tal que ela e a sua derivada ficam limitadas por fun-
¢bes de u que sdo independentes de p e integraveis com
respeito a G (#). Logo a funcio de p dada por

6 Gr)=p 1GGO-Glol [ e

G (1u)®

vem a ser uma fungio positiva, continua e estritamente cres-
cente em 0<p<+oo, a qual tende para zero, quando p}0
(1L, 5 e 1 de § 4 de A).

Tendo em vista que o teorema da convergéncia monétona
[II de § 4 de A] se aplica, quer o integral da fun¢do (mensu-
ravel) limite seja finito quer seja igual a 4o, tiramos de 8)
a relacio
1 - 242

8") lim G, (4 o0)= dG (u)+
o

>0 U

X0)

+lim | 22 [G(+0)= G (—0)]

Finalmente, 8") do texto e VIII" de § 6 permitem comple-
tar a demonstracio de II.

) As férmulas 8), &) e 8") sdo validas para guaisquer leis i.d., pois
a sua deducdo ndo depende da hipotese de as somas de g) de I de § 2
terem o aspecto particular de @) de II de § 7.
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Exemplo: Tomemos as leis i.d. a que Corfesponde a
funcdo G (#)=0 ou arctgu—u/(1+u*) ou =/4—1/2, conforme
w20 ou 0LuLl ou 1 Lu De 8") tira-se lim G,(+o0)=

Prto

du w . .
:2‘f ~ = —, de modo que as leis consideradas
o<t 1+u* 2

nio podem ser leis de LEvv.

Outro exemplo: Tomemos as leis i.d. a que corresponde
a funcgio G(#)=0 ou »?® ou 1, conforme #£0 ou 0LuLl ou
1Zu. Embora todas as leis consideradas tenham componente
gausseana nula e ndo sejam leis de Livy (VII' de § 6), sai

lim Gy(-+oo0)=2 - <u+ —j;)du:—{—oo.

Pro .J o=t

Terceivo exemplo: Para a lei de Poissox propria do exem-

plo 3. de § 11 de A obtém-se lim G, (+) =4, 0 que con-
Pt '
firma o facto ja conhecido que a lei nio ¢ de Livy.

Observacdo: Se X eY forem duas variaveis casuais inde-
pendentes, possuindo as fungdes de distribuicio Fix (%) e Iy (),
respectivamente, e se Z =X+ Y tiver a func¢do de distribui-
¢do Fz(z), entdo, dado 2, sai F'y(s—x)uma funcio (monétona)
mensuravel de x, a qual é limitada entre 0 e 1 e, portanto,
integravel com respeito a probabilidade definida por Fx (#).
Nestas condi¢oes torna-se facil provar que a relagéo

9) Fz(s)= [ Fy(s—x)dFx(x)

¢é valida para qualquer 2.

Em primeiro lugar, dado 2, nfo s6 a funcio Iy (z—x) sai
semicontinua a direita na variavel x, como também 8) de § 5
de A da a igualdade

fﬁ Fy(s—#)dFy ()= lim f " Fy () dFx ().

ay—~w,bttow a

Em seguida, supondo @ e 4 fixos, escolhamos um ntimero
natural #, consideremos pontos a==xg,¥1,...,%u-1 € x,=b tais
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que ¥ <x;(/=1,2,...,7n) e substituamos Fy(s—x) pela fun-
¢do mensuravel simples e ndo-negativa X, () que se reduz
ao numero Fy(s—,;40) em cada intervalo v, L x<x; e que
se anula na regifo a>x26. Fazendo 74 e introduzindo as
condigbes de divisdo do intervalo a<x<é usuais na defini-
¢do do conceito de integral de Riemann-StisrLTics, a sucessio
de fungdes X, (x) tende crescentemente para a funcio X(x)
que se confunde com Fy(s—x) na regido aLx<5b e que €
nula no exterior desta regido. Logo as propriedades expres-
sasem A, 2)e 4)de§ 4,3)de§ 7 ellde§ 2 permitem escrever

[wFy(e—) dFx (x)=

= lim lim 2 NFy(z=2+0) - [Fx (x)~Fx (21.4)]} =
@00, bt 40 sup|a-zy |0 1=/<n
= lim lim 2 Py y(rgX<a,—co< YLo—x)=

aj—w,bttw sup|r-ay_i|->0 1=SI<n

= lim Py xyy(e£X<b,X+ Y<2)=
al—w,bttm

=Px,z(—o0< X< +o0, Z<2)=F2(3), c.q.d.

Vimos no principio da demonstracio de II que, dado 4,
a fungdo de distribui¢do & corresponde a uma certa diferenca
Xi— Y} de varidveis independentes e idénticamente distribui-
das. Por isso, se (%) for a funcio de distribuicio da vari4-
vel X e se designarmos por y o valor genérico da variavel
— Y}, esta fica com a funcdo de distribui¢do 1—F(—y+0) e
a relagdo 9), aplicada a soma X,+(— Y}), dd

9/) Fi(@)=1— [ F\ (84— 2+0)dFy (%),

um resultado que pode ser ttil para a determinacdo dos inte-

grais da férmula 6).

#
% *

Estudo independente das igualdades b) do teorema |l. Tem
certo interesse considerar as igualdades referidas no titulo
desta sec¢fio, quando se substitui 2 - G (+oc0) por um ntmero
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positivo qualquer P e quando se ignora se as somas de a)
de II satisfazem a hip6tese do enunciado respectivo. A este
propésito, podemos estabelecer a proposi¢io seguinte:

III) «Se as varidveis casuais proprias independentes X,
(n—=1,2,...) tiverem as fun¢tes de distribui¢do F, (), se s,
for a soma dos quadrados dos saltos (positivos) de £, (x) e se
fizermos

c%l(x)=1“"fRFn(.y'_x"*“O)an(y)!

entdo, dado um numero positivo P, corresponde um ntimero
natural zp tal que as igualdades

x‘l
a) 2 ——d& (x)=P, com wun>mnp,
1=k=n_) p @f; -+ x*

determinam (univocamente) constantes positivas 8., quando
e so quando se verifica a desigualdade

b) 2 (1—sp)>P,

1=h=n
para algum valor fixo de # (o qual sai >nup)»

Demonstracdo de I[1: Comecemos por notar que se tem
a relagdo

F(+0)= (=) = [ ¢ [Fs (y+0)~ Fi(3)] dFi () =51,

a qual mostra que a desigualdade 4) do enunciado € equiva-
lente a

10) 3 |1-[&(+0)—&Fi(—0)]{>F, para algum valor de .
1

=hk=n

( A altima passagem s6 pode deixar de ser 6bvia se a fungio F
tiver uma infinidade de saltos (positivos). Neste caso ordenem-se os pon-
tos em que se produzem os saltos, faga-se corresponder a cada nimero
natural # a fun¢io X, que se identifica com £, (y+0)—F,(y) nos » pri-
meiros pontos de salto e que se anula para os restantes valores de y e
aplique-se depois a definigdo dada em 2) de § 4 de A.
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Doutro lado, dado n, podemos aplicar III de § 4 de A
aos integrais contidos na igualdade 6) para concluir que 0,
tende para zero ou para o primeiro membro de 10), conforme
Byt 4-o0 ou B 0. Em seguida, as propriedades da funcio @,
mostram que a soma de integrais do primeiro membro de a)
¢ igual a £ para um valor (tinico) $,>0, quando e s6 quando
o primeiro membro de 10) excede P.

Finalmente, a nota posta a seguir a formula 7") esclarece
que o primeiro membro de 10) é uma fungdo estritamente cves-
cente de n, ficando assim completada a demonstracio de 1L

Observacdo : Evidentemente, dado #, é 1—s2>0. Se tiver-
mos §,£.5<1, para uma infinidade de valores de #, entio
o primeiro membro de 4) de III diverge para +o0, quando
ntco. Tal sucede, em particular, quando houver uma infini-
dade de variaveis X, continuas.—O exemplo si=(n—1)/n
mostra que o primeiro membro de &) de III pode divergir
para +oco, quando #1tco, mesmo que s? — 1.

De III tiramos facilmente o coroldrio seguinte:

III') «Dadas as varidveis casuais proprias independentes

X, de 11, entdo a relagio
2 (1—si)teo, quando 71co,
1I=r=n

¢ condi¢do necessaria e suficiente para que a fodo o ntmero
positivo P se possa fazer corresponder um numero natural
np tal que as igualdades a) de III determinem (univocamente)
constantes positivas 5, .»

Demonstragdo de [I[': A tese de III' verifica-se, quando
e s0 quando a relagdo §) de IlI for verdadeira para qualquer
numero positivo 7. Este facto e a circunstancia que o pri-
meiro membro da dita relagio cresce com # provam o nosso
corolério. -

Uma proposi¢do complementar de III.é a seguinte:

IV) «Quando a um numero positivo dado P corresponde
um numero natural zp tal que as igualdades @) de III deter-
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minam (univocamente) constantes positivas £,, estas formam
uma sucessdo estritamente crescente.»

Demonstracdo de IV: Supondo n>xnp em a) de 11I, &
impossivel ter-se a desigualdade f,;:£8,, porque ela e as
propriedades da fungdo ©, introduzida através de 6) impli-
cariam

2 2
< X X
P= 3 | 2 _ds@w< = — Y A& (x)=P,
1zk=n,) g B4 47 isk=ntt) g [+ a®

um resultado manifestamente absurdo.

Segue uma proposi¢io importante para o estudo da ques-
tio que pretendemos resolver neste paridgrafo. Ei-la:

V) «Dadas as varidveis casuais proprias independentes
de IIl, entdo a fodo o ntumero positivo P corresponde um
numero natural zp tal que as igualdades a) de III determi-
nam (univocamente) constantes positivas f,1c, com # 1o,
quando ¢ so quando se verifica a relacio

a) lim 2 fld—dﬂ(x)=+oo
R

2
ntoo 1=k=n 1 +x

ou, equivalentemente, quando ¢ so quando se tem, para algum
nimero positivo D,

a') lim 2 P dF (%) +
nto 1=k=n |v|=D
+1im [ d5i(x)=+co.

nteo 1Sh=n J Jv|>D

Caso a relagdo a') se verifique para um certo numero
D, ela ocorre para todos os numeros positivos.»

Demonstragdo de IV: Se tivermos a condi¢do «), resulta

b

=[G (+0-F(=0)]i= 3 (1—s})tes,

1=Sk=n
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de modo que podemos aplicar II1'. Entdo, escolhido um numero
P>0, corresponde um #p tal que as igualdades a) de III
determinam (univocamente) constantes positivas £,. Em
seguida, IV implica £,t#, onde (3 significa um limite (finito
ou infinito). A hipotese < dava, tomando nXx#np,

x® 1422
11) P= 2 fR 17 s aFi (%) >

i 1 o 22 ~
= L) 2 — A
__1nf< ) @2> e fR T A& (%),

contradizendo assim a condigdo a). Logo esta é suficiente.

Suponhamos agora que a todo o nimero positivo P cor-
responde um #p tal que as igualdades @) de III determinam
(univocamente) constantes positivas {3, t co. Entéo, fixado qual-
quer P, tem-se, para n suficientemente grande,

2
1 R

zi=n ) g B2+ T<k=n 14x°

o que prova que a condi¢do @) € necessaria.
Dado o namero D >0, ponha-se /p(x) = #* ou D? con-
forme |x|£D ou |x|xD. Sai

Dra? | (1448 Lhp (#)L24% [(1+4%)  ou
[ (L4) 2l ()LD 1) 22 [ (149,

conforme D <1 ou DX 1. Logo nido s6 a) é equivalente a a'),
como também a') para certo D implica o) para qualquer
outro D. Fica assim completada a demonstra¢io de V.

Observacdo: Seja ¢* uma constante positiva qualquer.
Ent#o, a desigualdade

inf(1,1/¢%) - &/ (1+4%) L 22/ (2 +4%) Lsup (1,1/¢?) - #%/(1+4?)

mostra que a condi¢io @) de V é equivalente a

. ~ox?
lim 2 ——— AFu (%)= +oo.
ntw 1=Sh=w R ¢ +x
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As constantes f, svjeitas a condicdo necessaria e sufi-
ciente de V podem limitar-se inferiormente e superiormente
dum modo que é esclarecido na proposigio seguinte:

VI) «Dados um nimero positivo 2 e as variaveis casuais
proprias independentes X, de III e verificada a condigdo a)
de V, dum lado tem-se a desigualdade

1 : x°
i —. 3 ——— T
(l) En > P izren jR 1+4 a5, (x),

valida para # suficientemente grande, e doutro lado, caso as
simetrizadas das variaveis casuais X, tenham todas o mo-
mento da ordem vy, positiva e menor que 2, sai

o (9 —2~1 . . . N 2y
b) ?lé /((975%?— . [1<%<1; fR }xl‘ A (’@] ) PAIA Bt

Ew particular, se cada variavel casual X, tiver esperanga
matemadtica, verifica-se a relacfio

1

b B <
Vo e 4 P

[ 2 ] !vfdﬂ(x):l, para nXnp.
1=h=n R

Finalmente, se cada varidavel casual X, tiver varidncia,
resulta a desigualdade

®

bs) pr. £

=

1
2 f x*d F (%), para uXnp.»
R

P i=e=a

Demonstracdo de V{: Suponhamos verificada a condi-
¢do a) de V e facamos
” x2

12 Sp= 2 T daF(w).
) 1=k=n ) p 1447 ’( )

Entdo, fixado >0, se #> up for suficientemente grande
para que se tenha f3,>1, tiramos de 11) que £>S,/8,, um
resultado equivalente a desigualdade @) do enunciado.
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Quando as varidveis Z,, simetrizadas das variaveis X,
possuem todas o momento da ordem y, com 0<y<2, basta
atender ao facto que a funcio V(B2 +4%), com 0<a< + oo,
tem deriyada igual a #'-Y.[(2—) ﬁ?}—yx’lj/(ﬁf,+x9)2, negativa
ou positiva conforme. x*=Z(2—y)B%/y, para concluir que,
tomando nxnp, se verifica a relacio

» ’xIQ—T.!xlT

P 3 R

1=izn ) 5 Pt

9 N=Y/2 . Y2 . ' ‘
2. BY 1sk=n ) p

d F(¥%) £

da qual inferimos imediatamente b) do enunciado.

. No caso particular de existirem as esperanc¢as matemati-
cas das variaveis X,., as das varidveis Z, existem também

(e sdo nulas), pelo que saem finitos os integrais que figuram

na relagio 4;), a qual resulta de 4), pendo y==1.

Finalmente, se as variaveis X, tiverem varidncias, cada
varidvel Z, ndo s6 tem varidncia (dupla da variancia de X;),
dada por uma parcela do somatério do segundo membro de
0:), como também tem momentos de qualquer ordem posi-
tiva y<<2 [A, IIl' de § 7 e VI de § 4]. Pois bem, passando em
6) ao limite, quando 712, e tendo em mente que y>0 implica
|2V £1 ou 4* conforme |x] <1 ou x| >1, facto este que
permite usar IlI; de § 4 de A, obtemos sem dificuldade b3 ).
Fica assim completada a demonstracio de VI.

As constantes f, sujeitas a condi¢do necessaria e sufi-
ciente de V podem enquadrar-se dum modo diferente do
exposto em VI. A este propdsito vamos estabelecer a propo-
si¢do seguinte:

VII) «Dados um ntmero positivo £ e as varidveis ca-
suais proprias independentes X, de Ill e verificada a condi-
¢do a) de V, a relagiio

) A desigualdade 4,) também pode ser estabelecida directamente
a partir de @) de III,
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a lim lim max 2 — T T ()=
) $40 e 1§k§;1f|r|<8ﬁ" 4f’+xz ddk(x) 0

¢é suficiente para que se tenha

b) —B%: ' 1<%_S_n f 1 + a, Jl (x)_—> O quando " T =
e a relagio

a lim limmin 2 d & (x)=0
) ﬁx[<38 @n‘*'x ()=

3o nteo 1=k=n

veda que se possa ter

') S — d & (%)>n>0, sejaqual for n.»
R 1+

2
@” 1=k=n

Demonstracdo de VII: Fixado P>>0, a condi¢do a) de V
permite usar @) de IIl. Fazendo

x?
18 T,= 2 — d &z N7
? 2o arm e e para

tem-se entdo 0< 7T, < P. Ora, dado 9>>0, sai

Tnézf — d & (%) +
]rl(?ﬁ p
I S d (%) =
186 ]m>m pn+x~ ‘
62 2 2

:ﬂaz@i . T 1+8')‘ﬁi % Jlxlésﬁn p'f;”*—xz LN

donde inferimos a relagio

niw 340 whew 1=k=n

14) 0LLlim max T,;4hmhmmax 2 d & (x
) ,ﬁx|<8ﬂ pz_l_z ’()

e outra relacdo analoga, seja 14'), com lim min no lugar de
lim max.
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Doutro lado, como 12) e 18) ddo S,~P=(2—1).7, e
ddo também f2. 7,<S,, podemos escrever a desigualdade

15) S,— P

T

- T,<Su, para u>np,

a qual mostra o seguinte: Se uma subsucessdo (infinita) dos
numeros » levar 7, para um limite, ela confere o mesmo
limite a S,/82. Esta conclusfio, juntamente com 14) e a), im-
pde &) e, juntamente com 14') e @), torna impossivel 4').

£

Primeiro teorema de convergéncia e coroldrios., Estamos
agora em condigbdes boas para estabelecer uma proposicéo, a
qual pode resolver o problema que nos propusemos tratar
neste paragrafo e ¢ devida principalmente a Grosuev e GnE-
LENKO, Ki-la:

VIII) «Dadas as variaveis casuais proprias independen-
tes X, (n=1,2,...), com as fun¢ées de distribuicio Z, (%),
podem encontrar-se constantes B,>0e S, que tornem as
parcelas das somas

(Z) X1/81L+X2/B1z+"'+X1;/Bn“sn

infinitesimais® e que tornem as leis dessas somas (fraca-

mente) convergentes para uma lei (de Levy) pripria, quando

¢ s0 quando ocorrem simultineamente as condi¢cdes seguintes:
1.* Fazendo

Fu(@=1—[¢ Fu(y—x+0)dF, (5)

e tomando um par qualquer de numeros positivos ¢ e P,
tem-se

o ® x?
b) 2 j ——— d Fi (%) 1, quando 7 1%co,

1=k=n J p 02+x2

() O caso das parcelas assintdticamente constantes, sem serem
necessariamente infinitesimais, serd tratado a propésito da proposicio X
e das formulas 18) a 19/),
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e as constantes positivas 3, (univocamente) determinadas
pelas igualdades

¢) P 5 d&/l.('L) P, com nxmnp,
ist=n ) p f‘
sdo tais que
d) Bui1/By—1, quando nteo, e
e) lim supf dE(x) 0.
ateo 1=k=n @

2.» Existe uma familia de leis de Lévy do mesmo tipo
tal que aquela das fun¢bes G (») das suas representacdes de
Levy e KaintcHine que da

5 G (+w) = P2

verifica a relacfo

&) lim 2 fﬁ"u Tx dFb. (x4 Ay =G (un),
o 1Sh=n ) _y {n—|—

esta com qualquer =0, finito ou infinito, e com alguma
sucessdo de grandezas A4, que se sujeitam, para todo o #
suficientemente grande e uniformemente em 1.2k, 4 desi-
gualdade

h) inf (CB,,Ek y DBnE/\')——'/If.‘éAkésup (CIBHE”" 1 D‘B,,EA) ﬁi_ 5}",

onde C e D significam dois numeros positivos arbitrarios,
c8.Er e pp, L) significam as esperancas matemadticas de X
truncadas em + B, e em £ Df,, respectivamente, e 7, e
or significam quaisquer numeros ndo-negativos que tornam

i) fim( 2 7/ F)=0=lim( 2 3/F).

1=i=mn' " nto 1h=<n

Satisfeitas as condi¢bes 1.* e 2.%, as constantes 5, podem
fazer as vezes das constantes B, e as constantes .S, admis-
siveis correspondentes — que vamos designar por o, — sd0 as
dadas pela férmula
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J) o= s [

o J _¥ 4R (x+A,‘.)]~a,,,
i=k=n| By, R B2 A
onde a, representa o termo geral duma sucessio (real) con-
vergente arbitrédria.

O limite da sucessfo a,, seja g, ¢ a funcio G(u) que
figura em f) e g) caracterizam a lei limite na representacdo
de Liévy e KHiNTCHINE.

Supondo asseguradas as relages b) a f), se ¢) tem
lugar para uma certa sucessido de constantes 4, sujeitas a
%) e a i), entdo g) ocorre para todas as sucessdes andlogas,
sempre com a mesma func¢io limite G (u).»

Demonstracdo de VII/I: Suponhamos primeiro que as
condigbes do enunciado se encontram satisfeitas. Entdo, V e
a observacgdo anexa mostram que a relagdo 6) implica que
as igualdades ¢) definem univocamente constantes positivas
f3, t oo, isso seja qual for P>0. Este facto e II', bem como IV
de § 6 e d) tornam possivel a existéncia de constantes B,>0
e S, tais que as somas de a) tenham o comportamento refe-
rido no enunciado e que 5, /8, — p = 0,00, com p determi-
nado univocamente por P. Logo, por causa de I, podem
existir constantes ¢, tais que as somas

16) Yvn::Xl/ﬁn"*‘XZ/@n'}'"'+X11/G11_'G11

fiquem com parcelas assintoticamente constantes e com leis
convergentes para uma lei limite propria. Em seguida, VI
de § 4 de B mostra que ¢) impde a infinitesimalidade das
varidveis Xi/(B,, com 1Lk<n, e VIII e I de § 4 de B mostram
que as grandezas A, /f,, definidas através de %) e i), saem
constantes assintoticas dessas variaveis. Aplicando agora 1
de § 8 —com Xu=X;/Bn e Au=A./B, e com as letras C,
D, v e ¢ em lugar de P, O, £ e, respectivamente — vemos
que as relagbes f) a i) do texto asseguram a existéncia de
constantes ¢, tais que as leis das somas Y, convergem para
certa lei propria, isso porque os somatorios de g) convergem
completamente para a fung¢io G (#) correspondente a essa
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lei, a qual funcfio é continua para w==0 (VII' de § 6) ®. Final-
mente, € impossivel ter-se 2 .G (+co0)=E= P, visto que, se tal
acontecesse, a proposi¢do II' permitiria escrever a relagio ¢)
do texto sob a forma

s x? - 2 1+ u?
%]R W d i (x)=2 p* -fR = dG (u), com p=~1,

sendo as grandezas B, as proprias grandezas {3,, e assim
chegdvamos a conclusdo absurda §,/f,— p, quando #1oo.

Acabamos de estabelecer que as relagbes 6) a i) sdo sufi-
cientes para for¢car as somas de a) a terem as propriedades
formuladas na tese.

Suponhamos agora que existem constantes 5,>0 e S,
que tornam infinitesimais as parcelas de a) e que tornam as
leis das somas de @) convergentes para uma lei limite propria.
Entdo, primeiro II' prova que, seja qual for P>0, as igual-
dades ¢) definem univocamente constantes positivas {3, tais
que B, [fn-—p 40,0, com p determinado por F, e depois
IV de § 6 prova que f,41/08,—1, a relacdo d), e que B, 1o,
o que arrasta a relagdo &), por causa de V e da observagio
anexa. Em seguida inferimos de I que as variaveis X, /f, sio
infinitesimais, de modo que se impde a relagio ¢), e conclui-
mos ainda de I que existem constantes o, que tornam as
somas Y, convergentes para uma varidvel propria, o que
implica as relagdes g) a 7), ndo podendo ser 2 .G (+eo)5= P
pelo mesmo motivo acima exposto.

Acabamos de mostrar que as relagbes ) a 7) sdo tam-
bém necessarias a tese de VIIL

A demonstragido aqui apresentada contém implicitamente
que, uma vez satisfeitas as condi¢des 1.* e 2.* do enunciadg,
as constantes {3, sdo constantes B, admissiveis, regularizadas
pela propriedade de formarem uma sucessdo estritamente
crescente (ver IV).

A parte do enunciado de VIII que falta considerar é uma

(*) Se a fungfo G for continua para #=0, a convergéncia completa
dos somatérios de g) decorre da nota & demonstragdo de Il de § 5 de A.
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transcrigéo, devidamente adaptada, da parte correspondente
do enunciado de I de § 3.

Chamamos a atengfio do leitor para o facto que as rela-
¢bes b) e d) podem ser omitidas sem prejuizo da condigio
necessaria e suficiente, mas que tal omissio pode conduzir a
tentativas vds para satisfazer as rela¢des restantes.

Observagdo : Podemos substituir a relagio ;) por

B Opm o 3 fmgmnxdFk(x)m[a,,—c(U)j,

ﬁn 1=<<k<n
onde U>0 é arbitrario (ver a observagéo a1 de § 3).
Vejamos agora um coroldrio de VIIL

VIII') «Caso as constantes B, (positivas) e .S, tornem
as parcelas das somas de @) de VIII infinitesimais e as leis
dessas somas (fracamente) convergentes para uma lei (de
Livy) propria de componente gausseana nula, quaisquer cons-
tantes (2 determinadas por ¢) de VIII (e também as grande-
zas B?) formam um infinitamente grande de ordem superior
4 do primeiro membro de 4) de VIIL»

Demonstragdo de VIII': Comecemos por notar que, sendo
G (#) a fungiio que representa uma certa lei limite das somas
de 16)® na forma de Lévy e Kumvrcuing, a formula 4) da, com
d>>0,
§(+9)~g(~2)=2-[G(+3)— G (3]

e, por passagem ao limite,
17 9(+0)—¢(—0) =2 [G(+0)~G(~0)] =0,

onde o derradeiro zero se justifica pelo facto que o anula-
mento da componente gausseana duma lei limite das somas
de a) de VIII implica o anulamento da componente gausseana

(* VIII prova que tal lei limite existe.
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de qualquer outra lei limite dessas somas, conforme pode
reconhecer-se através de I, I' e 8).

Doutro lado, se substituirmos as somas de a) de 1I pelas
de 16), entdo sail

2 2
lim Zfﬂ" Y d & (x)=Q(u), para qualquer # =0,

ntew k —0 ﬁi “‘}‘ x2

um resultado paralelo a 8), com f, no lugar de B, . Logo

2
lim z:f] Y A F(x)=¢(+3)—g(—3),

nhw Ik »l1=38, “i—{_‘xz
para qualquer ¢>0,

de modo que 17) dd a) de VII. Em seguida, 4) de VII (e a pro-
posicio I') prova a tese de VIII, isso se ¢*=1. Finalmente,
a observacio anexa a V permite abranger o caso ¢*=~1 e ter-
minar assim a nossa demonstragio.

Observagdo: Admitamos que as constantes B, (positi-
vas) e S, tornam as parcelas das somas de @) de VIII infini-
tesimais e as leis dessas somas convergentes para um limite
proprio. Entdo, VIII' prova que a componente gausseana da
lei limite ¢ necessariamente significativa quando a sucessido
natural comporta uma subsucessdo ao longo da qual saem
infinitamente grandes da mesma ordem as somas do primeiro
membro de &) de VIII e as constantes (32 determinadas por ¢)
de VIII (ou as grandezas B?).

Qutro coroldric de VIII é o seguinte:

VIII") «Se as variaveis casuais proprias X, de VIII tive-
rem variancias limitadas superiormente, se os integrais de
4%/ (1+%2) com respeito as funcdes &, (x) forem limitados infe-
riormente por um numero positivo e se existirem constantes
B,>0 e S, tais que as parcelas das somas de @) de VIII
resultem infinitesimais e as leis dessas somas tendam (fraca-
mente) para uma lei (de Livy) propria, entdo a lei limite tem
necessariamente componente gausseana significativa.»
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Demonstracdo de VIII": Posto que, sendo S< 4 o um
limite excedente das variancias das varidveis X, sai

3 f d g (%)L2nS
R

1=<i=m

e posto que, sendo />0 um limite deficiente dos integrais
de #°/(1+4%) com respeito as fungbes &, (x), sai

3 f l d g (%) 1,
R

1sk=<n 14 a2

as desigualdades a) e 6,) de VI, validas por causa de II' e
de V, implicam, supondo # suficientemente grande, que tem
lugar a relagio

7 s x?

2.5 Tisk=s )z 1447

d&i(%) [ (PB2)Le,

onde o somatério é o primeiro membro de 4) de VIII, com
¢*=1. Sendo assim, a observacdo posterior a VIII' demonstra
a nossa tese no caso ¢®=1. Finalmente, a observacio anexa
a V permite passar ao caso geral.

Observacdo: As duas primeiras condicoes de VIII" encon-
tram-se satisfeitas, em particular, quando as varidveis pré-
prias X, tiverem variancias e forem 7dénticamente distridbuidas.

Outros teoremas de convergéncia. Se as variaveis X, /f,
forem infinitesimais e se escolhermos constantes assintéticas
Ay [ bs de acordo com %) e i) de VIII, ¢ obvio que a relacdo
&) de VIII, uma adaptagio de d) de I de § 3 as variaveis pre-
sentemente em estudo, € equivalente ao conjunto das rela-
¢Oes di) a ds) de Il de § 8, também devidamente adaptadas.
Entdo, tendo em vista 12) de § 11 de A, VIl de § 6 e a parte
de II de § 3 que ¢ posterior a ds), podemos estabelecer a pro-
posi¢do que passamos a referir:
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IX) «Se conservarmos o enunciado do teorema VIII até
ao fim da condigdo 1.2, entdo a condigfio 2.2 correspondente
pode tomar a forma seguinte:

Existe uma familia de leis de Lévy do mesmo tipo tal que
aquelas das grandezas 6% M (u) e N (x) das suas representa-
¢oes de Livy que dao

122 ot 422 2

A0 2 ) 2
n | u dM(u)eru,LfF V) = £

verificam as igualdades

g1) lim 2 Fo(Bout+ A)=M(u), para —oo<<u<O0,

ntew I=h=n

&) lim 2 [1-F.(8,u+4 A)]=N(u), para 0<u< +co,

nto 1=hk=wn

e ainda as igualdades

o3) lim lim max [‘17 L2 j 2dF (x—|—A,;)J =
. VEFAEET R

2
&0 nto ﬁ” 1=h=<

=1lim lim min [—12— .3 /‘ x*dF, (x+z4/;)]=b?,
(31: 1 ] <28,

20 1t =h=mn

as ultimas para alguma sucessio de grandezas A4, que se
sujeitam a relagdes /%) e #) iguais as relagbes homologas
de VIIL

Satisfeitas as condi¢Bes 1.* e 2., as constantes {3, podem
fazer as vezes das constantes B, e as constantes .S, admis-
siveis correspondentes — que vamos designar por ¢, — sfo

as dadas pela formula

. 1 & N ,

J) o ew=—- 3 |4, +J xd (w4 A |—a. (U),
3, 1=i=n |x|<UB,

onde U pode ser qualquer numero positivo e onde a,(U)
representa o termo geral duma sucessdo (real) convergente
arbitraria.
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O limite da sucessdo a,(U), seja a(U), e as grandezas
b2, M(u) e N(u) que figuram em f) a g3) caracterizam a lei
limite sob a forma de L#vy modificada.

Supondo asseguradas as relagBes &) a f), se g1) a g3)
tém lugar para uma certa sucessdo de constantes 4, sujei-
tas a /) e a i), entdo &) a g3) ocorrem para todas as suces-
sOes analogas, ) sempre com a mesma fun¢do M (u) do texto,
&) sempre com a mesma funcio /V(u) e g3) sempre com a
mesma constante 4%»

Observacdo: A férmula ;) admite a versdo simplificada

7 = 2 [ v d Fi(x)—a, (U),

ﬁ'ﬂ 1=k=n | % I=U Bn
conforme se viu na observacio a Il de § 3.

Usando o facto que as fungdes &, (x), apresentadas a
propésito de 11, sdo insensiveis a translacbes das varidveis
X,, torna-se facil adaptar a correspondéncia entre d,) a ds)
dellde§3e b,)a bs) de I1lI de § 8 de modo a transformar IX
numa nova proposicdo de convergeéncia, a qual tem a vanta-
gem sobre as precedentes de abarcar quaisquer consiantes
assintoticas A | B, das varidveis Xi[|B,, quer estas sejam infi-
nitestmais quer ndo sejam. Eis a proposi¢do anunciada:

X) «Dadas as variaveis casuais préprias independentes
X, (n=1,2,...), com as fun¢des de distribui¢cdo /7, (x), podem
encontrar-se constantes B,>0 e S, que tornem as parcelas
das somas

[l) XI/BH_{_X?/B'N_I‘_""{—XL/BU'—SH—

assintoticamente constantes e que tornem as leis dessas
somas (fracamente) convergentes para uma lei (de LEvy)
propria, quando ¢ so quando ocorrem simultineamente as
condi¢Ses seguintes:

12 Fazendo

Fu(#) =1~ [ Fu(y—a+0)dF(y)
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e tomando um par qualquer de numeros positivos ¢* e P,
tem-se

b) b fw———dul(zmoo quando # ? co,
R 62+.’XJ

e as constantes positivas f, (univocamente) determinadas
pelas igualdades

Z Ve f @2 T d G (%)=P, com nXmnp,
sdo tais que
d) ﬁ”""l/ﬁn — 1, quando 7 1o,

e que existem constantes 4, que impdem a igualdade

2) lim supf o 4T () =o.

nteo 1=hSn

9.2, Existe uma familia de leis de Lévy do mesmo tipo
tal que aquelas das grandezas 6% M (1) e V(1) das suas repre-
sentagoes de Lévy que dédo

£ f"_ LNV I dN(u)——[:)—

o L2 R ﬂ
verificam as relagées ()

1) lim 2 F@,u+ A)=M(u), para —oolu<0,

nte 1=k=<wn

2e) lim 2 [1—F(fuut A)]=N(u), para 0<u+oo,

nwhw 1=h=n

( Atendendo a T, 4) e 2) de § 4, podemos afirmar que a relagio &)
é equivalente a

gl) lim 0 [1—F, (B, u+4d))=¢"", para —oo<u<0,

nioo 1=k=n
e que a relagio g&,) é equivalente a

o4 lim u  F(f.utA)=e™®, para O<u<+co.
8 P

ntew 1=Sh=n
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gl0 niw

[ Sz

=lim lim min <—Bl~z— p {f K dF (x4 Ai)—
n x| <e B,

&) lim lim max< i 2 {f 2 dF (x+ A)—
('n 1=<k=n lxl<s B”

elo ntw 1=h=n

. [f"”l<613,. st (erAk)]?D =&~

Satisfeitas as condi¢Ges 1.* e 2. as constantes B, podem
fazer as vezes das constantes B, e as constantes .S, admis-
siveis correspondentes — que vamos designar por ¢, — sfo as
dadas pela férmula

N R f wdF, (54 A) |~ an (U),
qE’n [ i-"fiUﬂ,. J

1=<<k=n

onde U >0 é arbitrario e onde a,(U) representa o termo
geral duma sucessio (real) convergente arbitraria.

O limite da sucessdo a,(U), seja a(U), & as grandezas
6% M(u) e NV (u) que figuram em f) a gs) caracterizam a lei
limite sob a forma de Lévy modificada.

Supondo asseguradas as relagdes 6) a g3), as grandezas
Ar/ B, saem constantes assintéticas (das variaveis casuais
Xi/f.) e as relagbes g) a g3) nfo ficam prejudicadas se
nelas substituirmos aquelas grandezas por quaisquer outras
constantes assintdticas com a mesma forma.»

Observacdo: Os enunciados de VIII, IX e X podem am-
pliar-se no estilo de I, Il e 1Il de § 3, respectivamente, acres-
centando a condigdo para que seja admissivel fazer g, =0.

oy
Complementos aos Gltimos teoremas de convergéncia, Aca-
bamos de adaptar os teoremas de § 8 e I de § 4 ao tipo de
convergéncia de varidveis casuais que estamos a estudar pre-
sentemente.
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Se quizermos adaptar I de § 5, a condi¢do necessdria e
suficiente competente toma o aspecto

2
18) lim lim max {—1; o2 [f xdF,;(xﬁ_A,\,)] } = 0.
ebo nfeo “n 1=k=n [-1'[<6ue

Se quizermos adaptar I' de § 5, pediremos na condi¢édo
2.2 de X uma lel limite de componente gausseana nula® e
pediremos mais que, representando por y{) um quantil da
ordem y de X, exista um par fixo de numeros y' e y", com
0<y'£7y'<1, tais que se verifica, para todo o # suficiente-
mente grande e uniformemente em 1.£L%<Ln, a desigualdade

19) M0 — e 2 A

onde # e #f sdo numeros ndo-negativos que satisfazem a
relacdo
197) lim [( 2 #)/Bu]=0=lim [( 3 =)/F].
nho | I<k<n nheo  1k=n

~ Abstemo-nos de adaptar Il de § 5, porque tal sé é pos-
sivel no caso duma lei limite de Gauss (observagdo anexa
a VIII" de § 6) e este caso serd estudado separadamente no
capitulo seguinte.

Oferece porém interesse ajustar o teorema de conver-
gencia de Gnepenko e Bawry. Fazendo-o, obtemos um teore-
ma de Gnepenko e GrosHev, o qual dispensa a resolucfio das
igualdades ¢) de X e pode enunciar-se como segue:

XI) «Dadas as varidveis casuais préprias independentes
X, (n=1,2,...), possuindo as funcdes de distribuicdo £, (x),
as variancias V, e as esperancas matemadticas £,, entdo é
possivel encontrar constantes 3,>0 e .S, tais que as varia-

() O argumento invocado a seguir a 17) mostra o seguinte: Se hou-
ver somas de ) de X com parcelas assintdticamente constantes e com
leis limite proprias, estas leis ou tém fodas componente gausseana nula
ou tém Zodas componente gausseana significativa,
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veis X,/ B, (=1,2,...,7) admitam as constantes assintoti-
cas £,/ B,, as leis das somas

LZ) Yn:XI/B7z+X2/Bn+'"+Xn/Bn—-S,,

sejam (fracamente) convergentes para uma lei (de Livy) pro-
pria com variancia e, além disso, as variancias e as esperan-
cas matemdticas das varidveis Y, tendam, respectivamente,
para a varidncia e a esperanca matemdtica da lei limite,
quando e s6 quando, tomando um numero positivo qualquer
QO e pondo

5) 7a=HV+ Vet + V) OFF,

ocorrem simultdneamente as condi¢bes seguintes:
1.2, Teém lugar as relages

¢) Yutoo € Yuy1/7a—1, quando #n1too,

e mais a relagio

2
d) lim sup Jf‘ h-—x—_,-dﬂ(x+Ek)=0-
R

nteo 1=k=n 724

2.2, Existe uma familia de leis de Livy, do mesmo tipo
e com variancias, tal que aquela das fung¢des C'(») das suas
representac¢des de KoLmogorov que da

¢) C(Fe0)=0

verifica a igualdade

£) 1im[}2. 3 f k. x?dFk(xJFE,,.)]:C(u),

nhw /” 1=k=n

para qualquer # == 0, finito ou infinito.

Satisfeitas as condigbes 1.% e 2.3, as constantes 7, podem
fazer as vezes das constantes B, e as constantes .S, admis-
siveis correspondentes — que vamos designar por ¢, —sdo as
dadas pela férmula
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g) G1z:(E1+EJ+"'“{‘En)/')’n‘“an,

onde «, representa o termo geral duma sucessédo (real) con-
vergente arbitraria,

O limite da sucessio «,, seja «, e a funcfo C(#) que
figura em ¢) e f) caracterizam a lei limite sob a forma de
Kormocorov.

Quando se pretende ndo sé que as variaveis X, tenham
as propriedades expostas, mas também que seja possivel
tomar ¢, =0, junta-se as relacbes ¢) a f) a exigéncia que as
frac¢des (£i+Ly+ -+ £,)/y. devem ter limite finito, quando

72400, »

Demonstragio de XI: Suponhamos que as relagdes ¢) a
J) se encontram satisfeitas. Entdo, d) impde que as varia-
veis X, /vy, fiquem com as constantes assintéticas £, /y, [VI de
§ 4 de B] e ¢) torna possivel a existéncia de constantes g, tais
que as leis das somas

Zn:Xl/771+X2/}’1z+ Tt “I"Xn/')/n_o-n

tendam para uma lei propria (IV de § 6). Se usarmos agora
IV de § 5 —com X, =Xi/y, — reconhecemos que as relagdes
¢) e f) asseguram a existéncia de constantes o, tais que as
leis das somas Z, convergem para uma lei propria e as
varidncias e as esperan¢as matemdticas dessas somas ten-
dem, respectivamente, para a varidncia e a esperan¢a mate-
matica da lei limite, sobrevindo as particularidades de que
a convergéncia completa do argumento do limite de f) é
uma consequéncia da continuidade da func¢do C'(x) em qual-
quer ponto u==0 (VII" de § 6)*, e de que a variancia C(+0)da
lei limite, em principio um numero positivo qualquer (ver I
e I'), aqui ndo pode ser diferente de Q, por ser o limite das
variancias das varidveis Z,, todas iguais a Q [1lI' de § 7 de A].

(" Se a fungio C for continua para u#=0, a convergéncia completa
do argumento do limite de f) decorre da nota & demonstragio de III de
§5 de A,
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Acabamos de estabelecer que as relagdes ¢) a f) sfo sufi-
cientes para forgar as somas de @) a terem as propriedades
formuladas na tese.

Suponhamos agora que se verificam as propriedades refe-
ridas. Entdo, representando por @ a variancia da lei limite
e, dado #, por %, a variancia da varidvel Y, , tem-se

Vu=(V1i+ Vet +V,) | Bi— V0,00, quando 71 oo,
de modo que &) impde a relacéo
20) 2 /B2—/Q, com P=0,00, quando # 1} oo

De 20) tiramos primeiro ¢), por causa de IV de § 6, e
depois® d) e f), por causade ViIde §4de BedelV de§s
desta parte, respectivamente, ndo podendo ser C{+o0)=£Q,
pelo mesmo motivo acima exposto.

A demonstracdo aqui feita contém implicitamente que
as constantes ¥, sdo constantes 5, admissiveis.

A parte do enunciado de XI que falta considerar ¢ uma
transcri¢io, devidamente adaptada, da parte correspondente
do enunciado de IV de § 5.

Uma proposi¢do um pouco mais geral do que XI é a
seguinte:

XII) «Se substituirmos depois de a) de XI a expressio
«as variancias das varidveis casuais Y, tendam para a varian-
cia da lei limite» por «as wvaridncias das varidveis Y, sejam
limitadas» e se conservarmos a parte restante do texto de
XI anterior & condicdo 1.2, esta fica intacta e a condigio 2.2
passa a tomar o aspecto seguinte:

(*} A proposigio I permite concluir que as variaveis X,/v,, de espe-
ranc¢as matematicas £,/y, e de varidncias 7, /42, ficam com as constantes
assintéticas E, /v, e que as leis dalguma sucessio de somas Z, tendem
para uma lei limite cuja esperanga matematica e variancia sfo, respecti-
vamente, a esperan¢a matematica da lei limite das somas Y, correspon-
dentes, multiplicada por +(Q/%)'?, e a variancia dessa lei limite, multipli-
cada por Q/9.
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Quaisquer duas subsucessdes fracamente convergentes
extraidas do argumento do limite de f) de XI tendem para
fungdes limite tais que nenhuma delas se reduz a mera cons-
tante e que a diferenca das duas sai igual a uma constante
(a qual nfo é necessariamente a mesma para todos os pares
de subsucessdes fracamente convergentes).

Satisfeitas as novas condi¢des 1.* e 2.2, o enunciado pode
continuar como em XI, com a diferen¢a que a fungdo C(u) é
a funcfio que se anula para u=—c e que dd uma constante
quando subtraida de qualquer dos limites tirados de f) de XI.
Em complemento, tem-se C(+o00)L0.»

Demonstracdo de XI/: A suficiéncia das condigdes 1.2 e
2. mostra-se pelo processo usado a propésito de XI, desde
que se tome em conta que as variancias das varidveis Z,,
todas iguais a @, sdo limitadas e desde que se invoque V de
§ 5 em lugar de IV de § 5.

Para provar a parte restante de XlI, procedemos como
segue: Caso se verifique a tese, as grandezas 9, definidas
no decurso da demonstragio de XI sdo limitadas, por hipétese,
e tem infimo positivo, por causa de II', IV, V e 4;) de VI,
Se a sucessfo de termos 9, admitisse sublimites diferentes
do seu limite maximo A(0<)<Ccc), a sucessio dos numeros
naturais # comportava uma subsucessio de termo genérico m
tal que ¥, —2% e V11— V<) (pois de contrdrio 9,—1).
Entfo, g1/ Pm—N3/2<1 e a propriedade B,,/B,1—1
(ver IV de § 6)implicava (Vi+-+ Vig+ Vi)V 144 Vi) —N)h,
um resultado manifestamente absurdo. Logo a sucessio de
termos 9, tem um limite ¥ =0, e a relagio 6) de XI con-
duz novamente a férmula 20) de modo que podemos retomar
o raciocinio feito a seguir a essa férmula, sob a reserva de
substituirmos a propriedade relativa a convergéncia das va-
riancias das somas Z, pela propriedade (mais frouxa) que
essas variancias saem limitadas e também sob a reserva de
invocarmos V de § 5 em lugar de IV de § 5. Finalmente, a

(* Ou, mais simplesmente, por causa de II' e da nota a pagina 100,
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desigualdade C(4c)£Q € uma consequéncia imediata de
Vi de § 5, ficando assim completada a demonstrag¢io de XII.

Fechamos o paragrafo, retomando as varidveis X, de VIII
e notando o seguinte: Caso se verifique 4) de VIII e caso as
constantes 5, determinadas por ¢) de VIII tornem as varia-
veis X;/B, infinitesimais, ¢ possivel encontrar constantes o,
que permitam extrair da sucessfio das leis das somas de 16)
uma subsucessio convergente para uma lei limite propria,
quando e s6 quando existem constantes A4, que se sujeitam
a /) e 1) de VIII e que sdo tais que, pondo

Gu()= 3 f T AR (x4 A,
1

si=n ) o 440

se cumprem as-condi¢des referidas na proposicio V de § 2,
com lim G;(400)>0 (a desigualdade >0 deve-se ao facto que

£ 40
a demonstragio de V de § 2 implica que as condi¢des men-
cionadas tornam as fun¢des G; completamente convergentes

para a fun¢fo G comum a todas as leis limite).

CAPITULO 1II

CASOS DE CONVERGENCIA PARA LEIS
PARTICULARES IMPORTANTES

§8) Convergéncia para uma lei imprépria

Todo o teorema de convergéncia de somas de varidveis
casuais considerado neste trabalho transforma-se em teore-
ma de convergéncia para uma lei imprépria, quando se pde
G(u)=0 ou M(u)=0=N(u) e 6*=0 ou C(u)=0, conforme
se representa a lei limite sob a forma de Livy e KuiNcTHINE
ou sob a forma de Lévy ou sob a forma de KovLnogorov [ver
exemplo 1.° de § 11 de A].
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Além disso, como é sempre possivel escolher a,— 0 ou
aw (U)—0 ou o,— 0 nos teoremas referidos, ndo se perde
em generalidade, limitando o estudo da convergéncia para
uma lei imprépria ao caso da lei dos grandes numeros [I de
§ 7 de B]. Procedendo assim, podem obter-se conclusdes que
constituem um exercicio de aplicacdio da doutrina apresen-
tada nos paragrafos precedentes, mas que estdo também con-
tidas nos resultados alcangados no ultimo capitulo da parte B.

Nio entramos aqui em pormenores do assunto que figura
em epigrafe, justificando esta atitude pelas razBes que aca-
bamos de expor e ainda pela circunstancia de que analisare-
mos, nos paragrafos seguintes, as condi¢des de convergéncia
para certas leis, como a de Gauss e outras, as quais com-
preendem as leis improprias como casos particulares.

§ 9) Convergéncia para uma lei de Gauss

Caso geral, Teorema de Raikov e GNepenko, Vimos ante-
riormente, no exemplo 2.° de § 11 de A, que as representa-
cdes de Livy e Kumnrcnvg, de Lévy modificada e de Koryo-
corov duma lei de Gauss com esperan¢a matemdtica £ e com
variancia V" sdo caracterizadas como segue: A primeira por
a=FE, G(u)=0 para u<£0 e G(u)=V para u>0; a segunda por
a(Uy=FE, 6*=V, M(u)=0 e N(u)=0; a altima por a=£,
C(1)=0 para u£0 e C(u)=V para u>0. Por ai se v& que
existe uma correspondéncia biunivoca entre as leis de Gauss
possiveis e os pares de grandezas reais £ e "> 0.

Posto isso, consideremos, como usualmente, sucessfes
duplas de varidveis casuais X,;, com 1LbhLk, € ky—>oo,
quando #1eo. Entflo, o que precede, 11l de § 4 e 11 de § 5,
juntamente com I e II de § 5 de B, permitem estabelecer a
proposi¢iio seguinte, a que podemos chamar feorema principal
relativo a convergéncia para uma lei de Gavss:

I) «Para que as varidveis casuais X, independentes
por linhas e tendo as fung¢Bes de distribuigdo F.(x), sejam
(fortemente) assintoticamente constantes €, simultaneamente,
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possam determinar-se constantes .S, que tornem as leis das
somas

(l) X71:Xz1+X1;2+'“+Xm.-n‘—5n

(fracamente) convergentes para uma lei de Gauss, quando
nt oo, & condi¢do necessdria e suficiente que existam uma cons-
tante néo-negativa 6* e uma sucessio (dupla) de constantes
A tais que se verifica a relagiio ®

b)) lim 2 / dFur (x+ A,:)=0, para qualquer #>0,

nte 1=k<k, Jow| >

juntamente com a relagfio (**)

6,) lim 3 { ] 8P dF g (%4 Au)—

nto 1=k=k, x| <e

Py 2
— [J/ xdF, (x+ Ank)] } = &% para algum :>0.
fr]<e .

Caso as relagbes 4,) e 6,) se encontrem satisfeitas, o
conjunto das constantes S, admissiveis ¢ dado pela férmula

C) . Sn = 2 [Ank +

1=kl

xdE,k (x+ Ank)] — (U) )

le|=U

onde />0 ¢é arbitririo e onde a, (U) é o termo geral duma
sucessio (real) convergente arbitraria.

O limite da sucessdo @,(U) escolhida e a constante &2
sdo, respectivamente, a esperan¢a matematica e a variancia
da lei limite,

() Atendendo a I, 4) e 2) de § 4, podemos afirmar que b,) é equi-
valente ao conjunto das duas relacdes

6 ) m n [1-F,(u+4,))=1, para —co<<u<f), e

nfo 1=Si=lk,

o) im 1w F,(u+A4,)=1, para O<u<tco.

nto 1=k=k,

() A relagdo b,) permite concluir facilmente que o limite &* de b,)
¢ 0 mesmo, quando se integra quer no intervalo | %] <<t quer em |x|<e.
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Quando se pretende nfio s6 que as variaveis X, tenham
as propriedades expostas, mas também que seja possivel
tomar .5, =0, a condi¢cfo necessdria e suficiente supracitada
vem acrescida da imposicio que, uma vez escolhida a gran-
deza U, os somatérios do segundo membro de ¢) tenham
limite finito, quando 71 .

Finalmente, se as rela¢bes &) e 4;) ocorrem para um certo
¢>0 e para uma certa sucessio de constantes assintdticas
(fortes) 4., as mesmas relagdes tém lugar para todo o ¢>0
e para toda a sucessdo de tais constantes.»

Observagdo: A proposi¢io I pode aplicar-se a qualquer
subsucessdo (infinita) das variaveis X,, que resulte de supri-
mir valores possiveis do indice #» e de conservar o campo de
variacdo de £ para os valores de # nfio suprimidos,.

Tendo em mente a observa¢do que acabamos de fazer,
tiramos de I o coroldrio seguinte:

I}y «Para que a sucessfo das somas de @) de I se reparta
por subsucessées de parcelas (fortemente) assintoticamente
constantes e de leis (fracamente) convergentes para leis de
Gauss, ¢ condicdo necessdria e suficiente que exista uma suces-
sdo (dupla) de constantes A,; tais que se verifica a relacio
b1) de I e que algum ¢>>0 permite repartir a sucesso dos
somatorios de 4;) de I por subsucessdes convergentes.»

Vamos agora estabelecer outro fteorema de convergéncia
para uma lei de Gauss.

e o T
il) «Quando e s6 quando as constantes 4,; de I forem

tais que se verifica a igualdade

2
a) lim 3 [ﬁ - xdF,; (x+Aizk>:]z0, para algum >0,

ntw 1=Sk=k,

entdo a condi¢do necessdria e suficiente do teorema princi-
pal I n&o s6 fica com a parte §;) inalterada e com a parte bg)
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privada da parcela subtractiva do somatério, como também
sai equivalente ao conjunto das duas relacées

2

bi) lim 2 X ar, (- Api)=0,
niw 1=5h=<hk, 12> 1+x2

para qualquer # >0, e

5) lim 2 [ Rt A~ 5,

ntew 1=k ) |v)<e 14 a2

para algum >0 (e, portanto, para qualquer «>0).

Desde que as relagdes a), b1) e b.) se encontrem satisfei-
tas, a constante &6® resulta igual a variancia (comum) das
diversas leis limite e as constantes .S, admissiveis podem
definir-se por qualquer férmula competente.»

Demonstracio de II: Quando se verifica a igualdade a)
€ s6 neste caso, entdo, fixada a constante % ha equivaléncia
entre o conjunto das relagdes 6,) e 4,) de 1 e o conjunto
formado pela mesma relagdo 4,) e pela relacio ;) simplifi-
cada referida no enunciado do nosso teorema.®

Ora, o conjunto das relagdes 4,) inalterada e 4,) simplifi-
cada forma uma condigfio necessaria e suficiente para que se
apresente a situacdo seguinte®): As variaveis X,;— A,z sdo
(fortemente) infinitesimais e as suas constantes assintéticas
nulas verificam as condi¢des d;) a ds) de 1l de § 3, com as
tunc¢des M (u) e N (u) ambas identicamente nulas e com a
constante 6* acima mencionada. Pois bem, vimos, na pagi-
na 42 (§ 5), que tal situagio ¢ equivalente a supor que as
varidveis X, — A, sdo (fortemente) infinitesimais e que as
suas constantes assintdticas nulas verificam a condigdo d)
de I de § 8, com G (#)=0 ou 42 conforme %20 ou u>0, coisa

() Tenha-se em conta que b,) implica que a relacio 3,) simplificada
ou vale para qualquer ¢ ou ndo vale para : nenhum.
() Atenda-se & nota anterior ¢ também a nota 2 demonstragdo de I1

de § 5.
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esta que € por sua vez equivalente a admitir o conjunto das
relagBes &) e 04) [ver 8) de § 5 de B], a primeira das quais
torna a outra extensiva a qualquer £ >0,

O que precede prova a parte principal de II. Quanto a
parte restante, consideramo-la imediata.

Observacdo: Dada uma sucessfio de constantes assin-
toticas A}, das varidveis X,;, eventualmente nio sujeita a
igualdade @) de Il, pode sempre obter-se outra sucessiio de
constantes assintéticas 4,. que permita usar a condi¢do
necessaria e suficiente de II, procedendo de acordo com &)
e ¢) de [ ou Il de § 3, isto ¢, escolhendo um par de numeros
positivos P e O P e impondo, para # suficientemente
grande e uniformemente em 4, a relagio

inf [f x dF (x4 Al), xdl (x+f4?5k)] -
=P vl =0
— ;C-.nk é Ank - A;k’k é

ésup[ fl | wlulet i) f ‘ xdF,,k(ijA;’zk)]H,ik,
)= r{=qg .

onde &,; e &, significam numeros ndo-negativos tais que

lim 2 £,=0=lim 2 ¢,.®
nto 1=5h=k, whto 1=k=ky

Posto isso, vejamos uma proposicio interessante que
refere sensivelmente a generaliza¢io que Guepenko deu a
um teorema de Raikov.

[II) «Dadas as variaveis casuais X,;, independentes por
linhas e assintoticamente constantes, e escolhidas constantes
assintoticas A, dessas varidveis de acordo com «) de II,

( VIII e I de §4 de B mostram que as grandezas 4, —4% aqui con-
sideradas nfo podem deixar de ser constantes assintoticas das variaveis
infinitesimais X, — 4%.
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podem determinar-se constantes .S, que tornem as leis das
somas

d) Xn = Ll + Xn‘.’. + sk Xﬂkn - S”

(fracamente) convergentes para uma lei de Gauss de varian-
cia 8%, quando e s quando as leis das somas

6) Wﬁ = (an - Anl)a"“ (AXv‘nZ - A712)2+ e + (Xnkn - Anl;,, )q

tendem para a lei (imprépria) da varidvel casual cujo unico
valor possivel é 4%»

Demonstracdo de I11: Facamos X5 =X —Au € Fi (%)=
=Fu(x+ Au) e designemos por A% (x) a fungdo de distribui-
¢do da varidvel casual ndo-negativa X,%* Sai, com u>0,

fx>“2 i (%) :fl e u A% (%)
e, com ¢>>0,

[omrcs $dHAR@=[,_, . xd[F5xE)~Ff(—x40)] =
=fozoce #AEL@—Fi(—a+0)] = [\, #*dFa(5)+
tfomee A= Fi(—a10)] =, _, adF(x),®
donde concluimos que a infinitesimalidade das varidveis
Xk implica a das varidveis X%® [ver 1) de § 4 de B] e que a

primeira versio da condi¢do necessaria e suficiente de II &
equivalente ao conjunto das duas relacbes seguintes:

1) lim 2 f dH (%) =0,
w >t

ntw 1=5h=k,

valida para qualquer #2>0, e mais

() Para compreensio melhor da ultima igualdade recorde-se que
1-F¥(—x+0) é a fungdo de distribuicfo da varidvel — X%,
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2) lim 2 f0§1'< X dH i (x) = 0%,

niw ITk=ky H
védlida para algum ¢>0.®
Ora, sendo ¢ um numero tal que 0<{90< ¢ tem-se

z/ &2 dH S (6) 20 - 2 x dH 5 (%) +
0=Sr<e?

k EJ 0=x=<}

+€2.zf dH A (%)
¥>§

k

Logo, na hipotese de valerem 1) e 2), podemos afirmar o
seguinte: Escolhidos #>0 e d<(n/(4 6%) e sendo # suficiente-
mente grande, sal o penultimo somatério limitado por 2 529
e sai o dltimo somatorio limitado por =/(2¢*). Portanto, 1)
e 2) impbem

~

3) lim 3 { ] w? dEL (%) —

ntw 1=k=ky 0=wx <&
2
— [f xdH. (x)] } =0, para algum >0,
0= w<e?

O par de relagbes 1) e 8) € o par 4,) e by) de I, aplicado as
varidveis X%? e 4s suas constantes assintoticas nulas, isso no
caso particular $2=0. Entdo, se escolhermos U=:? em ¢) de I,
a relacdo 2) e a nota respectiva permitem tomar .S,=0,
donde g, (s?)— 4% Concluimos que as leis das somas 7} con-
vergem para a lei (imprépria) da varidvel cujo tunico valor
possivel é &2

Inversamente, se as somas 2, de parcelas infinitesi-
mais, tiverem o comportamento referido no enunciado, tira-
mos de I que a sua convergéncia implica a relagdo 1) e que

() A relagio 1) prova que o limite 5? de 2) é o mesmo, quando se
integra quer no intervalo 0<{x << quer em 0w <.
(=) Se b2=0, faca-se S<<n/2 e limite-se o pennltimo somatério por 1.
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as hipéteses S, =0 e @, (U)—? implicam 2), ficando assim
completada a demonstracido de III.

Caso particular das variaveis casuais X,z =X/ B,. Um teo-
rema de Zaremsa, O estudo que acabamos de fazer adapta-se
facilmente a varidveis casuais X=X/ B,, com 1 LkLu e
B,>0, usando, para o efeito, as correspondéncias apresenta-
das em B, § 8, texto antes de I e observacio depois de III.
Procedendo do modo indicado, o teorema principal relativo a
convergéncia para uma lei de Gauss toma o aspecto seguinte:

IV) «E dado o par constituido pela sucessdo de numeros
positivos B, e pela sucessdo de varidveis casuais indepen-
dentes X, de fungdes de distribui¢fo £, (x). Para que as
varidveis Xi/B,, com 1Lk <Ln, sejam (fortemente) assinto-
ticamente constantes e, simultdneamente, possam determi-
nar-se constantes .S, que tornem as leis das somas

61) X_l/Bn’:"X‘z/Bn“l’“"’+Xn/Bn‘_‘Sn

(fracamente) convergentes para uma lei de Gauss, quando
ntoo, € condigdo necessdrvia e suficiente que existam uma cons-
tante ndo-negativa 4* e uma sucessfio (dupla) de constantes
A | B, tais que se verifica a relacdo®

b)) lim 2 f’ . dl(x+ Ay = 0, para qualquer #>0,
¥|>ubB,

ntoo 1=5h<n

() Atendendo a I, 4) e 2) de § 4, podemos afirmar que b,) é equiva-
lente ao conjunto das duas relagdes

b)) lim 1 [1-F,(B,u+4,))=1, para —co<u<<, e

nteo 1=Sk=tn

o) lim 1 F(B,u+d)=1, para O<<p<-}co,

ntw 1=<k=n
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juntamente com a relagdo®

1
b; 1i _— 2 —
) anrg < 2 1§k§n{ﬁx{<e}3n & dFy(w+ )

n

_ [f‘ ., wh (x+Ak>]‘}>= B, para algum £,

Caso as relagdes 0,) e ;) se encontrem satisfeitas, o
conjunto das constantes S, admissiveis é dado pela férmula
1

c) S,= 2 [Ak+ xdF, <x+‘4’”‘>j’ —a,(U),
¥ |=UB,

u 1=k=n
onde U>0 ¢ arbitrario e onde a,(U) € o termo geral duma
sucessio (real) convergente arbitréria.

O limite da sucessfo a,(U) escolhida e a constante &°
sfo, respectivamente, a esperan¢a matemadtica e a variancia
da lei limite.

Quando se pretende ndo sé que as varidveis X,./B,
tenham as propriedades expostas, mas também que seja
possivel tomar .S,==0, a condi¢cdo necessidria e suficiente
supracitada vem acrescida da imposi¢cdo que, uma vez esco-
lhida a grandeza U, os somatorios do segundo membro de ¢)
tenham limite finito, quando 71 c.

Finalmente, se as relagdes 41) e b:) ocorrem para um
certo ¢>0 e para uma certa sucessio de constantes assinto-
ticas (fortes) Ai/ B., as mesmas relagSes tém lugar para todo
0 ¢>0 e para toda a sucessdo de tais constantes.»

Qbservagde: Sendo p um niumero ndo-negativo, a relagéo

4) llm ! . 2 p dF = 0
nhoo [Bﬁ 1§k§nﬁxl>“B" Eq "(x"{‘Ak):I— ?

parai qualquer % >0,

() Aqui pode aplicar-se a segunda nota 4 pagina 120, desde que se
mude ¢ em ¢ B,.
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implica 4,) de IV, pois |x|>u B, da (|x|/B,)?>ut. Con-
cluimos que 4) e b,) de IV constituem uma condi¢io sufi-
ciente para que as varidveis X,/AB, admitam as constantes
assintoticas (fortes) 4./B, e, simultaneamente, possam de-
terminar-se constantes S, que tornem as leis das somas de
a) de IV convergentes para uma lei de Gauss de variancia 62

Seguindo a mesma ordem de ideias que nos conduziu
de I a IV, podemos passar de II para a proposi¢io

V) «Quando e s6 quando as constantes A4/ B, de IV
forem tais que se verifica a igualdade

1 2
lim| L . 3 xdF(x+4)] 1 =0
@) M;{ 5 Sg[ f L ;)] [=o,

para algum ¢>0,

entio a condicdo necessaria e suficiente de IV nfio s6 fica
com a parte 0,) inalterada ¢ com a parte d;) privada da par-
cela subtractiva do somatério, como também sai equivalente
ao conjunto das duas rela¢bes

5)  lim 2 f Y dF.(x+ A =0,
| %] >nB,

ntow 1=k=n B a*

para qualquer #>0, e

L) lim 3 f — Y AR (xt A =5,
o<z By :

nho 1<k=<n e+ x

para algum ¢>0 (e, portanto, para qualquer ¢ >0).
Depois o enunciado fecha com as mesmas palavras da
parte final da proposi¢do 11.»

Observacdo: Dada uma sucessio de constantes assinto-
ticas A4f /B, das variaveis X/ B, , eventualmente nfo sujeita
a4 igualdade a) de V, pode sempre obter-se outra sucessio de
constantes assintéticas A,/ B, que permita aplicar a condi-
¢Ao necessaria e suficiente de V, adaptando o processo usado
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na observacio anexa a 11, isto ¢, escolhendo um par de nime-
ros positivos P e ONP e impondo, para # suficientemente
grande e uniformemente em kZ#, a relagio

inf[ [, Zpp, #AF (ALY, [ o #dF(a+AL) | =

2sup[ [, _py, ¥AF(x b AY), [ o #dF(a+AD] 8,

onde & e % significam numeros nio-negativos tais que

Hm[( 2 8)/B)=0=Um[( 3 @)/B:].
nteo

niw 1=k=n 1=<k=n

A adaptacio de I' e a de Il as variaveis X;/B, envolvem
modificacbes tdo ligeiras que ndo vale a pena referi-las.

Posto isso, vejamos uma aplicagio da doutrina exposta.

No texto da proposi¢do IV suprima-se a alusdo a constan-
cia assintética (forte), iguale-se 6? 2 unidade, ponha-se 4,=0,
substitua-se a relag¢do 4,) pela relagio 4) da observac¢éo anexa,
tome-se » inteiro, peca-se a relagdio bg) para qualquer ¢>0 e
substitua-se nela |x| < ¢ B, por |x| LB, (ver a nota a 6;) de
V), faga-se U=1 e, por fim, escolha-se a,(U)=0. Introdu-
zindo todas estas particulariza¢des em IV, obtemos a parte
principal do primeiro teorema de Zaremsa, publicado em Ma-
thematische Zeitschrift, 69. Band, 3. Heft, Maio 1958, pdginas
295-297, parte essa que pode enunciar-se como segue:

VI) «E dado o par constituido pela sucessdo de nume-
ros positivos B, e pela sucessdo de varidveis casuais inde-
pendentes X, de fun¢des de distribuicdo /, (x). Afim de que
as leis das somas

1 .
2o x— vdF,
B, lé"'é”[ ] ./MléBn Y ,(x)]

tendam (fracamente) para a lei de Gauss de esperan¢a mate-
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matica nula e de variancia igual a 1, quando # 1o, é condi-
cdo suficiente que exista um numero inteiro e nio-negativo
p tal que se verificam simultdneamente as rela¢des seguintes,
validas com qualquer »>0:

. 1 \
lim —r 2 f
nteo Bn 1=kz=n [#|>uB,

1 2
R 2 x9dF_(x>~[f x(l]F‘ A;‘):l 1-——)1’
B?; 1h=n {,/‘l.ﬂgusﬂ I | J | x|=uB, : ( I

quando #{eo.»

|t dF, (x):l e

Transformacédo de sucessdes simples em sucessdes duplas
convergentes para uma lei de Gauss, Passamos a considerar o
problema tratade em § 7 no caso particular de se procurarem
leis limite de Gauss proprias.

Antes de mais nada, basta invocar I e I' de § 7, recordar
que toda a lei limite de somas de varidveis casuais indepen-
dentes é definida a menos duma constante de translagdo arbi-
traria @ (U), a qual é a esperanca matemaética no caso da lei
de Gauss, e ter em conta que, multiplicando uma varidvel
casual com variancia por uma constante, a variavel resul-
tante fica com variancia igual ao produto da variancia da
primeira pelo quadrado da constante, basta isso para con-
cluirmos pela proposicido seguinte:

VII) «Suponhamos que sdo dadas as varidveis casuais
independentes Xi, Xz,...,X,,... € que existem constantes
B,>0 e S, tais que as somas

(1) }/n:XI/BM+X2/Bn+"'+Xn/Bn’—Sn

ficam com parcelas assintoticamente constantes e com leis
(fracamente) convergentes para uma lei de Gauss propria.

Entdo, as leis limite préprias que podem obter-se, fazendo
variar as constantes 5,>0e S, de @), sdo todas as leis de G avss
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proprias e s essas e a cada uma delas correspondem somas
Y, que saem de parcelas assintoticamente constantes. Além
disso, duas leis limite das referidas tém variancias de razfo
#?, quando e s6 quando a razio das constantes B, correspon-
dentes tende para 1/|p|, quando 71 o

Posto isso, vamos adaptar X de § 7 ao nosso caso. Sai a
proposicéo seguinte:

VIII) «Dadas as varidveis casuais proprias independen-
tes X, (n=1,2,...) de func¢des de distribuigéo £, (), podem
encontrar-se constantes B,>0 e S, que tornem as parcelas
das somas

(Z) XL/BH"I"XZ/BU”{"""*“X:t/Bn""Sn

(fortemente) assintoticamente constantes € que tornem as
leis dessas somas (fracamente) convergentes para uma lei de
Gavuss pripria, quando e sé quando ocorrem simultaneamente
as condi¢bes seguintes:

1.2, Fazendo
& () =1 —fR £ (y—x+0)dlF, (y)

e tomando um par qualquer de numeros positivos ¢* e b,
tem-se

1)) > j - v d (x) 4 co, quando 74 } oo,
(3 1

e as constantes positivas $, (univocamente) determinadas

pelas igualdades

a*
¢) 2 f i d Fi(x)=20% para nXiae,

d) 6;17‘-1 / ﬁn — 1, quando 714 oo,
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e que existem constantes 4, que impdem a relacfio®

e) lim 2 f - dF(x+.A4)=0, paratodo o u>0.
[ei>uf,

2.2 Existe um numero ¢>0 tal que a constante 4* de ¢)
e as grandezas 4, de ¢) verificam a relagio

f) lim <‘1— P {j‘ 2 dF (v + A)—

2
#oo ﬁn 1Sh=n 2] <sB,

_U xdE;(xA—A/..)jl;}):b?.
v <eB,

Satisfeitas as condices 1.2 e 2.%, as constantes {2, podem
fazer as vezes das constantes B, e as constantes S, admis-
siveis correspondentes — que vamos representar por g, — sio
dadas pela formula

S L [141;-}”/‘ ﬁxdE,(erA,,.)jlwa,,(U),
|x1==UB,

@n 1<k=n

onde U>0 & arbitrario e onde a,(U) é o termo geral duma
sucessdo (real) convergente arbitréaria,

Depois o enunciado pode concluir-se como em 1V, desde
que se leia f,, ¢), f) e g) em lugar de B,, b,), &) e ¢),
respectivamente.»

Demonstracio de VIII: Para provar a suficiéncia das
condi¢bes do enunciado podemos reproduzir a parte corres-
pondente da demonstragio de VIII de § 7 até a férmula 16)
incluida e invocar em seguida a proposi¢io IV ¢+, Para provar
a necessidade das condi¢Ges do enunciado podemos também
acompanhar a parte correspondente da demonstracéo de VIII
de § 7 até inferirmos a relagdo 4) e invocar depois as propo-

() Podemos por uma variante a ¢) decalcada da nota a b,) de IV.

(2 Aqui pode aplicar-se a nota a 4,) de 1V, com 8, em lugar de B,.

(*+) A escolha do segundo membro das igualdades ¢) forca a varian-
cia G (+oc0) da lei limite a ser igual a 82
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,

sicges VII e IV. Feito isso tudo, as constantes 3, de ¢) podem
substituir as constantes 5, de 1V, pelo que nfo ha dificul-
dade em concluir a demonstragio de VIIL

A proposicdo VIII pode substituir, talvez com vantagem,
o teorema de BernsteiN e Ferier, o qual nos abstemos de
apresentar aqui. Um resultado complementar de VIII sera
dado em XIV.

Observacio: Quando as constantes assintoticas A /L,
das variaveis X, /{3, de VIII forem tais que se verifica a igual-
dade @) de V, com 5, em lugar de 5,, e s6 neste caso, as
relagtes ¢) e f) de VIII podem simplificar-se no sentido des-
crito em V. Caso as constantes assintéticas A, /f, nio este-
jam na situacfio que acabamos de referir, esta pode alcan-
car-se pelo processo exposto na observagdo anexa a V.

Fechamos este sector de § 9, retomando as varidveis X,
de VIII e notando que a observacio a I implica o seguinte:
Caso se verifique 4) de VIII, entdo existe uma subsucessdo
(infinita) G,., extraida da sucessdo das constantes B, deter-
minadas por ¢) de VIII, que satisfaz a ¢) e a f) de VIII, quando
e s0 quando é possivel determinar constantes o, tais que as
somas

Xl/ﬁm “;‘ X2/ﬁuz + o ‘{* Xm/ﬁm - Gy

ficam com parcelas (fortemente) assintoticamente constantes
e com leis convergentes para uma lei de Gauss de varidncia
b*>0.

Caso particular das varidveis casuais X.: com varidncias.
Outro teorema de Raikov e corolario. Retomemos as variaveis
X, de 1 e suponhamos que elas sfo integrdaveis e que admi-
tem as suas esperangas matematicas £, como constantes
assintoticas. Entdo, podemos fazer A4,,=FE,; e aplicar o teo-
rema principal de convergéncia para uma lei de Gauss ou,
caso as esperancas matematicas o consintam, o teorema de
convergéncia 11
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Indo agora mais longe nas hipéteses, passamos a supor
que as varidveis X, tém variancias. Nesta conformidade
vale a proposi¢do seguinte:

IX) «Para que as variaveis casuais X,;, independentes
por linhas, tendo as fung¢bes de distribuigfo F,; (x) e dotadas
de variancias V,;, admitam as suas esperancas matematicas
E,r como constantes assintcticas (fortes) e para que seja
possivel determinar constantes .S, tais que as leis das somas

(l) Xn 3)(1:1'}“&12“""“")(;;1:"‘“5”

tendam (fracamente) para uma lei de Gauss, quando #+t oo, e,
além disso, as variancias e as esperancas matemdticas das
varidveis X, tendam, respectivamente, para a variancia e a
esperanca matematica da lei limite, é condicdo mecessdria e
suficiente que se verifiquem simultdneamente as duas rela-
¢bes seguintes:

b1) lim 2 f 2 dF (x4 Eup)=0,
el >u

nto 1=k,

para qualquer #>0, e mais, sendo 42 uma constante nio-
~-negativa, '

b2) lim 2 f AP (x4 E)=82,
v <s

nho 1=k=k,

para algum >0 (e, portanto, para gualquer :>0).
Caso as relagbes &4;) e b;) se encontrem satisfeitas, o
conjunto das constantes .S, admissiveis é dado pela fé6rmula

C) Sn = E111+En2+"'+En/z,,_"an;

onde «, representa o termo geral duma sucessio (real) con-
vergente arbitraria.

O limite da sucessfo «, escolhida e a constante &2 sdo,
respectivamente, a esperanca matematica e a variancia da
lei limite.
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Quando se pretende nio s6 que as variaveis X, tenham
as propriedades expostas, mas também que seja possivel
tomar S, =0, a condi¢io necessaria e suficiente supracitada
vem acrescida da imposi¢cdo que as somas £, & Koo+
-+ E,: devem ter limite finito, quando 71 co.»

Demonstragdo de IX: Como b) implica a relagdo

Hm 2 f dF (x+ Ey) =0, para qualquer # > 0,
nteo 1=h=k, o [2]>u
ou seja a infinitesimalidade (forte) dos desvios Xow—FEy a
proposicdo IX reduz-se ao caso particular do teorema de
GnepExko e Bawey (IV de § 5) em que a funcdo C(u) vale 0
ou 4% conforme #-0 ou %>0.

Uma proposicdo um pouco mais geral do que IX €é a
seguinte:

X) «Para que as varidveis casuais Xz, sujeitas as res-
trigées de IX e a restricdo adicional

Vi + Vs oo Vir, < W<+ w, seja qual for #,

admitam as suas esperancas matemdaticas £,; como constan-
tes assintoticas (fortes) e para que seja possivel determinar
constantes .5, tais que as leis das somas X, de IX tendam
(fracamente) para uma lei de Gauss, quando 7}, e, além
disso, as esperancas matematicas dessas somas tendam para
a esperan¢a matematica da lei limite, é condicdo necessdria e
suficiente que se verifiquem simultineamente as duas rela-
¢Oes seguintes:

”

A lim 2 I xzd];‘nk (x+E1l/e>:Og

i e I=kmh, J a<|r|<o
para qualquer par de ntmeros positivos « e v>wu, e mais,
sendo 4* uma constante nio-negativa,

-~

bs) lim 3 j X dF e (54 Epy) = 62,
HES

nho 1=h=ly,

para algum :>0 (e, portanto, para qualquer ¢>0),
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Depois o enunciado fecha com as mesmas palavras da
parte final de IX.»

Demonstracdo de X: Podemos supor /7 >1. Se tomarmos
#>1 e r>1/2 de modo que W >u, resulta a desigualdade

z f ank (x+E11k> é 2 f a? dExk (x’al‘En/c) +
x| >u w x| < HWh

k k
1
W 2h

._f_ 2/ x2dE,k <x+E11k)y
B iz

onde o ultimo somatério nio pode exceder W, por causa da
restri¢do adicional do enunciado. Entdo, dado #>0, basta
sujeitar 2 e W a relagido W'-2" < 1/2, para que a formula 4, )
permita estabelecer a desigualdade

5) 24 dFﬂk (x'xl_Enk)(\Ti;

ISh=h, o (2| >u

valida para todo o # suficientemente grande. Como a mesma
férmula 6,) permite estender 5) a qualquer >0, isto ¢,
permite estabelecer a infinitesimalidade (forte) dos desvios
Xy — L, a proposicdo X reduz-se ao caso particular de V
de § 5 em que a fungfio C'(u), representativa da classe dos
limites, vale 0 ou 42, conforme %<0 ou #>>0.

Observacdo:  As proposicoes IX e X podem aplicar-se a
qualquer subsucesso (infinita) das varidveis X, que resulte
de suprimir valores possiveis do indice » e de conservar o
campo de varia¢io de 2 para os valores de » ndo suprimidos.

Tendo em mente a observacio que acabamos de fazer e
notando que a restricfio adicional de X limita superiormente
os somatorios da relagfio b;) competente, podemos estabele-
cer o coroldrio seguinte:

X" «As variaveis casuais X,; de X satisfazem 2 relacio
b1) competente, quando e sé6 quando existem constantes .S,
tais que a sucessio das somas de a) de IX se reparte por



[l

LIMITES DE SOMAS DE VARIAVEIS CASUAIS INDEPENDENTES 137

subsucessdes, cada uma das quais tem o comportamento
atribuido em X a sucessfio completa.»

Vejamos agora uma aplicacio do teorema III, a qual
refere sensivelmente um resultado devido a Raikov. Ei-la:

XI) «Sido dadas as variaveis casuais X, independentes
por linhas, dotadas de variancias e admitindo as suas espe-
rancas matematicas [£,;, como constantes assintoticas. Para
que seja possivel determinar constantes .S, tals que as leis
das somas

(Z) )(n = )(nl + )ng e Xuk,, - Sn

tendam (fracamente) para uma lei de Gauss de variancia 42,
quando n 1o, e, além disso, as varidncias das variaveis X,
tendam para 2, é condigcdo necessdria e suficiente que as leis
das somas

6) ij = (le - E)zl)2+()(112— E112)2+ T '{‘(}(nk,, - Enk,,)2

tendam para a lei (impropria) da constante 4% e, além disso,
as esperan¢as matematicas das varidveis /7? tendam para
essa mesma constante.»

Demonstracdo de X1: Designemos por V,; a variancia de
X,; € comecemos por notar que 2 V.: tanto € a variancia de

X, como também ¢ a esperanca matem atica de 172, pelo que
esse somatorio sai limitado (em relagdo a #) no estudo quer
da condicio necessaria quer da suficiente. Pois bem, vimos,
a propdsito da demonstragio de Il de § 5, que tal limitagdo,
acompanhada da infinitesimalidade dos desv1os, implica que
as constantes assintéticas idénticamente nulas das variaveis
X — E,; respeitam as restriges 6) e ¢) de Il de § 2. Logo
a observagdo a I, com £, = 4, = A4,;, mostra que podemos
aplicar o teorema III as varidveis X,; e as suas constantes
assintoticas £,.. Em face do exposto a tese segue agora sem
dificuldade.

Observacdo : A forma original do teorema de Raikov su-
pracitado baseia-se na hipdtese 2 V,==1, donde 6*=
k
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Uma alteragio insignificante da demonstracdo de XI con-
duz ao coroldrio seguinte:

XI') «A proposi¢io XI continua a ser verdadeira se
acrescentarmos aos dados a condi¢do que as somas V, +
+ Ve + -+ Vs, sejam limitadas em relagiio a # e se retirar-
mos da parte restante do enunciado as referéncias a conver-
géncia das varidncias das varidveis X, e das esperancas
matematicas das variaveis I77%.»

Sobreposicdo dos casos particulares das varidveis casuais
Xur que tém variancias e das que sdo da forma Xi/B,. Vamos
agora adaptar o teorema IX a varidveis casuais X=X/ Ba,
com 1ZLk<Zn e B, > 0. Resulta a proposi¢do seguinte:

XII) «E dado o par constituido pela sucessdo de ntme-
ros positivos B, e pela sucessio de varidveis casuais inde-
pendentes X, , tendo as fun¢des de distribuigfio £, (x) e dota-
das de variancias V. Para que as variaveis casuais X,/ B,
com 1Lk, admitam as suas esperancas matematicas £,/B,
como constantes assintéticas (fortes) e para que seja possi-
vel determinar constantes .S, tais que as leis das somas

(l) Xx/Bn“,‘X2/Bn+--~+)(n/5n_SH

tendam (fracamente) para uma lei de Gauss, quando 724, e,
além disso, as variancias e as esperancas matematicas dessas
somas tendam, respectivamente, para a variancia e a espe-
ranca matematica da lei limite, ¢ condicdo necessaria e sufi-
ciente que se verifiquem simultaneamente as duas relacgdes
seguintes:

Cby) lim [_1_2 > / xQdFk(x+E/;):l=O,
le>”Bu

nhow n  1=h=n

para qualquer #>0, e mais, sendo 4 uma constante nfo-
-negativa,
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-2 f x* tliFl.:(x‘Jf’Ek):I = 0%,
t=k=<n | %< s By

para algum >0 (e, portanto, para qualquer ¢>>0).
Caso as relacdes 4;) e b:) se encontrem satisfeitas, o
conjunto das constantes .S, admissiveis é dado pela fé6rmula

C) Su =(E1+E2+"'+En>/3n—any

onde 2, representa o termo geral duma sucessio (real) con-
vergente arbitraria.

O limite da sucessdo «, escolhida e a constante 4° sio,
respectivamente, a esperan¢a matematica e a variancia da
lei limite.

Quando se pretende nio s6 que as varidveis X;/B5,
tenham as propriedades expostas, mas também que seja
possivel tomar S, =0, a condi¢io necessiria e suficiente
supracitada vem acrescida da imposi¢dio que as somas
(Ev+Ee+---+E,) | B, devem ter limite finito, quando # 1 c.»

Se adaptarmos X a situacido presente, obtemos a propo-
sicdo seguinte:

XIII) «Para que as variaveis casuais X, /5., sujeitas as
restricbes de XII e a restri¢do adicional

Wi+ Vet 4V, B £W <+, sejaqual for »n,

"

admitam as suas esperancgas matematicas £,/ 5, como cons-
tantes assintodticas (fortes) e para que seja possivel determi-
nar constantes .S, tais que as leis das somas de @) de XII ten-
dam (fracamente) para uma lei de Gavss, quando 710, ¢,
além disso, as esperancas matemadticas dessas somas tendam
para a esperanga matematica da lei limite, ¢ condicdo neces-
sdria ¢ suficiente que se verifiquem simultaneamente as duas
relagdes seguintes:

b) lim[ 1y xzdﬂ(x+Ek)]= 0,

nto n  I=EE=R ) uB, < vj<vB,
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bara qualquer par de nimeros positivos % e »>u, e mais,
sendo 6® uma constante nfo-negativa,

)  lim| L. 3 f K dF (5 Ey) | = b2,
niw Bn 1=i=n || <eB,
para algum >0 (e, portanto, para qualquer ¢>0).
Depois o enunciado fecha com as mesmas palavras da
parte final de XIL»

A adaptaciio de X', a de XI e a de XI' as variaveis X,/ B,
sdo tdo faceis que ndo vale a pena realizd-las aqui.

Passamos a considerar o problema tratado em § 7 no
caso particular de se procurarem leis limite de Gauss pro-
prias e as varidveis X, terem variancias. Deste modo somos
conduzidos a um resultado complementar de VIII, o qual
pode resumir-se na proposicio seguinte:

X1V) «Considerem-se apenas varidveis casuais e leis
limite prdprias, tanto no teorema XII como também em XL

Entdo, as constantes 53,>0 s6 podem satisfazer a condi-
¢do necessaria e suficiente do teorema considerado se forem
daordemde +(Vy+ Vet 4+ 7)) e se VitiVed+ o 4V, oo
e Vi+Vet  + V) /(Vid+ Vet +V,)—1, tudo isso
quando 7 fco. Caso a sucessdo das grandezas B, verifique a
condicdo necessdria e suficiente referida, tal acontece tam-
bém a qualquer outra sucessio da mesma ordem (possivel-
mente com um valor diferente da constante 62>>0).»

Demonstracdo de XIV: Se partirmos de XII, a nossa
proposi¢do sai uma consequeéncia imediata de VII de § 9 e de
XI de § 7. Analogamente, se partirmos de XIII, a nossa pro-
posi¢do sal uma consequéncia imediata de VII de § 9 e de
XII de § 7.

ES

Resultados classicos de Linpesere, FelEr e Liapounov, Teore-
mas complementares. Na parte restante deste paragrafo consi-
deramos as varidveis casuais X, de XII, supomo-las préprias



LIMITES DE SOMAS DE VARIAVEIS CASUAIS INDEPENDENTES 141

e substituimo-las pelos seus desvios X, — £,. Deste modo
as relagdes &) e b,) correspondentes ficam inalteradas e a
relacdo ¢) correspondente simplifica-se para .S,=—a, e,
portanto, para S,==0, quando e s6 quando escolhemos
a,==0. Quanto as constantes B, >0, vamos iguala-las a
~{—(V1+V2+--.+Vn)“3, 0 que impde (V1+V2+.--+Vﬂ)/
/B2==1, reduz a convergéncia das variancias das somas de a)
de XII para a variancia da lei limite a relagdo trivial 1—42=1,
introduz em XII a equivaléncia entre a relacio b,) e o con-
junto das duas relagbes ;) e b;) e nio significa perda de
generalidade em face de XIV.

Se adoptarmos as acomodacgdes descritas, a proposigio
XII transforma-se no célebre feorema de Livpesere e FELLER,
o qual representa o ponto culminante das investigacioes classicas
relativas a convergéncia de somas de variaveis casuais inde-
pendentes para uma lei de Gauss prosria. Ei-lo:

XV) «Sao0 dadas as variaveis casuais proprias indepen-
dentes X, (n=1,2,...), possuindo as funcdes de distribuiciio
£y (%) e dotadas de variancias V, e (portanto) de esperancas
matemdticas £, . Entdo, pondo

a) By=+(Vi+ TVt £V,
as somas

é) Yn = (XIFEI)/BM + (Xz—Ez)/Bn + - -+ (IYH‘—En)/Bn

saem de parcelas (fortemente) infinitesimais e as leis das
variaveis casuais Y, tendem (fracamente) para a lei de Gauss
de variancia unitdria e de esperanga matematica nula, quando
¢ s0 quando se verifica a relagio seguinte, chamada relagdo

de LinpEpERG,

. 1 - * .
¢) lim[—. 2 f x2dl (x4 E/)] =0,
niw Bn I=kz=n |%|>nB,

na qual # representa um nimero positivo arbitrario.»

Observagdo :  Linveserc provou que a relagio ¢) é sufi-
ciente para que as somas de &) tenham o comportamento
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descrito no enunciado do teorema e mais tarde FeLLer provou
que a relagdo de Linpeserc € necessaria para o mesmo efeito.

Tendo em conta XIV, tiramos de XV o coroldrio seguinte:

XV «Quando as varidveis casuais de XV satisfazem
a welacdo de Linprsrrc, sal necessariamente V) 4V, 4 ...
ot Vateo e (Vi Ve+ V) [ (Vi 4+ Va4 4 V) —1,
quando 7t co.»

Exemplo: Consideremos mais uma vez a sucessio de
varidveis casuais simples independentes X;; X;,... tal que
o termo genérico X, pode tomar apenas os valores 0 e 1, o
primeiro com probabilidade ¢, e o outro com probabilidade
Py € Vvamos supor que as varidveis sio todas préprias ou,
equivalentemente, que p,¢,>0, seja qual for n. No exemplo
2.° de § 8 de A vimos as igualdades £, = P Vu=pug., a
ultima das quais permite escrever @) de XV sob a forma
By =+ (p1qi+paqat- -+ pu ¢.)'2 Pois bem, para que se veri-
fique a relagdo de Livprsrre relativa as variaveis considera-
das, a condiciio /3, e ndo sé é necessdria, por causa de XV/,
como também € suficiente, pois, dado #>0, B, 1 implica
# 5,>1 para todo o # suficientemente grande, donde resulta
imediatamente ¢) de XV. Ficam assim confirmados (e melho-
rados) os resultados de cdlculos anteriores relativos a con-
vergéncia das somas de 4) de XV, consideradas debaixo da
restri¢fo que todas as varidveis X,, seguem leis de Brryvovrri-
-Porsson®) proprias.— A hipétese B, 1 o verifica-se, em parti-
cular, quando p,=p>0 e ¢, =¢ >0, isto ¢, quando as varia-
veis X, sdo idénticamente distribuidas segundo uma /le; de
Brervovrrr prépria. A este caso particular corresponde o mais
antigo dos teoremas de convergéncia para uma lei de Gauss
propria, o qual costuma ser citado sob o nome de feorema
limite de De Morvre ¢ Laprack.

Outro exemplo: Consideremos a sucessio de variaveis
casuais proprias, simples e independentes X;, X,,... tal que

) também chamadas leis de Bernoulli generalisadas.
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o termo genérico X, pode tomar apenas os valores n* e —n?
(» constante real), qualquer deles com probabilidade 1/2.
Eatao £, =0, V, =#u*> e B, de a) de XV converge ou
diverge, conforme 1< —1/2 ou 2> —1/2. Na primeira hipotese
o teorema XV nfo vale, por causa de XV, e na outra ele vale,
pois verifica-se a relagdo de Linprsrre, a qual é imediata
para —1/2£1£0 e sai também para 1>0, porque, dado #>0,
a desigualdade obvia B> (n/2) . (n/2)*» forca uB,>u .
(1) 2p iR L g2 > g0 para todo o n suficientemente grande.

Posto isso, vejamos algumas aplicagbes importantes do
teorema de Linpesire e FeLLER.

Se n e k<n forem numeros naturais, se ¢ for um nimero
positivo e se admitirmos que a variavel X, tem momento
absoluto da ordem 29, é obvio que se verifica a desigual-
dade [ver 7) de § 8 de B para a passagem ao tltimo membro]

6) /|.r1>uB,l % dF, (x"}'Elc)é[l/(Z"BfL)S] : fR Edan) dF(x+ En) <
L[5 (B - [ |54 dFy ().

De 6), de XV e das propriedades dos momentos das varia-
vels casuais tiramos o feorema de Liapounov, o qual repre-
senta um marco notavel na evolucio do problema que esta-
mos a estudar e pode enunciar-se como segue:

XVI) «S#o dadas as variaveis casuais préprias indepen-
dentes X,(n =1,2,...), tendo as fun¢des de distribui¢do
F, (%) e dotadas de momentos absolutos da ordem 243, com
93>0, (e, portanto, dotadas de variancias V), e de esperancas
matematicas £,). Entdo, pondo

a) B}L:+(IT/’1+ ;72++L/:1>I/2y
as somas
b) Kz = (Xl—El)/B;L+(X2~*E2)/ Bn+ A (Xn—EH)/ Bn

saem de parcelas (fortemente) infinitesimais e as leis das
variaveis casuais Y, tendem (fracamente) para a lei de Gauss
de variancia unitdria e de esperanca matemdtica nula, con-
tanto que se verifique a relagédo



144 PEDRO BRAUMANN

C) lni‘ylll [321%‘3 . 1_5_%§n ‘fR ’x ‘2+S dFI‘ (x)] -0

ou contanto que se verifique a relacido

¢) lim [E;TE_ 1 z ‘R Elas) dF,.—(erE/r)] = 0.»

1o =k=mn

Reafirmamos a convengiio que P(-..) significa a proba-
bilidade do acontecimento contido dentro do paréntesis e
passamos a enunciar um coroldrio do teorema de Liarounov,
a saber:

XVI') «Para que as somas de 4) de XVI saiam de parce-
las (fortemente) infinitesimais e para que as leis dessas somas
tendam (fracamente) para a lei de Gauss de varjancia unitaria
e de esperanga matematica nula, é condi¢io suficiente que
exista uma sucessdo nio-decrescente de constantes positivas
L, tais que P(| X, |>L,)=0 para qualquer # e que L,|B,—0,
quando 7} co.» ‘

Demonstragdo de XVI': Seja qual for z, a igualdade
P(|Xu|>L,)=0 implica primeiro |E,|=|£(X,)|£L. e depois
P(| Xu—£Eu|>2L,)=0. Logo as varidveis X,— £, tém mo-
mentos absolutos de todas as ordens (ndo-negativas). Entio,
dado qualquer 9>>0, sai

2IE (| Xe— £ |P49) | BAS) £ 2[(2 Li)d -V | B2 <
k k
Z{(2Ly)] B.P -2V BY)—o0,
k

por causa de a) de XVI e de L, /B, —0. Concluimos que se
verifica ¢’) de XVIL Assim o teorema de Liapounov permite
terminar a nossa demonstracio.

Observacdo: A condicdo de XVI' ¢ satisfeita, em parti-
cular, quando B,teo, Ly=L <+co e P(|X,|>L)=0 para
qualquer #, significando a ultima relagio que as varidveis
X, sdo uniformemente limitadas.
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Segue outra aplicagdo do teorema XV.

Suponhamos que a sucessdo das constantes B, de XV
forma um infinitamente grande de ordem n#o inferior a de
+#'2, por outras palavras, que +#'?/B, é limitado (em rela-
¢do a %) e suponhamos mais que, dado n>>0 arbitrdrio, cor-
respondem grandezas a,(n) e b, (n)>a,(n) tais que

7) sup [|as()|,|0.(n)]]/ Bu—0, quando n 1, e
2 N
SL}zpc[bn('ﬁ)<x<an("ﬂ)x dF” (x+E”>én,

para todo o n suficientemente grande, isto €, tais que os
quadrados dos desvios X, — £, ficam wuniformemente integrd-
veis de ordem menor que a de B, .*) Entdo, seja qual for #>0, -
sai, sempre para todo o # suficientemente grande,

1 vf 2 1
- BdF (v + B L —5 11
B;L k l v l >u B, B;z
. sup K2 dF (x+ B L,

ko |w|>uB,

de modo que se verifica a relagdo de LinvprsEre.
O que acabamos de expor justifica a proposi¢do seguinte:

XVII) «Para que as somas de 6) de XV tenham parcelas
(fortemente) infinitesimais e para que as leis dessas somas
tendam (fracamente) para a lei de Gauss de variancia unita-
ria e de esperanca matemadtica nula, é condigido suficiente
que a sucessfo das grandezas Vid- Vot -V, forme um
infinitamente grande de ordem pelo menos igual a de » e,
aléem disso, que os quadrados dos desvios das variaveis .Y,
sejam uniformemente integraveis de ordem menor que a de

"{"(VI‘{_ V2+"’+Vn>‘/2-»

(" Aqui convém, de certeza, qualquer ordem inferior a de +#n'” e,
possivelmente, alguma ordem ndo inferior & de +#'%,
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A condigio suficiente de XVII encontra-se satisfeita,
quando as grandezas Vi + 1V, + ... +V, sio de ordem
nio inferior a de # e, além disso, dado qualquer #>0,
a relagdo 7) € satisleita com sup(|a,(n)],4,(n)|] limitado (em
relagdo a ), significando esta ultima restrigio que os qua-
drados dos desvios X,—Z, ficam uniformemente integrdveis
no sentido corrente. A situagio que acabamos de descrever
apresenta-se, em particular, quando as variaveis (préprias)
X, sdo idénticamente distribuidas.

Podemos resumir as nossas conclusdes sob a forma do
coroldrio seguinte:

XVII') «Para que as varidveis casuais proprias indepen-
dentes X, de XV satisfacam a relagcdo de Livprserc, é condi-
¢fo suficiente que a sucessdo das grandezas Vi+ Vot 4V,
forme um infinitamente grande de ordem nfo inferior a de #
e, além disso, que os quadrados dos desvios X, — k&, sejam
uniformemente integraveis. Em particular, é condi¢do sufi-
ciente que as varidveis X, sejam identicamente distribuidas.»

Exemplo: Consideremos a sucessio das varidveis casuais
X, , proprias, independentes, continnas e idénticamente dis-
tribuidas, cuja fungdo de distribuigdo (comum) € F(x)=0 ou
x ou 1, conforme #2£0 ou 0Lx<1 ou 2 1. Sendo £ a
esperan¢a matematica e /7 a variancia de qualquer termo da
sucessdo casual considerada, vimos no exemplo 7.° de § 8 de A
que E'=1/2 e que V=1/12, pelo que a relagdo a) de XV
da B, = + (#/12)'2. Concluimos que as somas 2. (+ 312y .

2 [(Xi—1/2)/(4n')] ficam com parcelas (fortemente)

1=k=mn
infinitesimais e tendem (fracamente) para a variavel casual
da lei de Gauss de variancia unitdria e de esperanca mate-
matica nula. Este resultado tem certa importancia nalguns
problemas estatisticos (VaN pEr WanrDEN),

() A lei correspondente 2 fun¢fio de distribuicdo 7 (x) aqui consi-
derada € um caso particular da chamada lei rectangular ou uniforme.
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A convergéncia de leis de somas de varidveis casuais
independentes para uma lei de Gauss ¢ um assunto extre-
mamente batido, isso por varios motivos: Aistdricos, porque
foi o primeiro tipo de convergéncia para uma lei néo neces-
sariamente impropria que se considerou; fedricos, visto que
a andlise envolvida, ja por si bastante interessante, se reper-
cute noutros dominios; prdticos, dada a elevada frequéncia
e a enorme importancia da lei limite nas aplicacées mais
diversas. Aqui tratou-se a questdo com toda a generalidade
e referiram-se os seus aspectos particulares julgados mais
relevantes.

§ 10) Convergéncia para uma lei de Poisson

Caso geral, Vimos no exemplo 3.° de § 8 de A que, sendo
»>0, H e h trés constantes e fazendo a convengdo que P(...)
significa a probabilidade do acontecimento contido dentro do
paréntesis, entdo as igualdades

P (X H+h) =2 e )11 (1=0,1,2,...)

definem uma variavel casual X que segue a lei de Porsson
de esperanga matematica //-+)/% e de variancia »/4* e que se
apresenta propria ou impropria, conforme A£==0 ou /4=0.
Depois vimos, no exemplo 8. de § 11 de A, que as represen-
tagoes de Livy e Kuintcuing, de Lévy modificada e de Kovwmo-
corov da lei mencionada sdo caracterizadas como segue:

Na primeira tem-se a=H+23A/(1+7%%) e G(uw)=0 ou
VA2j(14A2%), conforme uLh ou u>h. Na segunda saem b=0
e a(U)=H ou H-+2h, conforme U<|kh]| ou U>|A[; se
b0, € M(u)=0 e N(u)=) ou 0, conforme u</h ou ux/; se
h£0, é M(u)=0 ou 1, conforme uLhou u>h, e N (1)=0. Na
terceira ¢ a=H+3 % e € C(u)=0 ou 242, conforme wLh ou u>h.

Consideremos agora, como usualmente, sucessdes duplas
de variaveis casuais X,., com 1LkLk, e k,—> oo, quando
nteo. Entdo, o que precede, lll de § 38 e 11 de § 5 permitem
estabelecer a proposigdo seguinte, a que podemos chamar
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teoremma  principal relativo d convergéncia para wuma led de

Porsson (propria):

I) «Sao dadas as variaveis casuais X,;, independentes
por linhas, tendo as func¢des de distribui¢do /. (x) e admi-
tindo as constantes assintéticas A4,,. Para que seja possivel
determinar constantes .S, que tornem as leis das somas

(l) X}z:)(ul +Xn2 + +Xnk”_5n

3

(fracamente) convergentes para uma lei de Poisson prdpria, é
condicdo necessdria e suficiente que existam duas constantes,
A0 e 2>0, tais que se verificam simultaneamente as trés
relagbes seguintes:

b l) “Ill 2 f an,’; (x“{" Ank) i O,
[v=3 el =d

nfw 1=k=ky,
para fodo o J positivo,

bs) lim 2 Al (4 Auw)=1,

ntw 1=k=k, Te—h} e

para algum ¢ positivo e menor que | /%], e

63) tan - {v/hi <4 2 dF”" (x + Anl‘t) -

nto 1=k,

N l:ji.r|<:xanle(x+ Ank)] } =0,

para algum  positivo e menor que |/ [.()
Caso as relagées b,) a b;) se encontrem satisfeitas, o con-
junto das constantes .S, adwissiveis ¢ dado pela férmula

(;) Sn == 2 I:Ank -+ X dEzk (x -+ An/{)] — Uy ( U)7
1==h=shy,

I#1=U

) E facil deduzir da relacdo &) que os limites de &) a b;) sdo os
mesmos, quer ponhamos as desigualdades >3, <z e <<{ quer ponhamos
>0 <L e L
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onde U>0 é arbitrario, contanto que U< |%]|, e onde a,(U)
significa o termo - geral duma sucessdo (real) convergente
arbitraria.

O limite da sucessio a,(U) escolhida é a esperan¢a ma-
tematica da lei limite ou esta esperanca diminuida de 1%,
conforme se tenha tomado U>|%| ou U<|/%|. A variancia da
lei limite é a constante A A%

Quando se pretende nfo s6 que as somas X,, tenham as
propriedades expostas, mas também que seja possivel tomar
S,=0, a condigdo necessaria e suficiente supracitada vem
acrescida da imposi¢cdo que, uma vez escolhidas as grandezas
Ue A,, os somatérios do segundo membro de ¢) devem for-
mar uma sucessiio convergente.

Finalmente, caso as relacbes &;) a bg) ocorram para um
certo ¢ e um certo 4, ambos positivos e menores que |4,
e para uma certa sucessio de constantes assintoticas A
das varidveis X, as mesmas rela¢des tém lugar para todas
as grandezas ¢, ¢ e 4, andlogas.»

Se fizermos A=1, H=0, 4,,=0,S5,=0 e U<|4| em [, obtemos
um caso particular interessante (e frequente nas aplicagdes),
o qual corresponde ao teorema de GNEDENKO ¢ MaRCINKIEWICZ.

Observacdo: Atendendo al, 4)e 2) de § 4, podemos afirmar
que a hipétese #<0 implica que o conjunto das duas relagdes
by) e bs) de Isai equivalente ao conjunto das duas relagdes

bt) lim I [1-Fu(ut+du)]=1 ou e

nho 1=2hSkp

conforme u<4 ou A<<u<0, e

/2) 1i[ll n Fnk ('l¢+ Ank)zly

nto 1Ek=k,
para 0<#. Analogamente concluimos que a hipétese 4>0
implica que o conjunto das duas relagbes b;) e &;) de I sai
equivalente ao conjunto das duas relagdes

b/ll) lim i [1 —Fnk (u + Ank)] =1,

nhoo 1Sh<hy



150 PEDRO BRAUMANN

para u<0, e

bé/) li m 11 Ezk (% + An/;) =e¢* ou 1 ’

nheo 1=Sk=E,
conforme 0<u</4 ou u>h.

Outra observacdo: A proposicdo 1 pode aplicar-se a
qualquer subsucessdo (infinita) de somas X,,. Em particular,
se conservarmos ;) e b;) de I e se pedirmos que a sucessio
dos somatorios de 4,) de I se reparta por subsucessées con-
vergentes para limites positivos, fica uma condi¢io necessa-
ria e suficiente para que existam constantes .S, que permitem
repartir a sucessfo das leis das somas X, por subsucessées
convergentes para leis de Poisson proprias de parametro %
comum.

Seguindo o processo usado na demonstragio de 11 de § 9,
podemos estabelecer outro teorema de convergéncia para uma

lei de Porsson (propria):

IT) «Quando e s6 quando as constantes assintéticas A4,
de I forem tais que se verifica a igualdade

a) lim 2 [[irKZxdF”"' (x+ A,,,;)]Q:O, para algum >0,
nhoeo 1Shsk, —+

entdo a condi¢do necessaria e suficiente do teorema princi-
pal I ndo sé fica com as partes 4;) e bs) inalteradas e com
a parte ;) privada da parcela subtractiva do somatério,
como também sai equivalente ao conjunto das duas relacées

. P
b lim 2 - d Fu (x4 A,) =0
1) st 1.§/‘§7"n]‘{x—h123 1+x‘z l( + nk) )
para fodo 0 0>>0, e
. g x? /5
bh lim 2 ——dF (x+ ) = ———
9) oo 157"‘_—__<J‘n/1:c—/1|<e 14 x2 zl( + nk) 142 ’

para algum >0 (e, portanto, para qualquer >>0).



LIMITES DE SOMAS DE VARIAVEIS CASUAIS INDEPENDENTES 151

Desde que as relacdes a), b1) e b5) se encontrem satisfei-
tas, a constante 1/4?® resulta igual a variancia (comum) das
leis limite possiveis e as constantes .S, admissiveis podem
definir-se por qualquer das férmulas competentes.»

Observacdo : Podem obter-se constantes assintoticas A,
que permitam usar a condi¢do necessaria e suficiente de 1II,
procedendo do modo indicado na observacdo a II de § 9 ou
entdo recorrendo a relagdo @) de I' de § 5, isto €, escolhendo
um par fixo de numeros y’ e ¥, com 0<y £y"<1, e impondo,
para todo o # suficientemente grande e uniformemente em £,
a desigualdade

Y — Mk A 7S50+ 00y

onde 7 e vl significam numeros ndo-negativos que satisfa-
zem 4 relacdo

lim 2 #Z=0=lim 2 =}
wtwm 1k=k, nto 10k,

E3 &

Caso particular das variaveis casuais com variancias. Supo-
nhamos que as varidveis casuais X,, sfo integrdveis e que
admitem as suas esperangas matematicas £,; como constantes
assintoticas. Entfio, podemos fazer A,.=F,. e aplicar o teo-
rema principal de convergéncia para uma lei de Poisson (pro-
pria) ou, caso as esperancas matemdticas o consintam, o teo-
rema de convergéncia IL

Indo agora mais longe nas hipéteses, passamos a supor
que as varidgveis X, tém variancias. Nesta conformidade o
teorema de convergéncia de Guepexko e Bawry IV de § 5)
permite estabelecer a proposi¢do seguinte:

III) «S#o dadas as variaveis casuais X, independentes
por linhas, tendo as fun¢des de distribuicdo F.(x), dotadas
de variancias V. e assintoticamente constantes com respeito
as suas esperan¢as matematicas £,,. Afim de que possam
determinar-se constantes S, tais que as leis das somas

a) Xn:)(nl‘i_Xn‘Z”{“"'+)(nk,,—5u
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sejam (fracamente) convergentes para uma lei de Poisson
propria e, além disso, as variancias e as esperancas matema-
ticas das varidveis X, tendam, respectivamente, para a va-
riancia e a esperan¢a matematica da lei limite, 4 condi¢do
necessdria e suficiente que existam duas constantes, 20 e
4>>0, tais que se verificam simultaneamente as duas relagdes
seguintes:

b)) m 3 f @ dFu(x+ Eaw)=0,

ntw 1=5k=<kp

com qualquer ¢>>0, e mais

6:) lim 3 edFu(at En)=172,

ntoo 1=Jk=k,

com algum ¢>>0 (e, portanto, com qualquer ¢>>0).
Caso as relagdes b,) e ;) se encontrem satisfeitas, o con-
junto das constantes S, admissiveis & dado pela férmula

C) S :E;zl+Eit2+"'+Enk,l'_any

onde ¢, representa o termo geral duma sucessio (real) con-
vergente arbitrdria.

O limite da sucessdo «, escolhida e a constante 3 4? sio,
respectivamente, a esperanga matemdatica e a variancia da
lei limite.

Quando se pretende ndo s6 que as somas X, tenham
as propriedades expostas, mas também que seja possivel
tomar S,=0, a condi¢do necessdria e suficiente ¢ a anterior
acrescida da imposi¢do que as somas K,i+E, 24+ Eu,
devem formar uma sucessio convergente.»

Se pusermos %=1 e /=0 na proposicio III, ela transfor-
ma-se num fleorema de Gyepenko bem conhecido.

Exemplo: Suponhamos que a todo o ntmero natural #
corresponde uma varidavel casual X, que satisfaz a igualdade
X=X, 1+ X2+ +Xun, onde as parcelas X, sdo varidveis
casuais independentes e idénticamente distribuidas tais que
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qualquer delas pode tomar apenas os dois valores 1 e 0, 0
primeiro com a probabilidade p, e o outro com a probabili-
dade ¢,=1-—p, (compare-se com o exemplo 2.° de § 8 de A).
Tendo em conta que £,.=p,, para todo o £ de 1 a n, vamos
introduzir a Aipdtese adicional que existe um ntmero positivo
1o tal que se verifica, para todo o n>ny, a igualdade E,;+
+ Byt -+ Eyy=np,=2>0, onde } ¢ independente de »n. Entdo,
como 72>n, da

sup Vu=pugu=0/n)(1—An)—0 e 1<§_ Vie=2-(1—31n)—1

1=k=n

e como, escolhido 0>0, sai, para n>sup{n,(}/d)], a relagido

2 f 22 dF o (x4 Eu)=02n) (1—}n)— 0,
le-1(=3

1=<k=Zn

basta recordar a observagdo a IIl de § 5 e por a,,=2 ou S5,=0
em III de § 10 para concluir que as leis das somas X, con-
vergem para uma lei de Poisson tal que k=1, H=0e i é a
constante do texto. Este resultado ja era familiar aos proba-
bilistas classicos.

Uma proposicdo concebida no estilo de X de § 9 é a
seguinte:

IV) «Se impusermos as variaveis casuais X, de III
a restricio adicional

Vit Vet 4 Vi £ W < + 00, seja qual for #,
¢ se retirarmos deo enunciado de IIl o pedido que as varian-
cias das somas X, tendam para a variancia da lei limite,
entdo fica a condigéo necessaria e suficiente que existam duas

constantes, ~#+0 e 2>>0, tais que se verificam simultanea-
mente as duas relacdes seguintes:

[)1) 1in'l 2 f xg dEzk (x"!" Enl;):o,
uljx-hi<lv

ntw 1=Sh=Sky
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para qualquer par de ntimeros positivos # ¢ v>u, e mais

bs) lim 2 B AF (o Ey) =) 2,

nto 1:5k=Sky |w—h{<e

para algum >0 (e, portanto, para gualquer :>0).
Depois o enunciado fecha com as mesmas palavras da
parte final de IIL»

A proposi¢io IV é uma consequéncia imediata de V
de § 5.

Observagdo: As proposicses Il e IV podem aplicar-se
a qualquer subsucessio (infinita) de somas X,,. Em particular,
se conservarmos 6;) de IV (ou de III) e se pedirmos que
a sucessfo dos somatorios de 4;).de IV (ou de III) se reparta
por subsucessbes convergentes para limites positivos, resulta
uma condi¢éo necessdria e suficiente para que existam cons-
tantes .S, que permitem repartir a sucessfio das leis das
somas X, por subsucessdes tais que cada uma delas tende
para uma lei de Porsson prépria de parametro 4 e, além disso,
tem esperangas matemadticas (ou varidncias e esperangas
matematicas) convergentes para a esperan¢a matemaitica (ou
para a varidncia e a esperan¢a matemadatica) da lei limite
correspondente.

A lei de Poisson ndo é lei de Lévy. Terminamos o para-
grafo com uma proposi¢fio que é mera transcricdo dum resul-
tado referido no texto a seguir a observagio a VIII" de § 6.
FEi-la:

V) «Dadas as varidveis casuais independentes X,
(n=1,2,...), é impossivel existirem constantes B,>0 e .S,
tais que as somas X/B,+Xy/B,+ - +X,/B,—S, tenham
simultaneamente parcelas assintoticamente constantes e leis
(fracamente) convergentes para uma lei de Poisson prépria.s
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§ 11) Convergéncis psra uma lei de Cauchy

Caso geral. Vimos no exemplo 6. de § 8 de A que, sendo
h e H>0 duas constantes, a fungio

1) F(x)=(1/x)[=/2+arc ig (x—A)/H ]

¢ a funcfio de distribuicdo da lei de Cavcay de pardmetros h
e H, a qual nfio tem esperan¢a matemdtica (nem variancia).
Depois vimos, no exemplo 4.° de § 11 de A, que a represen-
tacdo de Livy e Kuintcuing e a de Livy modificada correspon-
dentes a 1) sfo caracterizadas como segue:

Na primeira tem-se a=/4 e G(u)=(H|r)-(arclgu+=/2).
Na outra saem 6=0 e a(U)=2, seja qual for U>0; além disso,
M (1)= — H|(= u), para u<0, e V(u)=F|(ru), para u>0.

Posto isso, consideremos, como usualmente, sucessdes
duplas de varidveis casuais X, com 1£LkZLk, e ky— o,
quando 71 co. Entdo, o que precede e Il de § 3 permitem esta-
belecer a proposi¢do seguinte, a que podemos chamar feorema
principal relativo d convergéncia para uma lei de Cavcny:

I) «Sdo dadas as varidveis casuais X,., independentes
por linhas, tendo as fun¢des de distribuicdo /() e admi-
tindo as constantes assintéticas A,.. Para que seja possivel
determinar constantes .S, que tornem as leis das somas

' (l) X1L=X11+Xn2 4 _‘f"Xﬂkn—‘S"

(fracamente) convergentes para uma lei de Cavcuy, € condigdo
necessaria e suficienfe que exista uma constante /7>0 tal que
se verificam simultineamente as duas relagdes seguintes:

. H .
!)1) fim 2 F;;.’c (—Z.L‘!' A:-z!c, = =lim 2 [1 HF’”‘ (M+A”")]’

niw 1=Sk=k, T ntew 1=Sh=k,

com qualquer #>0, e

bs) limlim max 2 {f 2 dF o (x+ Aur)—~
lx|<e

el0 #nlo 1=k=<ky

2
- [f X ank (x‘f" Anl;)] } = 0.
Jw|<le
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Caso as relagdes &;) e b2) se encontrem satisfeitas, o con-
junto das constantes .S, admissiveis é dado pela féormula

¢) S,= 2 [A,,;..-J—f xAF, (% + A,,,,.)]~a,,((]),
1=k=<k, =U

onde U>0 € arbitrario e onde a,(U) significa o termo geral

duma sucessfo (real) convergente arbitraria.

A constante H e o limite /4 da sucessio a,(U) sdo os
parametros da lei limite.

Quando se pretende nio s6 que as somas X, tenham as
propriedades expostas, mas também que seja possivel fazer
S,=0, a condi¢do necessaria e suficiente supracitada vem
acrescida da imposi¢do que, uma vez escolhidas as grandezas
U e A, os somatérios do segundo membro de ¢) devem
formar uma sucessdo convergente.

Finalmente, caso as relagdes &,) e 4,) ocorram para uma
certa sucessdo de constantes assintoticas 4, das variaveis
Xy as mesmas relagbes tém lugar para qualquer outra su-
cessdo de tais constantes.»

A proposicao 1 aplica-se obviamente a qualquer subsu-
cessdo (infinita) de somas X,

Observagdo: Atendendo a I, 4) e 2) de § 4, podemos
afirmar que 4;) de I é equivalente a relaciio
Lm I [1—Fu(—u+ Au)]=eHIE0
nte 1Tk,
=lim n Ful; (M -+ Aﬁ/.')s
nto I=h=k,

valida para qualquer #>>0,

Recordando agora I de § 5, podemos estabelecer outro
teovema de convergéncia para wmna lei de Cavcuy:

II) «Quando e s6 quando as constantes assintéticas A4,
de 1 forem tais que se verifica a igualdade

2
a) lim lim max 2 [[ xdEl,f(x+A,,k)] =0
I=ShsShy, Lo/ fa)<ze

£Jo ntw
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entio a condi¢io necessdria e suficiente do teorema princi-
pal [ nio s6 fica com a parte 4;) inalterada e com a parte &)
privada da parcela subtractiva do somatdrio, como também
sai equivalente a relacéo

® 2t 2
) lim 2 ] —i—‘—a’]ﬂ,k (x+Au) = 7, <arc to o + jv—)y
o 1A = : 9

nio 1=2h=ky

valida para qualquer #, finito ou infinito.

Desde que as relagdes a) e 6) se encontrem satisfeitas,
a constante />0 constitui-se em parametro comum a todas
as leis limites possiveis, as constantes S, admissiveis podem
definir-se pelas formulas competentes e, se fixarmos a sucessio
convergente arbitraria de qualquer dessas formulas, ela ten-
derda para o parametro /% da lei limite correspondente.»

Observacdo: Podem obter-se constantes assintoticas A,
que permitam usar a condi¢do necessaria e suficiente de II,
procedendo de qualquer dos modos indicados na observagio
a1l de § 10.

Exemplo: Consideremos a sucessdio dupla das varidveis
casuais X,.(n=2,3,...; #=1,2,...,2n), independentes por
linhas e tendo as func¢des de distribuigio

Fo(x)=(1/%) - [r/2+arc tg (n® x/k)].

Entfo, uma versdo simplificada dos calculos apresentados
no segundo exemplo relativo ao teorema I de § 3 mostra que
as variaveis consideradas sdo infinitesimais e que existem
constantes S, tais que as leis das somas X, de @) de I tendem
para uma lei de Cauvcny de parametro //=2. Talvez valha
a pena observar que o nosso exemplo também pode ser resol-
vido comodamente com o auxilio das fun¢des caracteristicas
das variaveis X,:, funcoes essas que foram deduzidas no
exemplo 6.° de § 8 de A.
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Caso particular das varidveis casuais Xu=X;/B, e transfor-
magéo de sucessdes simples em sucessdes duplas convergentes
para uma lei de Caucty. O estudo que acabamos de fazer adap-
ta-se facilmente a varidveis casuais X=X /B, com 1LkLn
e B,>0, usando, para o efeito, as correspondéncias apresen-
tadas em B, § 8, texto antes de I e observagio depois de IIL
A adaptagdo referida leva a variantes dos teoremas de con-
vergéncia I e IT que ndo merece a pena enunciar.

Passamos agora a considerar o problema tratado em §1
no caso particular de se procurarem leis limite de Cauchy.

Antes de mais nada, basta invocar I e I' de § 7, recordar
que toda a lei limite de somas de variaveis casuais indepen-
dentes é definida a menos duma constante de translaccio
arbitrdria a(U), a qual € o parametro % no caso da lei de
Cauvcny, e ter em conta que, multiplicando uma variavel
casual que segue uma lei de Cavchy por uma constante (posi-
tiva), o efeito é multiplicar o parametro /A da lei pela mesma
constante (ver 1), por exemplo), basta isso para concluirmos
que vale a proposicdo seguinte:

1II) «Suponhamos que sio dadas as variaveis casuais
independentes X,,X;,..., X,,... e que existem constantes
B5,>0 e S, tais que as somas

(l) Y;;:XI/B¢1+X2/B1;+"'+Xn/Bn—‘Sn

ficam com parcelas assintoticamente constantes e com leis
(fracamente) convergentes para uma lei de Caucny.

Entdo, as leis limite préprias que podem obter-se, fazendo
variar as constantes B,>0 e .S, de a), sdo todas as leis de
Cavchy ¢ s6 essas e a cada uma delas correspondem somas
Y, que saem de parcelas assintoticamente constantes.»

Posto isso, vamos adaptar X de § 7 ao nosso caso. Resulta
a proposicio seguinte:

IV) «Dadas as varidveis casuais préprias independentes
Xu(n=1,2,...), com as fungdes de distribuigio 7, (¥), podem
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encontrar-se constantes 5,>0 e .S, que tornem as parcelas
das somas

(l) XI/IBM+X2/B11+"‘+Xn/Bn""Sn

assintoticamente constantes e que tornem as leis dessas
somas (fracamente) convergentes para uma lei de Caucny,
quando ¢ so quando ocorrem simultaneamente as condigdes
seguintes:

1.2—Fazendo
Fu(5)=1— [, Fuly—a+0)dF, ()

e tomando um par qualquer de numeros positivos ¢* e H,
tem-se

%2

b) 3

1=i=n) g 2422

d F (%) 1 00, quando # 1o,

e as constantes positivas f, (univocamente) determinadas
pelas igualdades

x2
c) p f »r—;de%c(x):—ﬁ[i, para #X#usmH,
1=k=n) p @n-}—x

sdo tais que

d) ﬁn+1/f)n — 1, quando 7t oo,

e que existem constantes 4, que impdem a igualdade

” 2
e) lim sup} ———LdFk(x+A,;)=O.

whe 1=k=nJ p @i—}— x2

2.2—Verificam-se conjuntamente as rela¢bes

fi) lim 2 Eﬁ(—@,¢u+Ak)=—ﬂH7:lim 2 [1—FBuu+ A,

ntw 1Sh=n nhe 1=5k=#n
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para qualquer #>>0,® e

J2) lim lim max <—£ 2 {f ¥dF(x+Ar)-
|r}<B, e

L0 ntw fz I=hk=n

) [fir:<ﬁ),ax o <x+‘4’“)T}> =0,

Desde que as condi¢gBes 1.2 e 2.* se encontrem satisfei-
tas, as constantes £, podem fazer as vezes das constantes
B, e as constantes .S, admissiveis correspondentes—que va-
mos representar por g, —sdo as dadas pela f6rmula

Q) o=

- [A,;+ 5 dFi (x4 A) Jnauw),
n 1=k=n !,ﬂé[]ﬁn

onde U>0 ¢ arbitrario e onde a,(U) ¢ o termo geral duma
sucessdo (real) convergente arbitraria.

A constante A e o limite 4 da sucessdo a,(U) sio os
parAmetros da lei limite.

Supondo asseguradas as relacées 4) a /), as grandezas
A:/B. saem constantes assintéticas (das variaveis casuais
Xi/fn) € as relages Jfi) a g) ndo ficam prejudicadas se nelas
substituirmos aquelas grandezas por quaisquer outras cons-
tantes assintdticas com a mesma forma.»

Observagdo: O enunciado de 1V pode ampliar-se, acres-
centando a condigio para que seja admissivel fazer ¢,==0.

Recordando agora I de § 5, podemos estabelecer a propo-
sicio seguinte, homdloga de II:

V) «Quando e s6 quando as constantes assintoticas
AifB. das variaveis casuais X,/f, de IV forem tais que se

™) A relagdo f|) € equivalente a

fi)y lmo o (=P (—ubb 4)]=eF0=lim 0 (nB,+ A,

ntow 1=Sk==n ntw 1=Sh=tu

para qualquer #>0.
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verifica a igualdade

2
a) lim lim max{—l— <2 [f x dF, (x-{-A,v.)il }:0,
& nto ﬁzl 1=h=n 1w <eB,

entdo a condicfio necessaria e suficiente do teorema IV nio s6
fica com as partes &) a f;) inalteradas e com a parte f;) privada
da parcela subtractiva do somatério, como também sai equi-
valente ao conjunto das relagdes &) a ¢) acrescido da relagdo

£ lim 2 f”B”—iwdFk(x+Ak)=£-<arcz‘gu+%>,

wtw 1=k=n_| _» BL4+x?
véalida para qualquer #, finito ou infinito.

Desde que a condi¢io necessaria e suficiente aqui refe-
rida se encontre satisfeita para certas constantes f3,, estas
podem fazer as vezes das constantes B, e as variaveis Xi/B.
correspondentes sujeitam-se & parte final do enunciado de II».

Observacdo: Podem obter-se constantes assintéticas A4i/Py
que permitam usar a condi¢fio necessdria e suficiente de V,
procedendo do modo indicado em 19) e 19') de § 7 ou entéo
procedendo do modo indicado na observagido a V de § 9.0

Fechamos este sector de § 11, notando o seguinte: Caso
se verifique 4) de IV, entdo existe uma subsucesséo (infinita)
B,., extraida da sucessdo das constantes (3, determinadas por
¢)de 1V, que satisfaz a ¢), fi) e fo) de IV, quando e s6 quando
é possivel determinar constantes o, tais que as somas X/, +
+ X3/Bm + -+ + Xon/Bwm — 0n ficam com parcelas assintotica-
mente constantes e com leis convergentes para uma lei de

[T ST A A
Cauvchy cujo parametro de escala ¢ A.

A fei de CaucHy ndo pode ser lei limite de somas de variancias
limitadas, Terminamos o paragrafo com uma proposi¢do que

(*) Onde deve ler-se B, em lugar de B,.
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¢ mera transcri¢do dum resultado alcangado no texto a seguir
a demonstracdo de I1I' de § 5. Ei-la:

VI) «Dadas as varidveis casuais X,, independentes por
linhas, dotadas de variancias 7, assintoticamente constan-
tes com respeito as suas esperan¢as matemadticas e sujeitas
a restricéio

Vit + Vs + - + Vi, £W <+ o0, seja qual for #,
¢ impossivel existirem constantes .S, tais que as leis das somas

AXvnl + )(n2 + e + )(nk,l_sn

saiam (fracamente) convergentes para uma lei de Cauchy.»

§ 12) Convergéncia para uma lei gama
Definicdo e primeiras propriedades das leis gama. Conside-

remos um nuimero positivo ¢ e designemos por /(s) o maior
inteiro nele contido. Entéo, existe e é finito®

f Wl du s &V dy -[1(a)+1]!
0lr<+w [EE X!

f xb’—[(c)-—2dx=1/o—+[[(a‘)+1]!/[[(6)—{—1—0'].
ISr]{+w

O que acabamos de expor mostra que podemos fazer
corresponder a todo o nimero finito >0 outro ntmero I'(s),
finito e positivo, definido pela igualdade

1) I(s)= ] &g gz,
e <+

(4 Os integrais de Lesescue do texto podem ser interpretados como
integrais de Riemany, mesmo que se tenha o<1 [compare-se com A, I e
corolarios de § 5].
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Se pusermos ¢=1 em 1), sai
1) T(1)=1;

doutro lado, a substituicdo x=9%/2 da

f - WBe-r = 212 f eI gy = 127112,
0y <o 0Ly < 4w

23

| S

—w Ly +ow
lexemplo 4.° de § 8 de A}, de modo que resulta de 1) a férmula
1" I'(1/2)= 4=,

Supondo ¢>1, o método da integracdo por partes da a
relagido

f x-le* dx=(o—1) - x0-% e=* dx,
0w < 4w 0y oo

a qual é equivalente a formula de recorréncia

2) I(o)=(c—1) - T'(e—1),
cuja aplicagéo iterada conduz a
8) P(o)=(e—1) - (¢—2)-. a0 - I'(qp),

onde o, significa o ntimero positivo e ndo superior a 1 que
torna inteira a diferenca o—aoy.

Seja #» um ntmero natural. Entdo, as relagdes 8), 1') e 1)
mostram que
3") T (n)=(n —1)I"
e

;”) Plgn+1)/2]=[(2n—1)(2n—8) .- 8 .1.(+=12)]/2n

Dados os ntimeros ¢' e ¢, ambos positivos, a desigual-
dade ¢'LoLs" implica wo-le¥Lxo-1 ou x3"-1¢~%, conforme
0<<a<{1l ou 1Lx<+oo; logo Ill; de § 4 de A permite concluir
que U (6) é funcdo continua da varidvel positiva o.

(*) Vale a convengdo usual 01=1,
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Postos esses preliminares, consideremos duas constantes
positivas ¢ e = e ponhamos

4) 9(x)=0 ou (xs-1¢*)/[T (5) - +°], conforme x£0 ou x>0.
Tomando em conta que

f o(x)di = ylerdy=1,
—0 et P(o) Jocy<io

podemos afirmar que a fun¢fio /7 (x) definida pela igualdade

5) F(#) :f~ s

¢ uma fun¢do de distribuicfio e que 9 (%)) é a funcio de fre-
queéncia ou densidade de probabilidade correspondente [§ 5
de Al E uso chamar lei gama de pardmetros ¢ ¢ © a lei (de
probabilidade) introduzida através de 4) ou 5). No caso par-
ticular v=2 e 0=//2, com /N natural, também se d4 a essa
lei o nome de /ei qui-quadrado com N graus de liberdadet”

Vamos agora deduzir a f. ¢. f(¢) da lei gama de parame-
tros ¢ e 7.
Partimos da igualdade ¢+

6) f(l‘) — 1 . xq-l e—-.r/':+ ity dx,
F@) 7 Jococtn

) ¢(x) € aderivada de ¥ (x) para qualquer x (com excepcio possi-
vel da origem).

() Se N=1, sai de 4) e 1) que ¢(x)=0 ou (x~2¢~2) [[4(2=)"?], con-
forme x#<V ou x>0. Entdo, dado x>0, susbtitua-se em 5) a variavel & por
—y* ou % conforme —oco<<s< 0 ou 0<<z<I#, ¢ logo se reconhece que

F(x) & igual a 1 gl "

isto €, igual & probabilidade de que o valor genérico duma variavel casual
que segue a lei de Gauss normada ou reduzida esteja compreendido entre
—x'? e +x' ou, equivalentemente, igual & probabilidade de que o qua-
drado do dito valor genérico esteja compreendido entre —oo € .

(-»+) Repete-se a nota (*) & pagina 162,
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a qual resulta de 1) de § 6 de A. Pondo x/v=y em 6), sai

1

. i g-1 —y+irtyd
” Y € ¥y
NG j0<y<+w

6') f(t) =

onde o médulo da derivada da fungio integranda em ordem
a t € igual a vy%¢, isto é, igual a uma fun¢io integravel em
0< y< +oo, por causa de 1). Nestas condigdes, a extensido de
11I; de § 4 de A ao campo complexo da

df(t> - iT i ygg_y+1-Tiydy’
dat P@) Jocy<tn

donde tiramos, integrando por partes, a relagio

df(t) _ igT f yrtgs HiTIy dy,
dt P(G).(l*i’t’l‘) 0Ly Fw

a qual prova a igualdade

df ()] f(t)y=iox . dt]/(1—i=£).

Resolvendo a equagdo diferencial obtida e tomando em
conta que f(0)=1, sai

7) F)=(1—itt)ye.

A experanga matemdtica £ e a variancia /7 da lei que
estamos a estudar deduzem-se de 7), fazendo o cdlculo indi-
cado em 3) e 3') de § 8 de A. Resulta

8) E=ocx; Ve=o+

Para terminar, IV de § 7 de A e VI de § 6 de A permi-
tem tirar de 7) a conclusdo seguinte:

«A soma dum numero finito de varidveis casuais inde-
pendentes que seguem todas leis gama tendo o mesmo parame-
tro v e parametros ¢ iguais a a,0y, etc., respectivamente
para a primeira, para a segunda, etc., sai uma variavel casual
que segue a lei gama com o parametro v comum as suas par-
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celas e com o paradmetro v igual a o,+063+-.-. Em particular,
se as parcelas seguirem leis qui-quadrado com N, NV, etc.
graus de liberdade, a soma segue a lei qui-quadrado com
N4 N3+ ... graus de liberdade.»

Representacio duma lei gama na sua qualidade de lei de Lgvy
com variancia. A férmula 7) mostra que, seja qual for o nu-
mero natural », a fungdo f(#) é a poténcia de expoente # da
f. c. da lei gama de parametros ¢/% e 7 ou seja da lei cuja fun-
¢do de distribuicdo F,(x) se define como segue:

_.____1______ _f zﬂ/n~1 e T dZ,
U(o/n). oM 0Cs<x

conforme x£0 ou x>0.

Sendo assim, o estudo feito no principio de § 9 de A
permite-nos afirmar que f(#) ¢ uma f.c.i.d. Seja G(«) a fun-
¢do que representa f(¢) sob a forma de Lévy e KuiNrcHINE.
A demonstracio de I de § 11 de A refere que existe uma
sucessdo crescente de numeros naturais de termo genérico m
tal que 721 o implica

9) F,(x)=0 ou

2dEn 4
. FlnE) < oy
—w<lrln 1+x2

pelo que 9) arrasta G (#)=0, para #£0, Portanto, M (#)==0 na
representagéo de Livy e C'(#)=0, para #.0, na representacio
de Kormogorov. )

Sendo #,>>0 e uy>u; dois pontos de continuidade da fun-
¢do G (u), entdo um dos teoremas de HrLLy-Bray implica

lim [m . f w? dF,, (u):l - f (1422 dG (14) = C (112)— C (1),
mt o 1 u<uy 27

) A representacéo de KormoGorov existe, porque a lei considerada
tem variancia {IV de § 11 de A].
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Doutro lado, as formulas 9) e 2), a continuidade da fun-
¢io I, a f6rmula 1') deste paragrafo e Ill de § 4 de A permi-
tem escrever

a

21 f 32, dFm (u)= f uG/m-H e—u/’.‘ dis—
2y ety (G/M’I/) I (c/m) 'qum 1=ttt

-G f we " du=ot-[(u+7) el —(ug+-7) eI7].
20, U<t

Portanto, fazendo #3 1 co a0 longo dos pontos de continui-
dade de G(#) e tomando em conta que 8) da C(4oo)=0c7?
[19) de § 11 de A], resulta a igualdade

012 —C (1) =0t (uy+ 7)™l

a qual se estende a todos os pontos #>0, isso em virtude das
propriedades da fungio C (u).

A férmula 8) e os calculos precedentes, juntamente com
19) de § 11 de A, permitem exprimir as grandezas caracteris-
ticas « e C () da representacio de Korvmocorov da lei gama
de parametros (positivos) ¢ e v como segue:

10) a=a1; Cu)=0 ou ot [v—(u+7)e* ),

conforme #.0 ou u>0.

Ve-se em 10) que lim C(#)=0=C(0); logo a fun¢io C(u)
#}0 .

sai continua em todo o seu campo e, portanto, 0 mesmo
sucede a G(#), 2 M(u) e a N(u). Além disso, a fungdo C'(u)
admite derivada para qualquer u, a qual € nula, se #20, e ¢
igual a sue™", se ux0. Como g decresce, quando #>0
cresce, podemos aplicar VII" de § 6. Estamos pois aptos
a enunciar a proposi¢ido seguinte:

I) «Toda a lei gama ¢é lei (infinitamente divisivel) de
Livy com varidncia e com componente gausseana nula.»
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Caso queiramos representar a lei em estudo sob a forma
de Livy e KHINTCHINE, obtemos, por causa de 15) e 17) de
§ 11 de A,

11) G (#)=0 ou f v-er

0=oln 1 + v?

€ e—u/'.‘
a=a - —
0=nul+w 1 + u®

Caso queiramos representar a nossa lei sob a forma de
Livy, a proposi¢do I do texto e 12) de § 11 de A ddo

dv, conforme %20 ou u>0,

12) b*=0; M (u)=0, para u<0;
—o)T
N(n)=q f A dv, para #>>0.
ul o<+ w 4

Finalmente, a aplicagdo de 13) de § 11 de A mostra que
a representacdo de Livy modificada faz corresponder a qual-
quer numero />0 a grandeza

13) a(U)=o1 (1—eUF),

&
Ed k3

Convergéncia de somas de variancias limitadas para uma lei
gama. Dispomos agora de todos os elementos para podermos
estabelecer teoremas de convergéncia de somas de varidveis
casuais independentes para uma lei gama.

Consideremos, como usualmente, sucessbes duplas de
varidveis casuais X, com 1£LkLk, ek, — oo, quando # 1 oo,
e comecemos por adaptar o teorema de convergéncia de Gne-
nexko e Bawey (IV de § 5) a situagio presente. Obtemos a
proposicdo seguinte :

II) «Sdo dadas as variaveis casuais X, independentes
por linhas, tendo as fun¢des de distribuicdo /7, (x), dotadas
de varidncias e assintoticamente constantes com respeito as
Suas esperancas matematicas £,;.. A fim de que possam de-
terminar-se constantes .S, tais que as leis das somas

a) Xﬂ:XM‘l‘-an‘i"-'+~Xnk,l—S,,
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sailam (fracamente) convergentes para a lei gama de para-
metros (positivos) ¢ e 7 e, além disso, as variancias e as espe-
rancas matemadticas das variaveis casuais X, tendam, respec-
tivamente, para a variancia e a esperanca matemdtica da lei

limite, ¢ condi¢do mecessdria e suficiente que se verifiquem
simultaneamente as duas relagées seguintes:

b,) lim P f x2 ank (x+E»LIc)zOy
—on<lx e

nio 1=k=hk,

com qualquer »0, e

b2) lim p f x® d[;‘n/c (x+ Enk) =07 (u + ’T) 6_""7,
: u=x< 4w

nto 1=Tk=Sh,

com qualquer #X0.
Caso as relagdes 4;) e ;) se encontrem satisfeitas, o con-
junto das constantes .S, admissiveis é dado pela férmula

6) Siz=E1zl+E”2+“"'{'Enk"——-an,

onde «, representa o termo geral duma sucesséo (real) qual-
quer que seja convergente para ¢ T.»

Observagdo: Se acrescentarmos as hipéteses de Il a de
que as variancias /7, das varidveis X, sfo tais que as somas

Vit 4+ Vs -+ Vo, resultam limitadas em relacdo a =

e se retirarmos dos pedidos de Il o de que as variancias das
varidveis X, devem tender para a variancia da lei limite,
entdo V de § 5 mostra que a condi¢io necessaria e suficiente
de II passa a ser a seguinte:

¥Fixada qualquer subsucessdo fracamente convergente,
extraida da sucessio

2 f x2 ank (x +Enk)y
~ oo x<2

1=<k=sh,
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o seu limite sai igual a uma constante, para #.£0, e igual
a mesma constante aumentada de o5[v— (1 -41) ], para #2.0.
*

Caso geral da convergéncia para uma lei gama, Uma con-
sequéncia imediata de 12) e 18) deste paragrafo e de Il de

§ 3 € a proposi¢do seguinte, a qual podemos chamar feorema
principal relativo @ convergéncia para uma lei gama :

II) «Sdo dadas as varidveis casuais X, independentes
por linhas, tendo as fun¢oes de distribui¢io /. (#) e admitindo
as constantes assintéticas A,,. A fim de que seja possivel
determinar constantes .S, que tornem as leis das somas

a) )(n=)(n1+)(n2+"'+-Xvn/c,,_'sn

(fracamente) convergentes para a lei gama de parametros
(positivos) ¢ e 7, € condigdo necessdria e suficiente que se veri-
fiquem simultineamente as relagdes seguintes ;¢

b1) lim 2 Fu(u+4.u)=0, com qualquer %<0,

nto 1=Sh=<k,

. g el
b)  lim 3 [1_F,,k(u+A,,k)]=aJ do,
nto 1Sk=h, uloltw U
com qualquer #>0, e
bs) lim lim max X {f 2 dF (2 + Au)—
gl0 nieo 1=h=sky [#1<e

2
- [f xdF‘nk (x+A1zk>] } =0,
] <2

) Atendendo a I, 4) e 2) de § 4, podemos afirmar que o conjunto
das relagbes b)) e 4,) & equivalente ao conjunto das relagBes

[){ ) Hm 11 [1'—];‘111-‘ (M—I-A,,/,-):I:ly

nio 1=Sh=<k,

com qualquer #<0, e

8)  lm z logF',,k(u-}-Aﬂk):_G./

nho 1=SEk=<ky, u<lo40 U

eVt

dv,

com qualquer #>0,
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Caso as relagbes 6,) a 63) ocorram para uma certa suces-
sdo de constantes assintéticas das varidveis X, as mesmas
relagdes tém lugar para todas as sucessfes de tais constantes.

Desde que as relagbes 4,) a ;) se encontrem satisfeitas,
o conjunto das constantes .S, admissiveis &€ dado pela férmula

~

¢) Sp= 2 . [/1,,,; +J

I<th=<<

v X dFu/; (x+ A;zl;)il -—ay ( U))

vl

onde U>0 ¢ arbitrario e onde a, () representa o termo geral
duma sucessdo (real) qualquer que seja convergente para
gt (1—eUF)»

Observagdo: Atendendo a I de § 5, podemos afirmar
0 seguinte:

Quando e s6 quando as constantes assintéticas 4, do
teorema IIl verificam a relacdo

2
Q) lim lim max 2 [f xdF . (x+ A,,k)] =0,
lv<le

€L0 ntow 1=Zk=k,

entfio a condicdo necessaria e suficiente do teorema nfo sé
fica com as partes ;) e b3) inalteradas e com a parte &;) pri-
vada da parcela subtractiva do somatério, como também sai
equivalente ao conjunto das duas relagdes

* 3 xg
bl) lim 2 f ——dF,: (x+Ank):0)

who 1SSt ) _gcecn 1+ 47

para qualquer %20, e

2 N ~ofv
p) lim 3 | S F,,k(x—|~A,,,;)=:c-{ 2 g,

mho 1=k=h ) e 1+ 47 Joosmeca 1427

para qualquer #>0, finito ou infinito.
Caso as relagbes a), b} ) e b; ) se encontrem satisfeitas e caso
se pretenda calcular as constantes S, a partir de ¢) de I de § 3,
as grandezas a, devem ter o limite @ da férmula 11) de § 12.
Acrescentamos que podem obter-se constantes assinto-
ticas A4, que permitam usar a condi¢do necessaria e sufi-
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ciente de convergéncia desta observagio, procedendo de
qualquer dos modos indicados na observagio a II de § 10.

Caso particular das varidveis casuais Xu=X./B, e transfor-
magdo de sucessOes simples em sucessdes duplas convergentes
para uma lei gama. Dadas as constantes positivas Bu(n=1,2,.)
e as varidveis casuais independentes X, ¢ facil adaptar Il e
Il e as observagbes anexas as varidveis X,,—=X;/B,, com
12ksn,

Passamos agora a considerar o problema tratado em § 7
no caso particular de se procurarem leis limite gama.

Antes de mais nada, basta invocar 7) deste paragrafo
el el de§ 7 para concluir que vale a proposi¢io seguinte:

IV) «Suponhamos que sio dadas as variaveis casuais
independentes X,(n=1,2,...) e que existem constantes
B,>0 e S, tais que as somas

a) K;ZX1/31;+X2/B;;+ "'+1Y1;/Bn—‘5n

ficam com parcelas assintoticamente constantes e com leis
(fracamente) convergentes para a lei gama de pariAmetros.
(positivos) ¢ e .

Entdo, as leis limite préprias que podem obter-se, fazendo
variar as constantes B,>0 e S, de a), sio todas as leis que
se transformam numa lei gama de primeiro parametro ¢ por
uma simples transla¢fio e s6 essas leis e a cada uma delas
correspondem somas Y, de parcelas assintdticamente cons-
tantes. Em particular, se ¢=/V/2, com NV natural, alcanca-se
uma lei limite qui-quadrado, necessariamente com NV graus
de liberdade, quando e s6 quando se substituem as constan-
tes B, e S, de @) por outras B, e S, tais que 7100 implica
B, |B,—x/2 e tais que S,= B, S,,/B)+0,, com J, infinitésimo.»

Posto isso, vamos adaptar X de § 7 ao caso da conver-
géncia para uma lei gama. Sai a proposi¢io seguinte:
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V) «Dadas as varidveis casuais préoprias independentes
X,(n=1,2,...) com as func¢des de distribui¢do F,(x), podem
encontrar-se constantes 5,>0 e S, que tornem as parcelas
das somas

(1) Xl/sz+X2/Bn+"'+X-7z/Bn‘"Sn

assintoticamente constantes e que tornem as leis dessas so-
mas (fracamente) convergentes para uma lei gama de primeiro
parametro (positivo) o, quando ¢ sé quando ocorrem simulta-
neamente as condi¢des seguintes:

1.2—Fazendo

fw‘n<x)x1~f Fu(p—2+0)dF.(5)
R

- e tomando um par qualquer de numeros positivos ¢® e 1, tem-se

2
b) 2 ——A—C—-d&'k(x)roo,quando #n1too,

i=t=n/ p 242

e as constantes positivas £, (univocamente) determinadas
pelas igualdades

\ X Me_”lT
0 [ ammee [,
1=k=n,) g (2442 ouctow 14242

=P, para nxnp,

i

sdo tais que

«d
[£3

o

wi1/fs— 1, quando # $ oo,

2
e) lim sup f »—ﬁ——‘a’Fk (x+.Ai)=0.
r PEA4a?

nheo 1k<n ﬁi
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2.2—Verificam-se as trés rela¢des seguintes: ()

S lim 3 Fi(uf,+ A)=0, com qualquer <0,

ntw 1=k=n

. -vft
£)  lim 3 [1.WFL.(¢¢@,,+AL,)]:6.] T o,

nlo ISkh=n u<lv<4-®

com qualquer #>>0, e mais

/1 3
lim lm max ( ~—+ | <<y f 22dF (x4 A)—
7 §o wfe <@i EL{ IvI<eB, t 2

B [ﬁxmgnxdﬂ (%+ Ak)]gb "y

Desde que as condigdes 1.* e 2.* se encontrem satisfeitas,
as constantes 3, podem fazer as vezes das constantes B, e as
constantes S, admissiveis correspondentes—que vamos re-
presentar por ¢,—sdo as dadas pela fé6rmula

g) Gp = . 2 1[14/: + H<[]B xdE. (x“f‘AA)] - an(U>y

1
(j” 1=i=s

onde U>0 € arbitrario e onde a,(U) é o termo geral duma
sucessdo (real) qualquer que seja convergente para o -
-(1—e Uk, '

A constante 7 escolhida é o segundo parametro da lei
limite.

Supondo asseguradas as relagdes &) a fs), as grandezas
Ai[B, saem constantes assintdticas (das varidveis casuais
X;:/B,) e as relagdes f,) a g) ndo ficam prejudicadas se nelas

) O conjunto das relagdes fi) e f,) é equivalente ao conjunto das
relacdes

fl/) llm 11 [1'~Fk(“ B)x+ AI;)]:]i
nto 15k=n
com qualquer %<0, e
* 0 =v/T
7 lim = logF, (uB,+d4,)=—c / iy "
niw 1=k=<mn J ulv<l}w 4

com qualquer #>0.
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substituirmos aquelas grandezas por quaisquer outras cons-
tantes assintéticas com a mesma forma.»

Observacdo. Quando e s6 quando as constantes assin-
téticas A4;/f, do teorema V verificam a relagido

«) lim lim max [

2
Lo [f xdﬂ-(x+Ak):l }:0,
£}0 14w l ﬁ(fz 1=<h=n |”|<€B,l

entdo a condigfo necessaria e suficiente do teorema nfo s6
fica com as partes 6) a f3) inalteradas e com a parte f3) pri-
vada da parcela subtractiva do somatodrio, como também sai
equivalente ao conjunto das relagdes &) a ¢) acrescido das
duas relacdes

) lim 3 f Y GF.(x+ A)=0,
—e<la<luf,

nho 1Smh=tn 52 - x?
W

para qualquer #.20, e

04
E1

ve T

£ lim 3 / —iLciFk(x+Ak)=c-f 2 g,
0=sw<lu B, 0

. 2 42 2
nhoo 1:Sk=n n+x =v<lu i+v

para qualquer #>0, finito ou infinito.
Depois esta observagio pode completar-se do mesmo
modo que a observagdo anexa a IIL

Vamos agora adaptar XI de § 7 ao caso da convergéncia
para uma lei gama. Obtemos a proposi¢do seguinte:

VI) «Dadas as varidveis casuais proprias independentes
X,(n=1,2,...), possuindo as fungdes de distribuicio £, (x),
as variancias I/, e as esperangas matemadticas £,, entdo é
possivel encontrar constantes 5,>0 e S, tais que as varidveis
casuais X;/B5,, com 1£LkLn, admitam as constantes assinto-
ticas £;/B,, as leis das somas

a) Y11:X1/371+X2/Bn+'"+X1Z/Bn—"5u

sejam (fracamente) convergentes para uma lei gama de pri-
meiro parametro (positivo) ¢ e, além disso, as varidncias e
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as esperancas matemdticas das varidveis casuais Y, tendam,
respectivamente, para a variancia e a esperanca matematica
da lei limite, quando e sé quando, escolhendo uma constante
positiva qualquer = e pondo

O AV Ve k- V) e,

ocorrem simultaneamente as condi¢bes seguintes:
1.2—Tem lugar as relagdes

c) Yuloo € yuy1/yn—> 1, quando 71 oo,

e mais a relacéio

d) lim supf —i—dm(erEk):o.
R

. 2 2
wiw 1=Sk=<n 71z+x

22~Verificam-se as igualdades

. 1
e;) lim [ -2 f il (x_]LEk):l -
A I =

com qualquer %0, e mais

¢) lim[ 1‘) .3 f ¥ dF (x+Ek)]=m(u+r)'e‘“/’,
Y=o

ntw VE 1=k =n
# ==

com qualquer #X0,

Caso as relagSes ¢) a ¢;) se encontrem satisfeitas, as
constantes y, podem fazer as vezes das constantes B, e as
constantes .S, admissiveis correspondentes—que vamos repre-
sentar por ¢,—sfo as dadas pela férmula

5 Gn=(E1+E2—I—~--—|—E,,)/7,,,-an,

onde o, representa o termo geral duma sucessio (real) qual-
quer que seja convergente para on.

A constante t escolhida ¢ o segundo parametro da lei
limite.»
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Observacdo : Retomemos VI. Se substituirmos ai a ex-
pressdo «as variancias das variaveis casuais Y, tendam para
a variancia da lei limite» por «as variancias das variaveis Y,
sejam limitadas», se pusermos em lugar de 4) a igualdade

Vw1 Voo + V) O],

onde O significa uma constante positiva qualquer, e se conser-
varmos a parte restante do enunciado anterior a condi¢fo 1.3,
esta fica intacta e a condigdo 2.* passa a ser a seguinte:
Deve existir um ntmero positivo ~ tal que, fixada qualquer
subsucessdo fracamente convergente, extraida da sucessio

= f & dF, (x+ E),
— x4 Yn

7 1=k=wn
n

o seu limite sai igual a uma constante, para u0, e igual
a mesma constante aumentada de o7 -[v—(u+71)e ], para
7> 0.

Prpro Bruno Troporo Braumann
(entregue em 24 de Julho de 1961)
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deve ler-se

pég. 3, linha 25

de existirem constantes
S, que tornam as

das constantes S, torna-
rem as

pag. 8, linha 4

onde o iltimo somatério

onde os quatro ultimos

¢ limitado somatoérios sdo limitados
pag. 14, linha 22 sup (1 B,) sup (1/5,)
; . ?eq P qi

pég. 15, linha 2 —B;{’i }3,‘,

pag. 16, linha 12 Kintcuing Kumnrcumne

pag. 26, linha 2 G¢) (n) G*(n)

pég. 61, linha 11 que prova 0 que prova

. x x2

pag. 173, linha 16 :{.‘_x") W

ESCLARECIMENTO

Quando o autor desta dissertacio estava assistindo em
Agosto de 1962 a uma reunifio cientifica em Breukelen na
Holanda, a Senhora I. van Aarpenns-EHRENFEST teve a grata
deferéncia de traduzir para ele certas passagens do original
russo do trabalho ntimero 15 da bibliografia anexa, original
esse que parece ser impossivel encontrar em Portugal e de
que ha uma versdo inglesa, a qual é omissa sem declaracdo
de omissdo. Consequentemente, ficimos sabendo que as pro-
posictes VIIl de § 6, I' e X de § 7 e VIII de § 9, reputadas
como nossas na introducfio a este trabaiho, na realidade re-
produzem ou generalizam insignificantemente resultados
alcancados por GuepeNko e Grosuev. Fazemos aqui a devida
rectificagdo e chamamos a atencgfio para a repercussio do
facto sobre a nota 2 pagina 2.

Pepro Bruno Tronoro Braumann
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